Publications
Search
Aris, Timothy; Ustun, Volkan; Kumar, Rajay
Learning to Take Cover on Geo-Specific Terrains via Reinforcement Learning Journal Article
In: FLAIRS, vol. 35, 2022, ISSN: 2334-0762.
@article{aris_learning_2022,
title = {Learning to Take Cover on Geo-Specific Terrains via Reinforcement Learning},
author = {Timothy Aris and Volkan Ustun and Rajay Kumar},
url = {https://journals.flvc.org/FLAIRS/article/view/130871},
doi = {10.32473/flairs.v35i.130871},
issn = {2334-0762},
year = {2022},
date = {2022-05-01},
urldate = {2022-09-15},
journal = {FLAIRS},
volume = {35},
abstract = {This paper presents a reinforcement learning model designed to learn how to take cover on geo-specific terrains, an essential behavior component for military training simulations. Training of the models is performed on the Rapid Integration and Development Environment (RIDE) leveraging the Unity ML-Agents framework. We show that increasing the number of novel situations the agent is exposed to increases the performance on the test set. In addition, the trained models possess some ability to generalize across terrains, and it can also take less time to retrain an agent to a new terrain, if that terrain has a level of complexity less than or equal to the terrain it was previously trained on.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Hartholt, Arno; Fast, Ed; Leeds, Andrew; Kim, Kevin; Gordon, Andrew; McCullough, Kyle; Ustun, Volkan; Mozgai, Sharon
Demonstrating the Rapid Integration & Development Environment (RIDE): Embodied Conversational Agent (ECA) and Multiagent Capabilities Proceedings Article
In: Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems, pp. 1902–1904, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 2022, ISBN: 978-1-4503-9213-6.
@inproceedings{hartholt_demonstrating_2022,
title = {Demonstrating the Rapid Integration & Development Environment (RIDE): Embodied Conversational Agent (ECA) and Multiagent Capabilities},
author = {Arno Hartholt and Ed Fast and Andrew Leeds and Kevin Kim and Andrew Gordon and Kyle McCullough and Volkan Ustun and Sharon Mozgai},
isbn = {978-1-4503-9213-6},
year = {2022},
date = {2022-05-01},
urldate = {2022-09-20},
booktitle = {Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems},
pages = {1902–1904},
publisher = {International Foundation for Autonomous Agents and Multiagent Systems},
address = {Richland, SC},
series = {AAMAS '22},
abstract = {We demonstrate the Rapid Integration & Development Environment (RIDE), a research and development platform that enables rapid prototyping in support of multiagents and embodied conversational agents. RIDE is based on commodity game engines and includes a flexible architecture, system interoperability, and native support for artificial intelligence and machine learning frameworks.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Hartholt, Arno; McCullough, Kyle; Fast, Ed; Leeds, Andrew; Mozgai, Sharon; Aris, Tim; Ustun, Volkan; Gordon, Andrew; McGroarty, Christopher
Rapid Prototyping for Simulation and Training with the Rapid Integration & Development Environment (RIDE) Proceedings Article
In: 2021.
@inproceedings{hartholt_rapid_2021,
title = {Rapid Prototyping for Simulation and Training with the Rapid Integration & Development Environment (RIDE)},
author = {Arno Hartholt and Kyle McCullough and Ed Fast and Andrew Leeds and Sharon Mozgai and Tim Aris and Volkan Ustun and Andrew Gordon and Christopher McGroarty},
year = {2021},
date = {2021-11-01},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Filter
2022
Aris, Timothy; Ustun, Volkan; Kumar, Rajay
Learning to Take Cover on Geo-Specific Terrains via Reinforcement Learning Journal Article
In: FLAIRS, vol. 35, 2022, ISSN: 2334-0762.
Abstract | Links | BibTeX | Tags: DTIC, Integration Technology
@article{aris_learning_2022,
title = {Learning to Take Cover on Geo-Specific Terrains via Reinforcement Learning},
author = {Timothy Aris and Volkan Ustun and Rajay Kumar},
url = {https://journals.flvc.org/FLAIRS/article/view/130871},
doi = {10.32473/flairs.v35i.130871},
issn = {2334-0762},
year = {2022},
date = {2022-05-01},
urldate = {2022-09-15},
journal = {FLAIRS},
volume = {35},
abstract = {This paper presents a reinforcement learning model designed to learn how to take cover on geo-specific terrains, an essential behavior component for military training simulations. Training of the models is performed on the Rapid Integration and Development Environment (RIDE) leveraging the Unity ML-Agents framework. We show that increasing the number of novel situations the agent is exposed to increases the performance on the test set. In addition, the trained models possess some ability to generalize across terrains, and it can also take less time to retrain an agent to a new terrain, if that terrain has a level of complexity less than or equal to the terrain it was previously trained on.},
keywords = {DTIC, Integration Technology},
pubstate = {published},
tppubtype = {article}
}
Hartholt, Arno; Fast, Ed; Leeds, Andrew; Kim, Kevin; Gordon, Andrew; McCullough, Kyle; Ustun, Volkan; Mozgai, Sharon
Demonstrating the Rapid Integration & Development Environment (RIDE): Embodied Conversational Agent (ECA) and Multiagent Capabilities Proceedings Article
In: Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems, pp. 1902–1904, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 2022, ISBN: 978-1-4503-9213-6.
Abstract | BibTeX | Tags: AI, DTIC, Integration Technology, Machine Learning, UARC, VHTL, Virtual Humans
@inproceedings{hartholt_demonstrating_2022,
title = {Demonstrating the Rapid Integration & Development Environment (RIDE): Embodied Conversational Agent (ECA) and Multiagent Capabilities},
author = {Arno Hartholt and Ed Fast and Andrew Leeds and Kevin Kim and Andrew Gordon and Kyle McCullough and Volkan Ustun and Sharon Mozgai},
isbn = {978-1-4503-9213-6},
year = {2022},
date = {2022-05-01},
urldate = {2022-09-20},
booktitle = {Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems},
pages = {1902–1904},
publisher = {International Foundation for Autonomous Agents and Multiagent Systems},
address = {Richland, SC},
series = {AAMAS '22},
abstract = {We demonstrate the Rapid Integration & Development Environment (RIDE), a research and development platform that enables rapid prototyping in support of multiagents and embodied conversational agents. RIDE is based on commodity game engines and includes a flexible architecture, system interoperability, and native support for artificial intelligence and machine learning frameworks.},
keywords = {AI, DTIC, Integration Technology, Machine Learning, UARC, VHTL, Virtual Humans},
pubstate = {published},
tppubtype = {inproceedings}
}
2021
Hartholt, Arno; McCullough, Kyle; Fast, Ed; Leeds, Andrew; Mozgai, Sharon; Aris, Tim; Ustun, Volkan; Gordon, Andrew; McGroarty, Christopher
Rapid Prototyping for Simulation and Training with the Rapid Integration & Development Environment (RIDE) Proceedings Article
In: 2021.
BibTeX | Tags: AI, DTIC, Integration Technology, Machine Learning, Simulation, UARC, VHTL
@inproceedings{hartholt_rapid_2021,
title = {Rapid Prototyping for Simulation and Training with the Rapid Integration & Development Environment (RIDE)},
author = {Arno Hartholt and Kyle McCullough and Ed Fast and Andrew Leeds and Sharon Mozgai and Tim Aris and Volkan Ustun and Andrew Gordon and Christopher McGroarty},
year = {2021},
date = {2021-11-01},
keywords = {AI, DTIC, Integration Technology, Machine Learning, Simulation, UARC, VHTL},
pubstate = {published},
tppubtype = {inproceedings}
}