Publications
Search
Jalal-Kamali, Ali; Gurney, Nikolos; Pynadath, David
Predicting Team Performance from Communications in Simulated Search-and-Rescue Miscellaneous
2025, (arXiv:2503.03791 [cs]).
@misc{jalal-kamali_predicting_2025,
title = {Predicting Team Performance from Communications in Simulated Search-and-Rescue},
author = {Ali Jalal-Kamali and Nikolos Gurney and David Pynadath},
url = {http://arxiv.org/abs/2503.03791},
doi = {10.48550/arXiv.2503.03791},
year = {2025},
date = {2025-03-01},
urldate = {2025-03-18},
publisher = {arXiv},
abstract = {Understanding how individual traits influence team performance is valuable, but these traits are not always directly observable. Prior research has inferred traits like trust from behavioral data. We analyze conversational data to identify team traits and their correlation with teaming outcomes. Using transcripts from a Minecraft-based search-and-rescue experiment, we apply topic modeling and clustering to uncover key interaction patterns. Our findings show that variations in teaming outcomes can be explained through these inferences, with different levels of predictive power derived from individual traits and team dynamics.},
note = {arXiv:2503.03791 [cs]},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
Liu, Ruying; Becerik-Gerber, Burcin; Pynadath, David V.; Marti, Deniz; Lucas, Gale M.
Elicitation and verification of learning via experts (EVOLVE) for creating a theoretical framework for active shooter incidents Journal Article
In: Developments in the Built Environment, vol. 21, pp. 100635, 2025, ISSN: 26661659.
@article{liu_elicitation_2025,
title = {Elicitation and verification of learning via experts (EVOLVE) for creating a theoretical framework for active shooter incidents},
author = {Ruying Liu and Burcin Becerik-Gerber and David V. Pynadath and Deniz Marti and Gale M. Lucas},
url = {https://linkinghub.elsevier.com/retrieve/pii/S2666165925000353},
doi = {10.1016/j.dibe.2025.100635},
issn = {26661659},
year = {2025},
date = {2025-03-01},
urldate = {2025-03-18},
journal = {Developments in the Built Environment},
volume = {21},
pages = {100635},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Liu, Ruying; Becerik-Gerber, Burcin; Lucas, Gale M.; Busta, Kelly
Impact of behavior-based virtual training on active shooter incident preparedness in healthcare facilities Journal Article
In: International Journal of Disaster Risk Reduction, vol. 118, pp. 105225, 2025, ISSN: 22124209.
@article{liu_impact_2025,
title = {Impact of behavior-based virtual training on active shooter incident preparedness in healthcare facilities},
author = {Ruying Liu and Burcin Becerik-Gerber and Gale M. Lucas and Kelly Busta},
url = {https://linkinghub.elsevier.com/retrieve/pii/S2212420925000494},
doi = {10.1016/j.ijdrr.2025.105225},
issn = {22124209},
year = {2025},
date = {2025-02-01},
urldate = {2025-02-20},
journal = {International Journal of Disaster Risk Reduction},
volume = {118},
pages = {105225},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Liu, Ruying; Becerik-Gerber, Burçin; Lucas, Gale M.
Investigating Role of Personal Factors in Shaping Responses to Active Shooter Incident using Machine Learning Miscellaneous
2025, (arXiv:2503.05719 [cs]).
@misc{liu_investigating_2025,
title = {Investigating Role of Personal Factors in Shaping Responses to Active Shooter Incident using Machine Learning},
author = {Ruying Liu and Burçin Becerik-Gerber and Gale M. Lucas},
url = {http://arxiv.org/abs/2503.05719},
doi = {10.48550/arXiv.2503.05719},
year = {2025},
date = {2025-02-01},
urldate = {2025-03-18},
publisher = {arXiv},
abstract = {This study bridges the knowledge gap on how personal factors affect building occupants' responses in active shooter situations by applying interpretable machine learning methods to data from 107 participants. The personal factors studied are training methods, prior training experience, sense of direction, and gender. The response performance measurements consist of decisions (run, hide, multiple), vulnerability (corresponding to the time a participant is visible to a shooter), and pre-evacuation time. The results indicate that the propensity to run significantly determines overall response strategies, overshadowing vulnerability, and pre-evacuation time. The training method is a critical factor where VR-based training leads to better responses than video-based training. A better sense of direction and previous training experience are correlated with a greater propensity to run and less vulnerability. Gender slightly influences decisions and vulnerability but significantly impacts pre-evacuation time, with females evacuating slower, potentially due to higher risk perception. This study underscores the importance of personal factors in shaping responses to active shooter incidents.},
note = {arXiv:2503.05719 [cs]},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
Siniukov, Maksim; Xing, Ellie; Sanaz,; Isfahani, Attaripour; Soleymani, Mohammad
Towards a Generalizable Speech Marker for Parkinson's Disease Diagnosis Miscellaneous
2025, (Version Number: 1).
@misc{siniukov_towards_2025,
title = {Towards a Generalizable Speech Marker for Parkinson's Disease Diagnosis},
author = {Maksim Siniukov and Ellie Xing and Sanaz and Attaripour Isfahani and Mohammad Soleymani},
url = {https://arxiv.org/abs/2501.03581},
doi = {10.48550/ARXIV.2501.03581},
year = {2025},
date = {2025-01-01},
urldate = {2025-01-14},
publisher = {arXiv},
abstract = {Parkinson's Disease (PD) is a neurodegenerative disorder characterized by motor symptoms, including altered voice production in the early stages. Early diagnosis is crucial not only to improve PD patients' quality of life but also to enhance the efficacy of potential disease-modifying therapies during early neurodegeneration, a window often missed by current diagnostic tools. In this paper, we propose a more generalizable approach to PD recognition through domain adaptation and self-supervised learning. We demonstrate the generalization capabilities of the proposed approach across diverse datasets in different languages. Our approach leverages HuBERT, a large deep neural network originally trained for speech recognition and further trains it on unlabeled speech data from a population that is similar to the target group, i.e., the elderly, in a self-supervised manner. The model is then fine-tuned and adapted for use across different datasets in multiple languages, including English, Italian, and Spanish. Evaluations on four publicly available PD datasets demonstrate the model's efficacy, achieving an average specificity of 92.1% and an average sensitivity of 91.2%. This method offers objective and consistent evaluations across large populations, addressing the variability inherent in human assessments and providing a non-invasive, cost-effective and accessible diagnostic option.},
note = {Version Number: 1},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
Rodrigues, Patrick Borges; Becerik-Gerber, Burcin; Soibelman, Lucio; Lucas, Gale M.; Roll, Shawn C.
Impact of selective environmental sound attenuation on operator performance, stress, attention, and task engagement in teleoperated demolition Journal Article
In: Automation in Construction, vol. 169, pp. 105876, 2025, ISSN: 09265805.
@article{rodrigues_impact_2025,
title = {Impact of selective environmental sound attenuation on operator performance, stress, attention, and task engagement in teleoperated demolition},
author = {Patrick Borges Rodrigues and Burcin Becerik-Gerber and Lucio Soibelman and Gale M. Lucas and Shawn C. Roll},
url = {https://linkinghub.elsevier.com/retrieve/pii/S0926580524006125},
doi = {10.1016/j.autcon.2024.105876},
issn = {09265805},
year = {2025},
date = {2025-01-01},
urldate = {2024-12-20},
journal = {Automation in Construction},
volume = {169},
pages = {105876},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Liu, Rong; Sun, Dylan; Chen, Meida; Wang, Yue; Feng, Andrew
Deformable Beta Splatting Miscellaneous
2025, (arXiv:2501.18630 [cs]).
@misc{liu_deformable_2025,
title = {Deformable Beta Splatting},
author = {Rong Liu and Dylan Sun and Meida Chen and Yue Wang and Andrew Feng},
url = {http://arxiv.org/abs/2501.18630},
doi = {10.48550/arXiv.2501.18630},
year = {2025},
date = {2025-01-01},
urldate = {2025-02-20},
publisher = {arXiv},
abstract = {3D Gaussian Splatting (3DGS) has advanced radiance field reconstruction by enabling real-time rendering. However, its reliance on Gaussian kernels for geometry and low-order Spherical Harmonics (SH) for color encoding limits its ability to capture complex geometries and diverse colors. We introduce Deformable Beta Splatting (DBS), a deformable and compact approach that enhances both geometry and color representation. DBS replaces Gaussian kernels with deformable Beta Kernels, which offer bounded support and adaptive frequency control to capture fine geometric details with higher fidelity while achieving better memory efficiency. In addition, we extended the Beta Kernel to color encoding, which facilitates improved representation of diffuse and specular components, yielding superior results compared to SH-based methods. Furthermore, Unlike prior densification techniques that depend on Gaussian properties, we mathematically prove that adjusting regularized opacity alone ensures distribution-preserved Markov chain Monte Carlo (MCMC), independent of the splatting kernel type. Experimental results demonstrate that DBS achieves state-of-the-art visual quality while utilizing only 45% of the parameters and rendering 1.5x faster than 3DGS-based methods. Notably, for the first time, splatting-based methods outperform state-of-the-art Neural Radiance Fields, highlighting the superior performance and efficiency of DBS for real-time radiance field rendering.},
note = {arXiv:2501.18630 [cs]},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
Xu, Jiuyi; Chen, Meida; Feng, Andrew; Yu, Zifan; Shi, Yangming
Open-Vocabulary High-Resolution 3D (OVHR3D) Data Segmentation and Annotation Framework Journal Article
In: 2024, (Publisher: arXiv Version Number: 2).
@article{xu_open-vocabulary_2024,
title = {Open-Vocabulary High-Resolution 3D (OVHR3D) Data Segmentation and Annotation Framework},
author = {Jiuyi Xu and Meida Chen and Andrew Feng and Zifan Yu and Yangming Shi},
url = {https://arxiv.org/abs/2412.06268},
doi = {10.48550/ARXIV.2412.06268},
year = {2024},
date = {2024-12-01},
urldate = {2024-12-20},
abstract = {In the domain of the U.S. Army modeling and simulation, the availability of high quality annotated 3D data is pivotal to creating virtual environments for training and simulations. Traditional methodologies for 3D semantic and instance segmentation, such as KpConv, RandLA, Mask3D, etc., are designed to train on extensive labeled datasets to obtain satisfactory performance in practical tasks. This requirement presents a significant challenge, given the inherent scarcity of manually annotated 3D datasets, particularly for the military use cases. Recognizing this gap, our previous research leverages the One World Terrain data repository manually annotated databases, as showcased at IITSEC 2019 and 2021, to enrich the training dataset for deep learning models. However, collecting and annotating large scale 3D data for specific tasks remains costly and inefficient. To this end, the objective of this research is to design and develop a comprehensive and efficient framework for 3D segmentation tasks to assist in 3D data annotation. This framework integrates Grounding DINO and Segment anything Model, augmented by an enhancement in 2D image rendering via 3D mesh. Furthermore, the authors have also developed a user friendly interface that facilitates the 3D annotation process, offering intuitive visualization of rendered images and the 3D point cloud.},
note = {Publisher: arXiv
Version Number: 2},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Chen, Meida; Han, Kangle; Yu, Zifan; Feng, Andrew; Hou, Yu; You, Suya; Soibelman, Lucio
An Aerial Photogrammetry Benchmark Dataset for Point Cloud Segmentation and Style Translation Journal Article
In: Remote Sensing, vol. 16, no. 22, pp. 4240, 2024, ISSN: 2072-4292.
@article{chen_aerial_2024,
title = {An Aerial Photogrammetry Benchmark Dataset for Point Cloud Segmentation and Style Translation},
author = {Meida Chen and Kangle Han and Zifan Yu and Andrew Feng and Yu Hou and Suya You and Lucio Soibelman},
url = {https://www.mdpi.com/2072-4292/16/22/4240},
doi = {10.3390/rs16224240},
issn = {2072-4292},
year = {2024},
date = {2024-11-01},
urldate = {2024-12-05},
journal = {Remote Sensing},
volume = {16},
number = {22},
pages = {4240},
abstract = {The recent surge in diverse 3D datasets spanning various scales and applications marks a significant advancement in the field. However, the comprehensive process of data acquisition, refinement, and annotation at a large scale poses a formidable challenge, particularly for individual researchers and small teams. To this end, we present a novel synthetic 3D point cloud generation framework that can produce detailed outdoor aerial photogrammetric 3D datasets with accurate ground truth annotations without the labor-intensive and time-consuming data collection/annotation processes. Our pipeline procedurally generates synthetic environments, mirroring real-world data collection and 3D reconstruction processes. A key feature of our framework is its ability to replicate consistent quality, noise patterns, and diversity similar to real-world datasets. This is achieved by adopting UAV flight patterns that resemble those used in real-world data collection processes (e.g., the cross-hatch flight pattern) across various synthetic terrains that are procedurally generated, thereby ensuring data consistency akin to real-world scenarios. Moreover, the generated datasets are enriched with precise semantic and instance annotations, eliminating the need for manual labeling. Our approach has led to the development and release of the Semantic Terrain Points Labeling—Synthetic 3D (STPLS3D) benchmark, an extensive outdoor 3D dataset encompassing over 16 km2, featuring up to 19 semantic labels. We also collected, reconstructed, and annotated four real-world datasets for validation purposes. Extensive experiments on these datasets demonstrate our synthetic datasets’ effectiveness, superior quality, and their value as a benchmark dataset for further point cloud research.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Loucks, Laura; Rizzo, Albert; Rothbaum, Barbara O.
Virtual Reality Exposure for Treating PTSD Due to Military Sexual Trauma Journal Article
In: J Clin Psychol, pp. jclp.23750, 2024, ISSN: 0021-9762, 1097-4679.
@article{loucks_virtual_2024,
title = {Virtual Reality Exposure for Treating PTSD Due to Military Sexual Trauma},
author = {Laura Loucks and Albert Rizzo and Barbara O. Rothbaum},
url = {https://onlinelibrary.wiley.com/doi/10.1002/jclp.23750},
doi = {10.1002/jclp.23750},
issn = {0021-9762, 1097-4679},
year = {2024},
date = {2024-11-01},
urldate = {2024-12-05},
journal = {J Clin Psychol},
pages = {jclp.23750},
abstract = {ABSTRACT
Virtual reality exposure therapy (VRE) has been used in the treatment of combat‐related PTSD since the late 1990s and was recently adapted to treat PTSD due to military sexual trauma (MST). With content specifically tailored to MST‐related contexts, we present the case study of a military veteran who participated in the open clinical trial examining the feasibility of VRE in the treatment of MST‐related PTSD (Loucks et al. 2019). We illustrate VRE's use in activating the trauma memory to facilitate therapeutic emotional processing across sessions and overall symptom reduction. The case study includes common challenges that may occur during VRE and relevant recommendations. The discussion will include lessons learned from the case study and the open clinical trial, recommendations for the flexible application of VRE, and the ongoing developments in the latest version of the VRE system, informed by feedback acquired from the clinicians and patients who experienced it in the initial clinical trial.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Virtual reality exposure therapy (VRE) has been used in the treatment of combat‐related PTSD since the late 1990s and was recently adapted to treat PTSD due to military sexual trauma (MST). With content specifically tailored to MST‐related contexts, we present the case study of a military veteran who participated in the open clinical trial examining the feasibility of VRE in the treatment of MST‐related PTSD (Loucks et al. 2019). We illustrate VRE's use in activating the trauma memory to facilitate therapeutic emotional processing across sessions and overall symptom reduction. The case study includes common challenges that may occur during VRE and relevant recommendations. The discussion will include lessons learned from the case study and the open clinical trial, recommendations for the flexible application of VRE, and the ongoing developments in the latest version of the VRE system, informed by feedback acquired from the clinicians and patients who experienced it in the initial clinical trial.
Roemmele, Melissa; Gordon, Andrew
From Test-Taking to Test-Making: Examining LLM Authoring of Commonsense Assessment Items Proceedings Article
In: Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 5193–5203, Association for Computational Linguistics, Miami, Florida, USA, 2024.
@inproceedings{roemmele_test-taking_2024,
title = {From Test-Taking to Test-Making: Examining LLM Authoring of Commonsense Assessment Items},
author = {Melissa Roemmele and Andrew Gordon},
url = {https://aclanthology.org/2024.findings-emnlp.299},
doi = {10.18653/v1/2024.findings-emnlp.299},
year = {2024},
date = {2024-11-01},
urldate = {2024-12-05},
booktitle = {Findings of the Association for Computational Linguistics: EMNLP 2024},
pages = {5193–5203},
publisher = {Association for Computational Linguistics},
address = {Miami, Florida, USA},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Roemmele, Melissa; Gordon, Andrew S.
From Test-Taking to Test-Making: Examining LLM Authoring of Commonsense Assessment Items Miscellaneous
2024, (Version Number: 1).
@misc{roemmele_test-taking_2024-1,
title = {From Test-Taking to Test-Making: Examining LLM Authoring of Commonsense Assessment Items},
author = {Melissa Roemmele and Andrew S. Gordon},
url = {https://arxiv.org/abs/2410.14897},
doi = {10.48550/ARXIV.2410.14897},
year = {2024},
date = {2024-10-01},
urldate = {2024-12-05},
publisher = {arXiv},
abstract = {LLMs can now perform a variety of complex writing tasks. They also excel in answering questions pertaining to natural language inference and commonsense reasoning. Composing these questions is itself a skilled writing task, so in this paper we consider LLMs as authors of commonsense assessment items. We prompt LLMs to generate items in the style of a prominent benchmark for commonsense reasoning, the Choice of Plausible Alternatives (COPA). We examine the outcome according to analyses facilitated by the LLMs and human annotation. We find that LLMs that succeed in answering the original COPA benchmark are also more successful in authoring their own items.},
note = {Version Number: 1},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
Lucas, Gale M.; Becerik-Gerber, Burcin; Roll, Shawn C.
Calibrating workers’ trust in intelligent automated systems Journal Article
In: Patterns, vol. 5, no. 9, pp. 101045, 2024, ISSN: 2666-3899, (Publisher: Elsevier BV).
@article{lucas_calibrating_2024,
title = {Calibrating workers’ trust in intelligent automated systems},
author = {Gale M. Lucas and Burcin Becerik-Gerber and Shawn C. Roll},
url = {https://linkinghub.elsevier.com/retrieve/pii/S2666389924001879},
doi = {10.1016/j.patter.2024.101045},
issn = {2666-3899},
year = {2024},
date = {2024-09-01},
urldate = {2024-09-17},
journal = {Patterns},
volume = {5},
number = {9},
pages = {101045},
note = {Publisher: Elsevier BV},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Georgila, Kallirroi
Comparing Pre-Trained Embeddings and Domain-Independent Features for Regression-Based Evaluation of Task-Oriented Dialogue Systems Proceedings Article
In: Proceedings of the 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pp. 610–623, Association for Computational Linguistics, Kyoto, Japan, 2024.
@inproceedings{georgila_comparing_2024,
title = {Comparing Pre-Trained Embeddings and Domain-Independent Features for Regression-Based Evaluation of Task-Oriented Dialogue Systems},
author = {Kallirroi Georgila},
url = {https://aclanthology.org/2024.sigdial-1.52},
doi = {10.18653/v1/2024.sigdial-1.52},
year = {2024},
date = {2024-09-01},
urldate = {2024-10-15},
booktitle = {Proceedings of the 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue},
pages = {610–623},
publisher = {Association for Computational Linguistics},
address = {Kyoto, Japan},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Gao, Zhiyuan; Teng, Wenbin; Chen, Gonglin; Wu, Jinsen; Xu, Ningli; Qin, Rongjun; Feng, Andrew; Zhao, Yajie
Skyeyes: Ground Roaming using Aerial View Images Miscellaneous
2024, (Version Number: 1).
@misc{gao_skyeyes_2024,
title = {Skyeyes: Ground Roaming using Aerial View Images},
author = {Zhiyuan Gao and Wenbin Teng and Gonglin Chen and Jinsen Wu and Ningli Xu and Rongjun Qin and Andrew Feng and Yajie Zhao},
url = {https://arxiv.org/abs/2409.16685},
doi = {10.48550/ARXIV.2409.16685},
year = {2024},
date = {2024-09-01},
urldate = {2025-01-16},
publisher = {arXiv},
abstract = {Integrating aerial imagery-based scene generation into applications like autonomous driving and gaming enhances realism in 3D environments, but challenges remain in creating detailed content for occluded areas and ensuring real-time, consistent rendering. In this paper, we introduce Skyeyes, a novel framework that can generate photorealistic sequences of ground view images using only aerial view inputs, thereby creating a ground roaming experience. More specifically, we combine a 3D representation with a view consistent generation model, which ensures coherence between generated images. This method allows for the creation of geometrically consistent ground view images, even with large view gaps. The images maintain improved spatial-temporal coherence and realism, enhancing scene comprehension and visualization from aerial perspectives. To the best of our knowledge, there are no publicly available datasets that contain pairwise geo-aligned aerial and ground view imagery. Therefore, we build a large, synthetic, and geo-aligned dataset using Unreal Engine. Both qualitative and quantitative analyses on this synthetic dataset display superior results compared to other leading synthesis approaches. See the project page for more results: https://chaoren2357.github.io/website-skyeyes/.},
note = {Version Number: 1},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
Hale, James; Schweitzer, Lindsey; Gratch, Jonathan
Pitfalls of Embodiment in Human-Agent Experiment Design Proceedings Article
In: Proceedings of the ACM International Conference on Intelligent Virtual Agents, pp. 1–9, ACM, GLASGOW United Kingdom, 2024, ISBN: 979-8-4007-0625-7.
@inproceedings{hale_pitfalls_2024,
title = {Pitfalls of Embodiment in Human-Agent Experiment Design},
author = {James Hale and Lindsey Schweitzer and Jonathan Gratch},
url = {https://dl.acm.org/doi/10.1145/3652988.3673958},
doi = {10.1145/3652988.3673958},
isbn = {979-8-4007-0625-7},
year = {2024},
date = {2024-09-01},
urldate = {2025-01-16},
booktitle = {Proceedings of the ACM International Conference on Intelligent Virtual Agents},
pages = {1–9},
publisher = {ACM},
address = {GLASGOW United Kingdom},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Chen, Gonglin; Wu, Jinsen; Chen, Haiwei; Teng, Wenbin; Gao, Zhiyuan; Feng, Andrew; Qin, Rongjun; Zhao, Yajie
Geometry-aware Feature Matching for Large-Scale Structure from Motion Miscellaneous
2024, (Version Number: 3).
@misc{chen_geometry-aware_2024,
title = {Geometry-aware Feature Matching for Large-Scale Structure from Motion},
author = {Gonglin Chen and Jinsen Wu and Haiwei Chen and Wenbin Teng and Zhiyuan Gao and Andrew Feng and Rongjun Qin and Yajie Zhao},
url = {https://arxiv.org/abs/2409.02310},
doi = {10.48550/ARXIV.2409.02310},
year = {2024},
date = {2024-09-01},
urldate = {2025-01-16},
publisher = {arXiv},
abstract = {Establishing consistent and dense correspondences across multiple images is crucial for Structure from Motion (SfM) systems. Significant view changes, such as air-to-ground with very sparse view overlap, pose an even greater challenge to the correspondence solvers. We present a novel optimization-based approach that significantly enhances existing feature matching methods by introducing geometry cues in addition to color cues. This helps fill gaps when there is less overlap in large-scale scenarios. Our method formulates geometric verification as an optimization problem, guiding feature matching within detector-free methods and using sparse correspondences from detector-based methods as anchor points. By enforcing geometric constraints via the Sampson Distance, our approach ensures that the denser correspondences from detector-free methods are geometrically consistent and more accurate. This hybrid strategy significantly improves correspondence density and accuracy, mitigates multi-view inconsistencies, and leads to notable advancements in camera pose accuracy and point cloud density. It outperforms state-of-the-art feature matching methods on benchmark datasets and enables feature matching in challenging extreme large-scale settings.},
note = {Version Number: 3},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
Tak, Ala N.; Gratch, Jonathan
GPT-4 Emulates Average-Human Emotional Cognition from a Third-Person Perspective Miscellaneous
2024, (arXiv:2408.13718 [cs]).
@misc{tak_gpt-4_2024,
title = {GPT-4 Emulates Average-Human Emotional Cognition from a Third-Person Perspective},
author = {Ala N. Tak and Jonathan Gratch},
url = {http://arxiv.org/abs/2408.13718},
year = {2024},
date = {2024-08-01},
urldate = {2024-09-17},
publisher = {arXiv},
abstract = {This paper extends recent investigations on the emotional reasoning abilities of Large Language Models (LLMs). Current research on LLMs has not directly evaluated the distinction between how LLMs predict the self-attribution of emotions and the perception of others' emotions. We first look at carefully crafted emotion-evoking stimuli, originally designed to find patterns of brain neural activity representing fine-grained inferred emotional attributions of others. We show that GPT-4 is especially accurate in reasoning about such stimuli. This suggests LLMs agree with humans' attributions of others' emotions in stereotypical scenarios remarkably more than self-attributions of emotions in idiosyncratic situations. To further explore this, our second study utilizes a dataset containing annotations from both the author and a third-person perspective. We find that GPT-4's interpretations align more closely with human judgments about the emotions of others than with self-assessments. Notably, conventional computational models of emotion primarily rely on self-reported ground truth as the gold standard. However, an average observer's standpoint, which LLMs appear to have adopted, might be more relevant for many downstream applications, at least in the absence of individual information and adequate safety considerations.},
note = {arXiv:2408.13718 [cs]},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
Han, Bin; Yau, Cleo; Lei, Su; Gratch, Jonathan
Knowledge-based Emotion Recognition using Large Language Models Miscellaneous
2024, (arXiv:2408.04123 [cs]).
@misc{han_knowledge-based_2024,
title = {Knowledge-based Emotion Recognition using Large Language Models},
author = {Bin Han and Cleo Yau and Su Lei and Jonathan Gratch},
url = {http://arxiv.org/abs/2408.04123},
year = {2024},
date = {2024-08-01},
urldate = {2024-08-15},
publisher = {arXiv},
abstract = {Emotion recognition in social situations is a complex task that requires integrating information from both facial expressions and the situational context. While traditional approaches to automatic emotion recognition have focused on decontextualized signals, recent research emphasizes the importance of context in shaping emotion perceptions. This paper contributes to the emerging field of context-based emotion recognition by leveraging psychological theories of human emotion perception to inform the design of automated methods. We propose an approach that combines emotion recognition methods with Bayesian Cue Integration (BCI) to integrate emotion inferences from decontextualized facial expressions and contextual knowledge inferred via Large-language Models. We test this approach in the context of interpreting facial expressions during a social task, the prisoner's dilemma. Our results provide clear support for BCI across a range of automatic emotion recognition methods. The best automated method achieved results comparable to human observers, suggesting the potential for this approach to advance the field of affective computing.},
note = {arXiv:2408.04123 [cs]},
keywords = {},
pubstate = {published},
tppubtype = {misc}
}
Fischer, Katrin; Velentza, Anna-Maria; Lucas, Gale; Williams, Dmitri
Seeing Eye to Eye with Robots: An Experimental Study Predicting Trust in Social Robots for Domestic Use Proceedings Article
In: 2024 33rd IEEE International Conference on Robot and Human Interactive Communication (ROMAN), pp. 2162–2168, IEEE, Pasadena, CA, USA, 2024, ISBN: 979-8-3503-7502-2.
@inproceedings{fischer_seeing_2024,
title = {Seeing Eye to Eye with Robots: An Experimental Study Predicting Trust in Social Robots for Domestic Use},
author = {Katrin Fischer and Anna-Maria Velentza and Gale Lucas and Dmitri Williams},
url = {https://ieeexplore.ieee.org/document/10731371/},
doi = {10.1109/RO-MAN60168.2024.10731371},
isbn = {979-8-3503-7502-2},
year = {2024},
date = {2024-08-01},
urldate = {2024-12-05},
booktitle = {2024 33rd IEEE International Conference on Robot and Human Interactive Communication (ROMAN)},
pages = {2162–2168},
publisher = {IEEE},
address = {Pasadena, CA, USA},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Filter
2025
Jalal-Kamali, Ali; Gurney, Nikolos; Pynadath, David
Predicting Team Performance from Communications in Simulated Search-and-Rescue Miscellaneous
2025, (arXiv:2503.03791 [cs]).
Abstract | Links | BibTeX | Tags: AI, DTIC
@misc{jalal-kamali_predicting_2025,
title = {Predicting Team Performance from Communications in Simulated Search-and-Rescue},
author = {Ali Jalal-Kamali and Nikolos Gurney and David Pynadath},
url = {http://arxiv.org/abs/2503.03791},
doi = {10.48550/arXiv.2503.03791},
year = {2025},
date = {2025-03-01},
urldate = {2025-03-18},
publisher = {arXiv},
abstract = {Understanding how individual traits influence team performance is valuable, but these traits are not always directly observable. Prior research has inferred traits like trust from behavioral data. We analyze conversational data to identify team traits and their correlation with teaming outcomes. Using transcripts from a Minecraft-based search-and-rescue experiment, we apply topic modeling and clustering to uncover key interaction patterns. Our findings show that variations in teaming outcomes can be explained through these inferences, with different levels of predictive power derived from individual traits and team dynamics.},
note = {arXiv:2503.03791 [cs]},
keywords = {AI, DTIC},
pubstate = {published},
tppubtype = {misc}
}
Liu, Ruying; Becerik-Gerber, Burcin; Pynadath, David V.; Marti, Deniz; Lucas, Gale M.
Elicitation and verification of learning via experts (EVOLVE) for creating a theoretical framework for active shooter incidents Journal Article
In: Developments in the Built Environment, vol. 21, pp. 100635, 2025, ISSN: 26661659.
Links | BibTeX | Tags: DTIC, Social Simulation
@article{liu_elicitation_2025,
title = {Elicitation and verification of learning via experts (EVOLVE) for creating a theoretical framework for active shooter incidents},
author = {Ruying Liu and Burcin Becerik-Gerber and David V. Pynadath and Deniz Marti and Gale M. Lucas},
url = {https://linkinghub.elsevier.com/retrieve/pii/S2666165925000353},
doi = {10.1016/j.dibe.2025.100635},
issn = {26661659},
year = {2025},
date = {2025-03-01},
urldate = {2025-03-18},
journal = {Developments in the Built Environment},
volume = {21},
pages = {100635},
keywords = {DTIC, Social Simulation},
pubstate = {published},
tppubtype = {article}
}
Liu, Ruying; Becerik-Gerber, Burcin; Lucas, Gale M.; Busta, Kelly
Impact of behavior-based virtual training on active shooter incident preparedness in healthcare facilities Journal Article
In: International Journal of Disaster Risk Reduction, vol. 118, pp. 105225, 2025, ISSN: 22124209.
Links | BibTeX | Tags: DTIC, Virtual Humans
@article{liu_impact_2025,
title = {Impact of behavior-based virtual training on active shooter incident preparedness in healthcare facilities},
author = {Ruying Liu and Burcin Becerik-Gerber and Gale M. Lucas and Kelly Busta},
url = {https://linkinghub.elsevier.com/retrieve/pii/S2212420925000494},
doi = {10.1016/j.ijdrr.2025.105225},
issn = {22124209},
year = {2025},
date = {2025-02-01},
urldate = {2025-02-20},
journal = {International Journal of Disaster Risk Reduction},
volume = {118},
pages = {105225},
keywords = {DTIC, Virtual Humans},
pubstate = {published},
tppubtype = {article}
}
Liu, Ruying; Becerik-Gerber, Burçin; Lucas, Gale M.
Investigating Role of Personal Factors in Shaping Responses to Active Shooter Incident using Machine Learning Miscellaneous
2025, (arXiv:2503.05719 [cs]).
Abstract | Links | BibTeX | Tags: DTIC, Social Simulation, VR
@misc{liu_investigating_2025,
title = {Investigating Role of Personal Factors in Shaping Responses to Active Shooter Incident using Machine Learning},
author = {Ruying Liu and Burçin Becerik-Gerber and Gale M. Lucas},
url = {http://arxiv.org/abs/2503.05719},
doi = {10.48550/arXiv.2503.05719},
year = {2025},
date = {2025-02-01},
urldate = {2025-03-18},
publisher = {arXiv},
abstract = {This study bridges the knowledge gap on how personal factors affect building occupants' responses in active shooter situations by applying interpretable machine learning methods to data from 107 participants. The personal factors studied are training methods, prior training experience, sense of direction, and gender. The response performance measurements consist of decisions (run, hide, multiple), vulnerability (corresponding to the time a participant is visible to a shooter), and pre-evacuation time. The results indicate that the propensity to run significantly determines overall response strategies, overshadowing vulnerability, and pre-evacuation time. The training method is a critical factor where VR-based training leads to better responses than video-based training. A better sense of direction and previous training experience are correlated with a greater propensity to run and less vulnerability. Gender slightly influences decisions and vulnerability but significantly impacts pre-evacuation time, with females evacuating slower, potentially due to higher risk perception. This study underscores the importance of personal factors in shaping responses to active shooter incidents.},
note = {arXiv:2503.05719 [cs]},
keywords = {DTIC, Social Simulation, VR},
pubstate = {published},
tppubtype = {misc}
}
Siniukov, Maksim; Xing, Ellie; Sanaz,; Isfahani, Attaripour; Soleymani, Mohammad
Towards a Generalizable Speech Marker for Parkinson's Disease Diagnosis Miscellaneous
2025, (Version Number: 1).
Abstract | Links | BibTeX | Tags: DTIC
@misc{siniukov_towards_2025,
title = {Towards a Generalizable Speech Marker for Parkinson's Disease Diagnosis},
author = {Maksim Siniukov and Ellie Xing and Sanaz and Attaripour Isfahani and Mohammad Soleymani},
url = {https://arxiv.org/abs/2501.03581},
doi = {10.48550/ARXIV.2501.03581},
year = {2025},
date = {2025-01-01},
urldate = {2025-01-14},
publisher = {arXiv},
abstract = {Parkinson's Disease (PD) is a neurodegenerative disorder characterized by motor symptoms, including altered voice production in the early stages. Early diagnosis is crucial not only to improve PD patients' quality of life but also to enhance the efficacy of potential disease-modifying therapies during early neurodegeneration, a window often missed by current diagnostic tools. In this paper, we propose a more generalizable approach to PD recognition through domain adaptation and self-supervised learning. We demonstrate the generalization capabilities of the proposed approach across diverse datasets in different languages. Our approach leverages HuBERT, a large deep neural network originally trained for speech recognition and further trains it on unlabeled speech data from a population that is similar to the target group, i.e., the elderly, in a self-supervised manner. The model is then fine-tuned and adapted for use across different datasets in multiple languages, including English, Italian, and Spanish. Evaluations on four publicly available PD datasets demonstrate the model's efficacy, achieving an average specificity of 92.1% and an average sensitivity of 91.2%. This method offers objective and consistent evaluations across large populations, addressing the variability inherent in human assessments and providing a non-invasive, cost-effective and accessible diagnostic option.},
note = {Version Number: 1},
keywords = {DTIC},
pubstate = {published},
tppubtype = {misc}
}
Rodrigues, Patrick Borges; Becerik-Gerber, Burcin; Soibelman, Lucio; Lucas, Gale M.; Roll, Shawn C.
Impact of selective environmental sound attenuation on operator performance, stress, attention, and task engagement in teleoperated demolition Journal Article
In: Automation in Construction, vol. 169, pp. 105876, 2025, ISSN: 09265805.
@article{rodrigues_impact_2025,
title = {Impact of selective environmental sound attenuation on operator performance, stress, attention, and task engagement in teleoperated demolition},
author = {Patrick Borges Rodrigues and Burcin Becerik-Gerber and Lucio Soibelman and Gale M. Lucas and Shawn C. Roll},
url = {https://linkinghub.elsevier.com/retrieve/pii/S0926580524006125},
doi = {10.1016/j.autcon.2024.105876},
issn = {09265805},
year = {2025},
date = {2025-01-01},
urldate = {2024-12-20},
journal = {Automation in Construction},
volume = {169},
pages = {105876},
keywords = {DTIC},
pubstate = {published},
tppubtype = {article}
}
Liu, Rong; Sun, Dylan; Chen, Meida; Wang, Yue; Feng, Andrew
Deformable Beta Splatting Miscellaneous
2025, (arXiv:2501.18630 [cs]).
Abstract | Links | BibTeX | Tags: DTIC, Narrative
@misc{liu_deformable_2025,
title = {Deformable Beta Splatting},
author = {Rong Liu and Dylan Sun and Meida Chen and Yue Wang and Andrew Feng},
url = {http://arxiv.org/abs/2501.18630},
doi = {10.48550/arXiv.2501.18630},
year = {2025},
date = {2025-01-01},
urldate = {2025-02-20},
publisher = {arXiv},
abstract = {3D Gaussian Splatting (3DGS) has advanced radiance field reconstruction by enabling real-time rendering. However, its reliance on Gaussian kernels for geometry and low-order Spherical Harmonics (SH) for color encoding limits its ability to capture complex geometries and diverse colors. We introduce Deformable Beta Splatting (DBS), a deformable and compact approach that enhances both geometry and color representation. DBS replaces Gaussian kernels with deformable Beta Kernels, which offer bounded support and adaptive frequency control to capture fine geometric details with higher fidelity while achieving better memory efficiency. In addition, we extended the Beta Kernel to color encoding, which facilitates improved representation of diffuse and specular components, yielding superior results compared to SH-based methods. Furthermore, Unlike prior densification techniques that depend on Gaussian properties, we mathematically prove that adjusting regularized opacity alone ensures distribution-preserved Markov chain Monte Carlo (MCMC), independent of the splatting kernel type. Experimental results demonstrate that DBS achieves state-of-the-art visual quality while utilizing only 45% of the parameters and rendering 1.5x faster than 3DGS-based methods. Notably, for the first time, splatting-based methods outperform state-of-the-art Neural Radiance Fields, highlighting the superior performance and efficiency of DBS for real-time radiance field rendering.},
note = {arXiv:2501.18630 [cs]},
keywords = {DTIC, Narrative},
pubstate = {published},
tppubtype = {misc}
}
2024
Xu, Jiuyi; Chen, Meida; Feng, Andrew; Yu, Zifan; Shi, Yangming
Open-Vocabulary High-Resolution 3D (OVHR3D) Data Segmentation and Annotation Framework Journal Article
In: 2024, (Publisher: arXiv Version Number: 2).
Abstract | Links | BibTeX | Tags: DTIC, Narrative
@article{xu_open-vocabulary_2024,
title = {Open-Vocabulary High-Resolution 3D (OVHR3D) Data Segmentation and Annotation Framework},
author = {Jiuyi Xu and Meida Chen and Andrew Feng and Zifan Yu and Yangming Shi},
url = {https://arxiv.org/abs/2412.06268},
doi = {10.48550/ARXIV.2412.06268},
year = {2024},
date = {2024-12-01},
urldate = {2024-12-20},
abstract = {In the domain of the U.S. Army modeling and simulation, the availability of high quality annotated 3D data is pivotal to creating virtual environments for training and simulations. Traditional methodologies for 3D semantic and instance segmentation, such as KpConv, RandLA, Mask3D, etc., are designed to train on extensive labeled datasets to obtain satisfactory performance in practical tasks. This requirement presents a significant challenge, given the inherent scarcity of manually annotated 3D datasets, particularly for the military use cases. Recognizing this gap, our previous research leverages the One World Terrain data repository manually annotated databases, as showcased at IITSEC 2019 and 2021, to enrich the training dataset for deep learning models. However, collecting and annotating large scale 3D data for specific tasks remains costly and inefficient. To this end, the objective of this research is to design and develop a comprehensive and efficient framework for 3D segmentation tasks to assist in 3D data annotation. This framework integrates Grounding DINO and Segment anything Model, augmented by an enhancement in 2D image rendering via 3D mesh. Furthermore, the authors have also developed a user friendly interface that facilitates the 3D annotation process, offering intuitive visualization of rendered images and the 3D point cloud.},
note = {Publisher: arXiv
Version Number: 2},
keywords = {DTIC, Narrative},
pubstate = {published},
tppubtype = {article}
}
Chen, Meida; Han, Kangle; Yu, Zifan; Feng, Andrew; Hou, Yu; You, Suya; Soibelman, Lucio
An Aerial Photogrammetry Benchmark Dataset for Point Cloud Segmentation and Style Translation Journal Article
In: Remote Sensing, vol. 16, no. 22, pp. 4240, 2024, ISSN: 2072-4292.
Abstract | Links | BibTeX | Tags: DTIC, VGL
@article{chen_aerial_2024,
title = {An Aerial Photogrammetry Benchmark Dataset for Point Cloud Segmentation and Style Translation},
author = {Meida Chen and Kangle Han and Zifan Yu and Andrew Feng and Yu Hou and Suya You and Lucio Soibelman},
url = {https://www.mdpi.com/2072-4292/16/22/4240},
doi = {10.3390/rs16224240},
issn = {2072-4292},
year = {2024},
date = {2024-11-01},
urldate = {2024-12-05},
journal = {Remote Sensing},
volume = {16},
number = {22},
pages = {4240},
abstract = {The recent surge in diverse 3D datasets spanning various scales and applications marks a significant advancement in the field. However, the comprehensive process of data acquisition, refinement, and annotation at a large scale poses a formidable challenge, particularly for individual researchers and small teams. To this end, we present a novel synthetic 3D point cloud generation framework that can produce detailed outdoor aerial photogrammetric 3D datasets with accurate ground truth annotations without the labor-intensive and time-consuming data collection/annotation processes. Our pipeline procedurally generates synthetic environments, mirroring real-world data collection and 3D reconstruction processes. A key feature of our framework is its ability to replicate consistent quality, noise patterns, and diversity similar to real-world datasets. This is achieved by adopting UAV flight patterns that resemble those used in real-world data collection processes (e.g., the cross-hatch flight pattern) across various synthetic terrains that are procedurally generated, thereby ensuring data consistency akin to real-world scenarios. Moreover, the generated datasets are enriched with precise semantic and instance annotations, eliminating the need for manual labeling. Our approach has led to the development and release of the Semantic Terrain Points Labeling—Synthetic 3D (STPLS3D) benchmark, an extensive outdoor 3D dataset encompassing over 16 km2, featuring up to 19 semantic labels. We also collected, reconstructed, and annotated four real-world datasets for validation purposes. Extensive experiments on these datasets demonstrate our synthetic datasets’ effectiveness, superior quality, and their value as a benchmark dataset for further point cloud research.},
keywords = {DTIC, VGL},
pubstate = {published},
tppubtype = {article}
}
Loucks, Laura; Rizzo, Albert; Rothbaum, Barbara O.
Virtual Reality Exposure for Treating PTSD Due to Military Sexual Trauma Journal Article
In: J Clin Psychol, pp. jclp.23750, 2024, ISSN: 0021-9762, 1097-4679.
Abstract | Links | BibTeX | Tags: DTIC, MedVR
@article{loucks_virtual_2024,
title = {Virtual Reality Exposure for Treating PTSD Due to Military Sexual Trauma},
author = {Laura Loucks and Albert Rizzo and Barbara O. Rothbaum},
url = {https://onlinelibrary.wiley.com/doi/10.1002/jclp.23750},
doi = {10.1002/jclp.23750},
issn = {0021-9762, 1097-4679},
year = {2024},
date = {2024-11-01},
urldate = {2024-12-05},
journal = {J Clin Psychol},
pages = {jclp.23750},
abstract = {ABSTRACT
Virtual reality exposure therapy (VRE) has been used in the treatment of combat‐related PTSD since the late 1990s and was recently adapted to treat PTSD due to military sexual trauma (MST). With content specifically tailored to MST‐related contexts, we present the case study of a military veteran who participated in the open clinical trial examining the feasibility of VRE in the treatment of MST‐related PTSD (Loucks et al. 2019). We illustrate VRE's use in activating the trauma memory to facilitate therapeutic emotional processing across sessions and overall symptom reduction. The case study includes common challenges that may occur during VRE and relevant recommendations. The discussion will include lessons learned from the case study and the open clinical trial, recommendations for the flexible application of VRE, and the ongoing developments in the latest version of the VRE system, informed by feedback acquired from the clinicians and patients who experienced it in the initial clinical trial.},
keywords = {DTIC, MedVR},
pubstate = {published},
tppubtype = {article}
}
Virtual reality exposure therapy (VRE) has been used in the treatment of combat‐related PTSD since the late 1990s and was recently adapted to treat PTSD due to military sexual trauma (MST). With content specifically tailored to MST‐related contexts, we present the case study of a military veteran who participated in the open clinical trial examining the feasibility of VRE in the treatment of MST‐related PTSD (Loucks et al. 2019). We illustrate VRE's use in activating the trauma memory to facilitate therapeutic emotional processing across sessions and overall symptom reduction. The case study includes common challenges that may occur during VRE and relevant recommendations. The discussion will include lessons learned from the case study and the open clinical trial, recommendations for the flexible application of VRE, and the ongoing developments in the latest version of the VRE system, informed by feedback acquired from the clinicians and patients who experienced it in the initial clinical trial.
Roemmele, Melissa; Gordon, Andrew
From Test-Taking to Test-Making: Examining LLM Authoring of Commonsense Assessment Items Proceedings Article
In: Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 5193–5203, Association for Computational Linguistics, Miami, Florida, USA, 2024.
Links | BibTeX | Tags: DTIC, Learning Sciences
@inproceedings{roemmele_test-taking_2024,
title = {From Test-Taking to Test-Making: Examining LLM Authoring of Commonsense Assessment Items},
author = {Melissa Roemmele and Andrew Gordon},
url = {https://aclanthology.org/2024.findings-emnlp.299},
doi = {10.18653/v1/2024.findings-emnlp.299},
year = {2024},
date = {2024-11-01},
urldate = {2024-12-05},
booktitle = {Findings of the Association for Computational Linguistics: EMNLP 2024},
pages = {5193–5203},
publisher = {Association for Computational Linguistics},
address = {Miami, Florida, USA},
keywords = {DTIC, Learning Sciences},
pubstate = {published},
tppubtype = {inproceedings}
}
Roemmele, Melissa; Gordon, Andrew S.
From Test-Taking to Test-Making: Examining LLM Authoring of Commonsense Assessment Items Miscellaneous
2024, (Version Number: 1).
Abstract | Links | BibTeX | Tags: DTIC, Learning Sciences
@misc{roemmele_test-taking_2024-1,
title = {From Test-Taking to Test-Making: Examining LLM Authoring of Commonsense Assessment Items},
author = {Melissa Roemmele and Andrew S. Gordon},
url = {https://arxiv.org/abs/2410.14897},
doi = {10.48550/ARXIV.2410.14897},
year = {2024},
date = {2024-10-01},
urldate = {2024-12-05},
publisher = {arXiv},
abstract = {LLMs can now perform a variety of complex writing tasks. They also excel in answering questions pertaining to natural language inference and commonsense reasoning. Composing these questions is itself a skilled writing task, so in this paper we consider LLMs as authors of commonsense assessment items. We prompt LLMs to generate items in the style of a prominent benchmark for commonsense reasoning, the Choice of Plausible Alternatives (COPA). We examine the outcome according to analyses facilitated by the LLMs and human annotation. We find that LLMs that succeed in answering the original COPA benchmark are also more successful in authoring their own items.},
note = {Version Number: 1},
keywords = {DTIC, Learning Sciences},
pubstate = {published},
tppubtype = {misc}
}
Lucas, Gale M.; Becerik-Gerber, Burcin; Roll, Shawn C.
Calibrating workers’ trust in intelligent automated systems Journal Article
In: Patterns, vol. 5, no. 9, pp. 101045, 2024, ISSN: 2666-3899, (Publisher: Elsevier BV).
@article{lucas_calibrating_2024,
title = {Calibrating workers’ trust in intelligent automated systems},
author = {Gale M. Lucas and Burcin Becerik-Gerber and Shawn C. Roll},
url = {https://linkinghub.elsevier.com/retrieve/pii/S2666389924001879},
doi = {10.1016/j.patter.2024.101045},
issn = {2666-3899},
year = {2024},
date = {2024-09-01},
urldate = {2024-09-17},
journal = {Patterns},
volume = {5},
number = {9},
pages = {101045},
note = {Publisher: Elsevier BV},
keywords = {DTIC},
pubstate = {published},
tppubtype = {article}
}
Georgila, Kallirroi
Comparing Pre-Trained Embeddings and Domain-Independent Features for Regression-Based Evaluation of Task-Oriented Dialogue Systems Proceedings Article
In: Proceedings of the 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pp. 610–623, Association for Computational Linguistics, Kyoto, Japan, 2024.
Links | BibTeX | Tags: Dialogue, DTIC, Natural Language
@inproceedings{georgila_comparing_2024,
title = {Comparing Pre-Trained Embeddings and Domain-Independent Features for Regression-Based Evaluation of Task-Oriented Dialogue Systems},
author = {Kallirroi Georgila},
url = {https://aclanthology.org/2024.sigdial-1.52},
doi = {10.18653/v1/2024.sigdial-1.52},
year = {2024},
date = {2024-09-01},
urldate = {2024-10-15},
booktitle = {Proceedings of the 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue},
pages = {610–623},
publisher = {Association for Computational Linguistics},
address = {Kyoto, Japan},
keywords = {Dialogue, DTIC, Natural Language},
pubstate = {published},
tppubtype = {inproceedings}
}
Gao, Zhiyuan; Teng, Wenbin; Chen, Gonglin; Wu, Jinsen; Xu, Ningli; Qin, Rongjun; Feng, Andrew; Zhao, Yajie
Skyeyes: Ground Roaming using Aerial View Images Miscellaneous
2024, (Version Number: 1).
Abstract | Links | BibTeX | Tags: DTIC
@misc{gao_skyeyes_2024,
title = {Skyeyes: Ground Roaming using Aerial View Images},
author = {Zhiyuan Gao and Wenbin Teng and Gonglin Chen and Jinsen Wu and Ningli Xu and Rongjun Qin and Andrew Feng and Yajie Zhao},
url = {https://arxiv.org/abs/2409.16685},
doi = {10.48550/ARXIV.2409.16685},
year = {2024},
date = {2024-09-01},
urldate = {2025-01-16},
publisher = {arXiv},
abstract = {Integrating aerial imagery-based scene generation into applications like autonomous driving and gaming enhances realism in 3D environments, but challenges remain in creating detailed content for occluded areas and ensuring real-time, consistent rendering. In this paper, we introduce Skyeyes, a novel framework that can generate photorealistic sequences of ground view images using only aerial view inputs, thereby creating a ground roaming experience. More specifically, we combine a 3D representation with a view consistent generation model, which ensures coherence between generated images. This method allows for the creation of geometrically consistent ground view images, even with large view gaps. The images maintain improved spatial-temporal coherence and realism, enhancing scene comprehension and visualization from aerial perspectives. To the best of our knowledge, there are no publicly available datasets that contain pairwise geo-aligned aerial and ground view imagery. Therefore, we build a large, synthetic, and geo-aligned dataset using Unreal Engine. Both qualitative and quantitative analyses on this synthetic dataset display superior results compared to other leading synthesis approaches. See the project page for more results: https://chaoren2357.github.io/website-skyeyes/.},
note = {Version Number: 1},
keywords = {DTIC},
pubstate = {published},
tppubtype = {misc}
}
Hale, James; Schweitzer, Lindsey; Gratch, Jonathan
Pitfalls of Embodiment in Human-Agent Experiment Design Proceedings Article
In: Proceedings of the ACM International Conference on Intelligent Virtual Agents, pp. 1–9, ACM, GLASGOW United Kingdom, 2024, ISBN: 979-8-4007-0625-7.
@inproceedings{hale_pitfalls_2024,
title = {Pitfalls of Embodiment in Human-Agent Experiment Design},
author = {James Hale and Lindsey Schweitzer and Jonathan Gratch},
url = {https://dl.acm.org/doi/10.1145/3652988.3673958},
doi = {10.1145/3652988.3673958},
isbn = {979-8-4007-0625-7},
year = {2024},
date = {2024-09-01},
urldate = {2025-01-16},
booktitle = {Proceedings of the ACM International Conference on Intelligent Virtual Agents},
pages = {1–9},
publisher = {ACM},
address = {GLASGOW United Kingdom},
keywords = {DTIC},
pubstate = {published},
tppubtype = {inproceedings}
}
Chen, Gonglin; Wu, Jinsen; Chen, Haiwei; Teng, Wenbin; Gao, Zhiyuan; Feng, Andrew; Qin, Rongjun; Zhao, Yajie
Geometry-aware Feature Matching for Large-Scale Structure from Motion Miscellaneous
2024, (Version Number: 3).
Abstract | Links | BibTeX | Tags: DTIC
@misc{chen_geometry-aware_2024,
title = {Geometry-aware Feature Matching for Large-Scale Structure from Motion},
author = {Gonglin Chen and Jinsen Wu and Haiwei Chen and Wenbin Teng and Zhiyuan Gao and Andrew Feng and Rongjun Qin and Yajie Zhao},
url = {https://arxiv.org/abs/2409.02310},
doi = {10.48550/ARXIV.2409.02310},
year = {2024},
date = {2024-09-01},
urldate = {2025-01-16},
publisher = {arXiv},
abstract = {Establishing consistent and dense correspondences across multiple images is crucial for Structure from Motion (SfM) systems. Significant view changes, such as air-to-ground with very sparse view overlap, pose an even greater challenge to the correspondence solvers. We present a novel optimization-based approach that significantly enhances existing feature matching methods by introducing geometry cues in addition to color cues. This helps fill gaps when there is less overlap in large-scale scenarios. Our method formulates geometric verification as an optimization problem, guiding feature matching within detector-free methods and using sparse correspondences from detector-based methods as anchor points. By enforcing geometric constraints via the Sampson Distance, our approach ensures that the denser correspondences from detector-free methods are geometrically consistent and more accurate. This hybrid strategy significantly improves correspondence density and accuracy, mitigates multi-view inconsistencies, and leads to notable advancements in camera pose accuracy and point cloud density. It outperforms state-of-the-art feature matching methods on benchmark datasets and enables feature matching in challenging extreme large-scale settings.},
note = {Version Number: 3},
keywords = {DTIC},
pubstate = {published},
tppubtype = {misc}
}
Tak, Ala N.; Gratch, Jonathan
GPT-4 Emulates Average-Human Emotional Cognition from a Third-Person Perspective Miscellaneous
2024, (arXiv:2408.13718 [cs]).
Abstract | Links | BibTeX | Tags: DTIC, Emotions
@misc{tak_gpt-4_2024,
title = {GPT-4 Emulates Average-Human Emotional Cognition from a Third-Person Perspective},
author = {Ala N. Tak and Jonathan Gratch},
url = {http://arxiv.org/abs/2408.13718},
year = {2024},
date = {2024-08-01},
urldate = {2024-09-17},
publisher = {arXiv},
abstract = {This paper extends recent investigations on the emotional reasoning abilities of Large Language Models (LLMs). Current research on LLMs has not directly evaluated the distinction between how LLMs predict the self-attribution of emotions and the perception of others' emotions. We first look at carefully crafted emotion-evoking stimuli, originally designed to find patterns of brain neural activity representing fine-grained inferred emotional attributions of others. We show that GPT-4 is especially accurate in reasoning about such stimuli. This suggests LLMs agree with humans' attributions of others' emotions in stereotypical scenarios remarkably more than self-attributions of emotions in idiosyncratic situations. To further explore this, our second study utilizes a dataset containing annotations from both the author and a third-person perspective. We find that GPT-4's interpretations align more closely with human judgments about the emotions of others than with self-assessments. Notably, conventional computational models of emotion primarily rely on self-reported ground truth as the gold standard. However, an average observer's standpoint, which LLMs appear to have adopted, might be more relevant for many downstream applications, at least in the absence of individual information and adequate safety considerations.},
note = {arXiv:2408.13718 [cs]},
keywords = {DTIC, Emotions},
pubstate = {published},
tppubtype = {misc}
}
Han, Bin; Yau, Cleo; Lei, Su; Gratch, Jonathan
Knowledge-based Emotion Recognition using Large Language Models Miscellaneous
2024, (arXiv:2408.04123 [cs]).
Abstract | Links | BibTeX | Tags: DTIC, Emotions
@misc{han_knowledge-based_2024,
title = {Knowledge-based Emotion Recognition using Large Language Models},
author = {Bin Han and Cleo Yau and Su Lei and Jonathan Gratch},
url = {http://arxiv.org/abs/2408.04123},
year = {2024},
date = {2024-08-01},
urldate = {2024-08-15},
publisher = {arXiv},
abstract = {Emotion recognition in social situations is a complex task that requires integrating information from both facial expressions and the situational context. While traditional approaches to automatic emotion recognition have focused on decontextualized signals, recent research emphasizes the importance of context in shaping emotion perceptions. This paper contributes to the emerging field of context-based emotion recognition by leveraging psychological theories of human emotion perception to inform the design of automated methods. We propose an approach that combines emotion recognition methods with Bayesian Cue Integration (BCI) to integrate emotion inferences from decontextualized facial expressions and contextual knowledge inferred via Large-language Models. We test this approach in the context of interpreting facial expressions during a social task, the prisoner's dilemma. Our results provide clear support for BCI across a range of automatic emotion recognition methods. The best automated method achieved results comparable to human observers, suggesting the potential for this approach to advance the field of affective computing.},
note = {arXiv:2408.04123 [cs]},
keywords = {DTIC, Emotions},
pubstate = {published},
tppubtype = {misc}
}
Fischer, Katrin; Velentza, Anna-Maria; Lucas, Gale; Williams, Dmitri
Seeing Eye to Eye with Robots: An Experimental Study Predicting Trust in Social Robots for Domestic Use Proceedings Article
In: 2024 33rd IEEE International Conference on Robot and Human Interactive Communication (ROMAN), pp. 2162–2168, IEEE, Pasadena, CA, USA, 2024, ISBN: 979-8-3503-7502-2.
Links | BibTeX | Tags: DTIC, Virtual Humans
@inproceedings{fischer_seeing_2024,
title = {Seeing Eye to Eye with Robots: An Experimental Study Predicting Trust in Social Robots for Domestic Use},
author = {Katrin Fischer and Anna-Maria Velentza and Gale Lucas and Dmitri Williams},
url = {https://ieeexplore.ieee.org/document/10731371/},
doi = {10.1109/RO-MAN60168.2024.10731371},
isbn = {979-8-3503-7502-2},
year = {2024},
date = {2024-08-01},
urldate = {2024-12-05},
booktitle = {2024 33rd IEEE International Conference on Robot and Human Interactive Communication (ROMAN)},
pages = {2162–2168},
publisher = {IEEE},
address = {Pasadena, CA, USA},
keywords = {DTIC, Virtual Humans},
pubstate = {published},
tppubtype = {inproceedings}
}
Liu, Ruying; Wu, Wanjing; Becerik-Gerber, Burcin; Lucas, Gale M.
2024, (arXiv:2407.10441 [cs]).
Abstract | Links | BibTeX | Tags: DTIC, Virtual Worlds
@misc{liu_enhancing_2024,
title = {Enhancing Building Safety Design for Active Shooter Incidents: Exploration of Building Exit Parameters using Reinforcement Learning-Based Simulations},
author = {Ruying Liu and Wanjing Wu and Burcin Becerik-Gerber and Gale M. Lucas},
url = {http://arxiv.org/abs/2407.10441},
year = {2024},
date = {2024-07-01},
urldate = {2024-09-17},
publisher = {arXiv},
abstract = {With the alarming rise in active shooter incidents (ASIs) in the United States, enhancing public safety through building design has become a pressing need. This study proposes a reinforcement learning-based simulation approach addressing gaps in existing research that has neglected the dynamic behaviours of shooters. We developed an autonomous agent to simulate an active shooter within a realistic office environment, aiming to offer insights into the interactions between building design parameters and ASI outcomes. A case study is conducted to quantitatively investigate the impact of building exit numbers (total count of accessible exits) and configuration (arrangement of which exits are available or not) on evacuation and harm rates. Findings demonstrate that greater exit availability significantly improves evacuation outcomes and reduces harm. Exits nearer to the shooter's initial position hold greater importance for accessibility than those farther away. By encompassing dynamic shooter behaviours, this study offers preliminary insights into effective building safety design against evolving threats.},
note = {arXiv:2407.10441 [cs]},
keywords = {DTIC, Virtual Worlds},
pubstate = {published},
tppubtype = {misc}
}
Xiao, Hanyuan; Chen, Yingshu; Huang, Huajian; Xiong, Haolin; Yang, Jing; Prasad, Pratusha; Zhao, Yajie
Localized Gaussian Splatting Editing with Contextual Awareness Miscellaneous
2024, (arXiv:2408.00083 [cs]).
Abstract | Links | BibTeX | Tags: DTIC, VGL
@misc{xiao_localized_2024,
title = {Localized Gaussian Splatting Editing with Contextual Awareness},
author = {Hanyuan Xiao and Yingshu Chen and Huajian Huang and Haolin Xiong and Jing Yang and Pratusha Prasad and Yajie Zhao},
url = {http://arxiv.org/abs/2408.00083},
year = {2024},
date = {2024-07-01},
urldate = {2024-08-16},
publisher = {arXiv},
abstract = {Recent text-guided generation of individual 3D object has achieved great success using diffusion priors. However, these methods are not suitable for object insertion and replacement tasks as they do not consider the background, leading to illumination mismatches within the environment. To bridge the gap, we introduce an illumination-aware 3D scene editing pipeline for 3D Gaussian Splatting (3DGS) representation. Our key observation is that inpainting by the state-of-the-art conditional 2D diffusion model is consistent with background in lighting. To leverage the prior knowledge from the well-trained diffusion models for 3D object generation, our approach employs a coarse-to-fine objection optimization pipeline with inpainted views. In the first coarse step, we achieve image-to-3D lifting given an ideal inpainted view. The process employs 3D-aware diffusion prior from a view-conditioned diffusion model, which preserves illumination present in the conditioning image. To acquire an ideal inpainted image, we introduce an Anchor View Proposal (AVP) algorithm to find a single view that best represents the scene illumination in target region. In the second Texture Enhancement step, we introduce a novel Depth-guided Inpainting Score Distillation Sampling (DI-SDS), which enhances geometry and texture details with the inpainting diffusion prior, beyond the scope of the 3D-aware diffusion prior knowledge in the first coarse step. DI-SDS not only provides fine-grained texture enhancement, but also urges optimization to respect scene lighting. Our approach efficiently achieves local editing with global illumination consistency without explicitly modeling light transport. We demonstrate robustness of our method by evaluating editing in real scenes containing explicit highlight and shadows, and compare against the state-of-the-art text-to-3D editing methods.},
note = {arXiv:2408.00083 [cs]},
keywords = {DTIC, VGL},
pubstate = {published},
tppubtype = {misc}
}
Huang, Shuo; Jones, Fred; Gurney, Nikolos; Pynadath, David; Srivastava, Kunal; Trent, Stoney; Wu, Peggy; Zhu, Quanyan
PsybORG+: Modeling and Simulation for Detecting Cognitive Biases in Advanced Persistent Threats Miscellaneous
2024, (Version Number: 3).
Abstract | Links | BibTeX | Tags: DTIC
@misc{huang_psyborg_2024,
title = {PsybORG+: Modeling and Simulation for Detecting Cognitive Biases in Advanced Persistent Threats},
author = {Shuo Huang and Fred Jones and Nikolos Gurney and David Pynadath and Kunal Srivastava and Stoney Trent and Peggy Wu and Quanyan Zhu},
url = {https://arxiv.org/abs/2408.01310},
doi = {10.48550/ARXIV.2408.01310},
year = {2024},
date = {2024-07-01},
urldate = {2024-12-05},
publisher = {arXiv},
abstract = {Advanced Persistent Threats (APTs) bring significant challenges to cybersecurity due to their sophisticated and stealthy nature. Traditional cybersecurity measures fail to defend against APTs. Cognitive vulnerabilities can significantly influence attackers' decision-making processes, which presents an opportunity for defenders to exploit. This work introduces PsybORG$ˆ+$, a multi-agent cybersecurity simulation environment designed to model APT behaviors influenced by cognitive vulnerabilities. A classification model is built for cognitive vulnerability inference and a simulator is designed for synthetic data generation. Results show that PsybORG$ˆ+$ can effectively model APT attackers with different loss aversion and confirmation bias levels. The classification model has at least a 0.83 accuracy rate in predicting cognitive vulnerabilities.},
note = {Version Number: 3},
keywords = {DTIC},
pubstate = {published},
tppubtype = {misc}
}
Core, Mark G.; Nye, Benjamin D.; Fegley, Brent D.
Trend-Aware Scenario Authoring: Adapting Training Toward Patterns from Real Operations Book Section
In: Sottilare, Robert A.; Schwarz, Jessica (Ed.): Adaptive Instructional Systems, vol. 14727, pp. 15–24, Springer Nature Switzerland, Cham, 2024, ISBN: 978-3-031-60608-3 978-3-031-60609-0, (Series Title: Lecture Notes in Computer Science).
Links | BibTeX | Tags: DTIC, Learning Sciences, UARC
@incollection{sottilare_trend-aware_2024,
title = {Trend-Aware Scenario Authoring: Adapting Training Toward Patterns from Real Operations},
author = {Mark G. Core and Benjamin D. Nye and Brent D. Fegley},
editor = {Robert A. Sottilare and Jessica Schwarz},
url = {https://link.springer.com/10.1007/978-3-031-60609-0_2},
doi = {10.1007/978-3-031-60609-0_2},
isbn = {978-3-031-60608-3 978-3-031-60609-0},
year = {2024},
date = {2024-06-01},
urldate = {2024-06-18},
booktitle = {Adaptive Instructional Systems},
volume = {14727},
pages = {15–24},
publisher = {Springer Nature Switzerland},
address = {Cham},
note = {Series Title: Lecture Notes in Computer Science},
keywords = {DTIC, Learning Sciences, UARC},
pubstate = {published},
tppubtype = {incollection}
}
Nye, Benjamin D.; Core, Mark G.; Chereddy, Sai V. R.; Young, Vivian; Auerbach, Daniel
Bootstrapping Assessments for Team Simulations: Transfer Learning Between First-Person-Shooter Game Maps Book Section
In: Sottilare, Robert A.; Schwarz, Jessica (Ed.): Adaptive Instructional Systems, vol. 14727, pp. 261–271, Springer Nature Switzerland, Cham, 2024, ISBN: 978-3-031-60608-3 978-3-031-60609-0, (Series Title: Lecture Notes in Computer Science).
Links | BibTeX | Tags: DTIC, Learning Sciences, Machine Learning, UARC
@incollection{sottilare_bootstrapping_2024,
title = {Bootstrapping Assessments for Team Simulations: Transfer Learning Between First-Person-Shooter Game Maps},
author = {Benjamin D. Nye and Mark G. Core and Sai V. R. Chereddy and Vivian Young and Daniel Auerbach},
editor = {Robert A. Sottilare and Jessica Schwarz},
url = {https://link.springer.com/10.1007/978-3-031-60609-0_19},
doi = {10.1007/978-3-031-60609-0_19},
isbn = {978-3-031-60608-3 978-3-031-60609-0},
year = {2024},
date = {2024-06-01},
urldate = {2024-06-18},
booktitle = {Adaptive Instructional Systems},
volume = {14727},
pages = {261–271},
publisher = {Springer Nature Switzerland},
address = {Cham},
note = {Series Title: Lecture Notes in Computer Science},
keywords = {DTIC, Learning Sciences, Machine Learning, UARC},
pubstate = {published},
tppubtype = {incollection}
}
Chen, Meida; Lal, Devashish; Yu, Zifan; Xu, Jiuyi; Feng, Andrew; You, Suya; Nurunnabi, Abdul; Shi, Yangming
Large-Scale 3D Terrain Reconstruction Using 3D Gaussian Splatting for Visualization and Simulation Journal Article
In: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., vol. XLVIII-2-2024, pp. 49–54, 2024, ISSN: 2194-9034.
Abstract | Links | BibTeX | Tags: DTIC, Graphics, VGL
@article{chen_large-scale_2024,
title = {Large-Scale 3D Terrain Reconstruction Using 3D Gaussian Splatting for Visualization and Simulation},
author = {Meida Chen and Devashish Lal and Zifan Yu and Jiuyi Xu and Andrew Feng and Suya You and Abdul Nurunnabi and Yangming Shi},
url = {https://isprs-archives.copernicus.org/articles/XLVIII-2-2024/49/2024/},
doi = {10.5194/isprs-archives-XLVIII-2-2024-49-2024},
issn = {2194-9034},
year = {2024},
date = {2024-06-01},
urldate = {2024-06-20},
journal = {Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.},
volume = {XLVIII-2-2024},
pages = {49–54},
abstract = {Abstract. The fusion of low-cost unmanned aerial systems (UAS) with advanced photogrammetric techniques has revolutionized 3D terrain reconstruction, enabling the automated creation of detailed models. Concurrently, the advent of 3D Gaussian Splatting has introduced a paradigm shift in 3D data representation, offering visually realistic renditions distinct from traditional polygon-based models. Our research builds upon this foundation, aiming to integrate Gaussian Splatting into interactive simulations for immersive virtual environments. We address challenges such as collision detection by adopting a hybrid approach, combining Gaussian Splatting with photogrammetry-derived meshes. Through comprehensive experimentation covering varying terrain sizes and Gaussian densities, we evaluate scalability, performance, and limitations. Our findings contribute to advancing the use of advanced computer graphics techniques for enhanced 3D terrain visualization and simulation.},
keywords = {DTIC, Graphics, VGL},
pubstate = {published},
tppubtype = {article}
}
Saxon, Leslie; Faulk, Robert T; Boberg, Jill; Barrett, Trevor; McLelland, Steve
In: J. Spec. Oper. Med., 2024, ISSN: 1553-9768.
Links | BibTeX | Tags: CBC, DTIC
@article{saxon_continuous_2024,
title = {Continuous Assessment of Active-Duty Army Special Operations and Reconnaissance Marines Using Digital Devices and Custom Software: The Digital Comprehensive Operator Readiness Assessment (DcORA) Study},
author = {Leslie Saxon and Robert T Faulk and Jill Boberg and Trevor Barrett and Steve McLelland},
url = {https://www.jsomonline.org/Citations/PXKK-I23D.php},
doi = {10.55460/PXKK-I23D},
issn = {1553-9768},
year = {2024},
date = {2024-06-01},
urldate = {2024-06-25},
journal = {J. Spec. Oper. Med.},
keywords = {CBC, DTIC},
pubstate = {published},
tppubtype = {article}
}
Yin, Yinxuan; Nayyar, Mollik; Holman, Daniel; Lucas, Gale; Holbrook, Colin; Wagner, Alan
Validation and Evacuee Modeling of Virtual Robot-guided Emergency Evacuation Experiments Miscellaneous
2024.
Abstract | Links | BibTeX | Tags: DTIC, Virtual Humans
@misc{yin_validation_2024,
title = {Validation and Evacuee Modeling of Virtual Robot-guided Emergency Evacuation Experiments},
author = {Yinxuan Yin and Mollik Nayyar and Daniel Holman and Gale Lucas and Colin Holbrook and Alan Wagner},
url = {https://osf.io/mr78s},
doi = {10.31234/osf.io/mr78s},
year = {2024},
date = {2024-06-01},
urldate = {2024-09-17},
publisher = {Center for Open Science},
abstract = {Virtual Reality (VR) is an increasingly common tool for investigating human responses to emergency situations. Nonetheless, studies validating and comparing human subject behavior during real world emergencies to their responses in VR are notably rare, and no prior studies have validated whether human emergency responses to guidance from a robot are comparable in VR versus the real world. In the present pre-registered study, we used VR to replicate a previous robot- guided emergency evacuation study conducted in the real world and compared human subject behavior in matched physical and virtual environments. In both environments, human subjects were asked to follow a robot to a location and to then read an article. While reading, a fire alarm sounds. The robot then attempted to guide them to a distant, unfamiliar exit rather than nearby and familiar exits. We observed close correspondences between evacuee exit choice (the robot’s distant exit versus closer exits), evacuation time, and trust in the robot between the VR and physical environments. We further demonstrate that data collected in virtual reality can be used to create accurate motion models (mean error of 0.42 centimeters) predicting evacuee trajectories and locations in real life. Taken together, the results provide evidence for the ecological validity of VR approaches to studying human-robot interaction, particularly robot- guided emergency evacuation.},
keywords = {DTIC, Virtual Humans},
pubstate = {published},
tppubtype = {misc}
}
Lu, Shuhong; Jin, Zhangyu; Rajendran, Vickram; Harari, Michal; Feng, Andrew; Melo, Celso M. De
Synthetic-to-real adaptation for complex action recognition in surveillance applications Proceedings Article
In: Manser, Kimberly E.; Melo, Celso De; Rao, Raghuveer M.; Howell, Christopher L. (Ed.): Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications II, pp. 14, SPIE, National Harbor, United States, 2024, ISBN: 978-1-5106-7388-5 978-1-5106-7389-2.
@inproceedings{lu_synthetic–real_2024,
title = {Synthetic-to-real adaptation for complex action recognition in surveillance applications},
author = {Shuhong Lu and Zhangyu Jin and Vickram Rajendran and Michal Harari and Andrew Feng and Celso M. De Melo},
editor = {Kimberly E. Manser and Celso De Melo and Raghuveer M. Rao and Christopher L. Howell},
url = {https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13035/3012393/Synthetic-to-real-adaptation-for-complex-action-recognition-in-surveillance/10.1117/12.3012393.full},
doi = {10.1117/12.3012393},
isbn = {978-1-5106-7388-5 978-1-5106-7389-2},
year = {2024},
date = {2024-06-01},
urldate = {2024-07-11},
booktitle = {Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications II},
pages = {14},
publisher = {SPIE},
address = {National Harbor, United States},
keywords = {DTIC},
pubstate = {published},
tppubtype = {inproceedings}
}
Mozgai, Sharon A; Kaurloto, Cari; Winn, Jade G; Leeds, Andrew; Beland, Sarah; Sookiassian, Arman; Hartholt, Arno
Accelerating Scoping Reviews: A Case Study in the User-Centered Design of an AI-Enabled Interdisciplinary Research Tool Proceedings Article
In: Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, pp. 1–8, ACM, Honolulu HI USA, 2024, ISBN: 979-8-4007-0331-7.
Links | BibTeX | Tags: AI, DTIC, UARC, Virtual Humans
@inproceedings{mozgai_accelerating_2024,
title = {Accelerating Scoping Reviews: A Case Study in the User-Centered Design of an AI-Enabled Interdisciplinary Research Tool},
author = {Sharon A Mozgai and Cari Kaurloto and Jade G Winn and Andrew Leeds and Sarah Beland and Arman Sookiassian and Arno Hartholt},
url = {https://dl.acm.org/doi/10.1145/3613905.3637110},
doi = {10.1145/3613905.3637110},
isbn = {979-8-4007-0331-7},
year = {2024},
date = {2024-05-01},
urldate = {2024-06-18},
booktitle = {Extended Abstracts of the CHI Conference on Human Factors in Computing Systems},
pages = {1–8},
publisher = {ACM},
address = {Honolulu HI USA},
keywords = {AI, DTIC, UARC, Virtual Humans},
pubstate = {published},
tppubtype = {inproceedings}
}
Chemburkar, Ankur; Gordon, Andrew; Feng, Andrew
Evaluating Vision-Language Models on the TriangleCOPA Benchmark Journal Article
In: FLAIRS-37, vol. 37, 2024.
Abstract | BibTeX | Tags: DTIC, Narrative
@article{chemburkar_evaluating_2024,
title = {Evaluating Vision-Language Models on the TriangleCOPA Benchmark},
author = {Ankur Chemburkar and Andrew Gordon and Andrew Feng},
year = {2024},
date = {2024-05-01},
journal = {FLAIRS-37},
volume = {37},
abstract = {The TriangleCOPA benchmark consists of 100 textual questions with videos depicting the movements of simple shapes in the style of the classic social-psychology film created by Fritz Heider and Marianne Simmel in 1944. In our experiments, we investigate the performance of current vision-language models on this challenging benchmark, assessing the capability of these models for visual anthropomorphism and abstract interpretation.},
keywords = {DTIC, Narrative},
pubstate = {published},
tppubtype = {article}
}
Hartholt, Arno; Leeds, Andrew; Fast, Ed; Sookiassian, Edwin; Kim, Kevin; Beland, Sarah; Kulkarni, Pranav; Mozgai, Sharon
Multidisciplinary Research & Development of Multi-Agents and Virtual Humans Leveraging Integrated Middleware Platforms Proceedings Article
In: 2024.
Abstract | Links | BibTeX | Tags: DTIC, UARC, Virtual Humans
@inproceedings{hartholt_multidisciplinary_2024,
title = {Multidisciplinary Research & Development of Multi-Agents and Virtual Humans Leveraging Integrated Middleware Platforms},
author = {Arno Hartholt and Andrew Leeds and Ed Fast and Edwin Sookiassian and Kevin Kim and Sarah Beland and Pranav Kulkarni and Sharon Mozgai},
url = {https://openaccess.cms-conferences.org/publications/book/978-1-958651-95-7/article/978-1-958651-95-7_33},
doi = {10.54941/ahfe1004497},
year = {2024},
date = {2024-04-01},
urldate = {2024-04-16},
abstract = {The current pace of technological advancements has led to an ever-increasing availability of technologies to investigate and help address the challenges that contemporary society faces today. However, while this trend increases the potential for creating more relevant, effective, and efficient solutions, it also inherently increases the complexity of realizing that potential. Our work aims to manage this complexity through the creation and dissemination of integrated middleware platforms that enable researchers and developers to rapidly prototype novel solutions within the areas of modelling & simulation, virtual humans, and virtual worlds. In this paper, we discuss two related platforms: the Rapid Integration & Development Environment (RIDE) and the Virtual Human Toolkit (VHToolkit). Specifically, we explore two use cases: 1) the development of an authoring tool aimed at domain experts to rapidly create low-echelon military training scenarios, and 2) the development of a virtual human led mHealth wellness and suicide prevention app for veterans.},
keywords = {DTIC, UARC, Virtual Humans},
pubstate = {published},
tppubtype = {inproceedings}
}
Gurney, Nikolos; Loewenstein, George; Chater, Nick
Conversational technology and reactions to withheld information Journal Article
In: PLoS ONE, vol. 19, no. 4, pp. e0301382, 2024, ISSN: 1932-6203.
Abstract | Links | BibTeX | Tags: DTIC, Social Simulation, UARC
@article{gurney_conversational_2024,
title = {Conversational technology and reactions to withheld information},
author = {Nikolos Gurney and George Loewenstein and Nick Chater},
editor = {Petre Caraiani},
url = {https://dx.plos.org/10.1371/journal.pone.0301382},
doi = {10.1371/journal.pone.0301382},
issn = {1932-6203},
year = {2024},
date = {2024-04-01},
urldate = {2024-04-16},
journal = {PLoS ONE},
volume = {19},
number = {4},
pages = {e0301382},
abstract = {People frequently face decisions that require making inferences about withheld information. The advent of large language models coupled with conversational technology, e.g., Alexa, Siri, Cortana, and the Google Assistant, is changing the mode in which people make these inferences. We demonstrate that conversational modes of information provision, relative to traditional digital media, result in more critical responses to withheld information, including: (1) a reduction in evaluations of a product or service for which information is withheld and (2) an increased likelihood of recalling that information was withheld. These effects are robust across multiple conversational modes: a recorded phone conversation, an unfolding chat conversation, and a conversation script. We provide further evidence that these effects hold for conversations with the Google Assistant, a prominent conversational technology. The experimental results point to participants’ intuitions about why the information was withheld as the driver of the effect.},
keywords = {DTIC, Social Simulation, UARC},
pubstate = {published},
tppubtype = {article}
}
Rizzo, Albert Skip; Hartholt, Arno; Mozgai, Sharon
Settling the Score: Virtual Reality as a Tool to Enhance Trauma-Focused Therapy for PTSD Book Section
In: Rich, Grant J.; Kumar, V. K.; Farley, Frank H. (Ed.): Handbook of Media Psychology, pp. 187–213, Springer Nature Switzerland, Cham, 2024, ISBN: 978-3-031-56536-6 978-3-031-56537-3.
Links | BibTeX | Tags: DTIC, MedVR, Simulation, VR
@incollection{rich_settling_2024,
title = {Settling the Score: Virtual Reality as a Tool to Enhance Trauma-Focused Therapy for PTSD},
author = {Albert Skip Rizzo and Arno Hartholt and Sharon Mozgai},
editor = {Grant J. Rich and V. K. Kumar and Frank H. Farley},
url = {https://link.springer.com/10.1007/978-3-031-56537-3_14},
doi = {10.1007/978-3-031-56537-3_14},
isbn = {978-3-031-56536-6 978-3-031-56537-3},
year = {2024},
date = {2024-04-01},
urldate = {2024-06-18},
booktitle = {Handbook of Media Psychology},
pages = {187–213},
publisher = {Springer Nature Switzerland},
address = {Cham},
keywords = {DTIC, MedVR, Simulation, VR},
pubstate = {published},
tppubtype = {incollection}
}
Tran, Minh; Chang, Di; Siniukov, Maksim; Soleymani, Mohammad
Dyadic Interaction Modeling for Social Behavior Generation Miscellaneous
2024, (arXiv:2403.09069 [cs]).
Abstract | Links | BibTeX | Tags: DTIC, UARC, Virtual Humans
@misc{tran_dyadic_2024,
title = {Dyadic Interaction Modeling for Social Behavior Generation},
author = {Minh Tran and Di Chang and Maksim Siniukov and Mohammad Soleymani},
url = {http://arxiv.org/abs/2403.09069},
year = {2024},
date = {2024-03-01},
urldate = {2024-03-19},
publisher = {arXiv},
abstract = {Human-human communication is like a delicate dance where listeners and speakers concurrently interact to maintain conversational dynamics. Hence, an effective model for generating listener nonverbal behaviors requires understanding the dyadic context and interaction. In this paper, we present an effective framework for creating 3D facial motions in dyadic interactions. Existing work consider a listener as a reactive agent with reflexive behaviors to the speaker's voice and facial motions. The heart of our framework is Dyadic Interaction Modeling (DIM), a pre-training approach that jointly models speakers' and listeners' motions through masking and contrastive learning to learn representations that capture the dyadic context. To enable the generation of non-deterministic behaviors, we encode both listener and speaker motions into discrete latent representations, through VQ-VAE. The pre-trained model is further fine-tuned for motion generation. Extensive experiments demonstrate the superiority of our framework in generating listener motions, establishing a new state-of-the-art according to the quantitative measures capturing the diversity and realism of generated motions. Qualitative results demonstrate the superior capabilities of the proposed approach in generating diverse and realistic expressions, eye blinks and head gestures.},
note = {arXiv:2403.09069 [cs]},
keywords = {DTIC, UARC, Virtual Humans},
pubstate = {published},
tppubtype = {misc}
}
Lu, Liupei; Yin, Yufeng; Gu, Yuming; Wu, Yizhen; Prasad, Pratusha; Zhao, Yajie; Soleymani, Mohammad
Leveraging Synthetic Data for Generalizable and Fair Facial Action Unit Detection Miscellaneous
2024, (arXiv:2403.10737 [cs]).
Abstract | Links | BibTeX | Tags: DTIC, UARC, Virtual Humans
@misc{lu_leveraging_2024,
title = {Leveraging Synthetic Data for Generalizable and Fair Facial Action Unit Detection},
author = {Liupei Lu and Yufeng Yin and Yuming Gu and Yizhen Wu and Pratusha Prasad and Yajie Zhao and Mohammad Soleymani},
url = {http://arxiv.org/abs/2403.10737},
year = {2024},
date = {2024-03-01},
urldate = {2024-04-16},
publisher = {arXiv},
abstract = {Facial action unit (AU) detection is a fundamental block for objective facial expression analysis. Supervised learning approaches require a large amount of manual labeling which is costly. The limited labeled data are also not diverse in terms of gender which can affect model fairness. In this paper, we propose to use synthetically generated data and multi-source domain adaptation (MSDA) to address the problems of the scarcity of labeled data and the diversity of subjects. Specifically, we propose to generate a diverse dataset through synthetic facial expression re-targeting by transferring the expressions from real faces to synthetic avatars. Then, we use MSDA to transfer the AU detection knowledge from a real dataset and the synthetic dataset to a target dataset. Instead of aligning the overall distributions of different domains, we propose Paired Moment Matching (PM2) to align the features of the paired real and synthetic data with the same facial expression. To further improve gender fairness, PM2 matches the features of the real data with a female and a male synthetic image. Our results indicate that synthetic data and the proposed model improve both AU detection performance and fairness across genders, demonstrating its potential to solve AU detection in-the-wild.},
note = {arXiv:2403.10737 [cs]},
keywords = {DTIC, UARC, Virtual Humans},
pubstate = {published},
tppubtype = {misc}
}
Frummet, Alexander; Speggiorin, Alessandro; Elsweiler, David; Leuski, Anton; Dalton, Jeff
Cooking with Conversation: Enhancing User Engagement and Learning with a Knowledge-Enhancing Assistant Journal Article
In: ACM Trans. Inf. Syst., pp. 3649500, 2024, ISSN: 1046-8188, 1558-2868.
Abstract | Links | BibTeX | Tags: DTIC, Natural Language, UARC
@article{frummet_cooking_2024,
title = {Cooking with Conversation: Enhancing User Engagement and Learning with a Knowledge-Enhancing Assistant},
author = {Alexander Frummet and Alessandro Speggiorin and David Elsweiler and Anton Leuski and Jeff Dalton},
url = {https://dl.acm.org/doi/10.1145/3649500},
doi = {10.1145/3649500},
issn = {1046-8188, 1558-2868},
year = {2024},
date = {2024-03-01},
urldate = {2024-04-16},
journal = {ACM Trans. Inf. Syst.},
pages = {3649500},
abstract = {We present two empirical studies to investigate users’ expectations and behaviours when using digital assistants, such as Alexa and Google Home, in a kitchen context: First, a survey (N=200) queries participants on their expectations for the kinds of information that such systems should be able to provide. While consensus exists on expecting information about cooking steps and processes, younger participants who enjoy cooking express a higher likelihood of expecting details on food history or the science of cooking. In a follow-up Wizard-of-Oz study (N = 48), users were guided through the steps of a recipe either by an
active
wizard that alerted participants to information it could provide or a
passive
wizard who only answered questions that were provided by the user. The
active
policy led to almost double the number of conversational utterances and 1.5 times more knowledge-related user questions compared to the
passive
policy. Also, it resulted in 1.7 times more knowledge communicated than the
passive
policy. We discuss the findings in the context of related work and reveal implications for the design and use of such assistants for cooking and other purposes such as DIY and craft tasks, as well as the lessons we learned for evaluating such systems.},
keywords = {DTIC, Natural Language, UARC},
pubstate = {published},
tppubtype = {article}
}
active
wizard that alerted participants to information it could provide or a
passive
wizard who only answered questions that were provided by the user. The
active
policy led to almost double the number of conversational utterances and 1.5 times more knowledge-related user questions compared to the
passive
policy. Also, it resulted in 1.7 times more knowledge communicated than the
passive
policy. We discuss the findings in the context of related work and reveal implications for the design and use of such assistants for cooking and other purposes such as DIY and craft tasks, as well as the lessons we learned for evaluating such systems.
Gordon, Andrew S.; Feng, Andrew
Combining the Predictions of Out-of-Domain Classifiers Using Etcetera Abduction Proceedings Article
In: 2024 58th Annual Conference on Information Sciences and Systems (CISS), pp. 1–6, IEEE, Princeton, NJ, USA, 2024, ISBN: 979-8-3503-6929-8.
Links | BibTeX | Tags: DTIC, Narrative, The Narrative Group, UARC
@inproceedings{gordon_combining_2024,
title = {Combining the Predictions of Out-of-Domain Classifiers Using Etcetera Abduction},
author = {Andrew S. Gordon and Andrew Feng},
url = {https://ieeexplore.ieee.org/document/10480194/},
doi = {10.1109/CISS59072.2024.10480194},
isbn = {979-8-3503-6929-8},
year = {2024},
date = {2024-03-01},
urldate = {2024-04-16},
booktitle = {2024 58th Annual Conference on Information Sciences and Systems (CISS)},
pages = {1–6},
publisher = {IEEE},
address = {Princeton, NJ, USA},
keywords = {DTIC, Narrative, The Narrative Group, UARC},
pubstate = {published},
tppubtype = {inproceedings}
}
Gurney, Nikolos; Pynadath, David V.; Ustun, Volkan
Spontaneous Theory of Mind for Artificial Intelligence Journal Article
In: 2024, (Publisher: [object Object] Version Number: 1).
Abstract | Links | BibTeX | Tags: AI, DTIC, Social Simulation, UARC
@article{gurney_spontaneous_2024,
title = {Spontaneous Theory of Mind for Artificial Intelligence},
author = {Nikolos Gurney and David V. Pynadath and Volkan Ustun},
url = {https://arxiv.org/abs/2402.13272},
doi = {10.48550/ARXIV.2402.13272},
year = {2024},
date = {2024-02-01},
urldate = {2024-03-14},
abstract = {Existing approaches to Theory of Mind (ToM) in Artificial Intelligence (AI) overemphasize prompted, or cue-based, ToM, which may limit our collective ability to develop Artificial Social Intelligence (ASI). Drawing from research in computer science, cognitive science, and related disciplines, we contrast prompted ToM with what we call spontaneous ToM – reasoning about others' mental states that is grounded in unintentional, possibly uncontrollable cognitive functions. We argue for a principled approach to studying and developing AI ToM and suggest that a robust, or general, ASI will respond to prompts textbackslashtextitand spontaneously engage in social reasoning.},
note = {Publisher: [object Object]
Version Number: 1},
keywords = {AI, DTIC, Social Simulation, UARC},
pubstate = {published},
tppubtype = {article}
}
Gurney, Nikolos; Morstatter, Fred; Pynadath, David V.; Russell, Adam; Satyukov, Gleb
Operational Collective Intelligence of Humans and Machines Journal Article
In: 2024, (Publisher: [object Object] Version Number: 1).
Abstract | Links | BibTeX | Tags: DTIC, Social Simulation, UARC
@article{gurney_operational_2024,
title = {Operational Collective Intelligence of Humans and Machines},
author = {Nikolos Gurney and Fred Morstatter and David V. Pynadath and Adam Russell and Gleb Satyukov},
url = {https://arxiv.org/abs/2402.13273},
doi = {10.48550/ARXIV.2402.13273},
year = {2024},
date = {2024-02-01},
urldate = {2024-03-14},
abstract = {We explore the use of aggregative crowdsourced forecasting (ACF) as a mechanism to help operationalize ``collective intelligence'' of human-machine teams for coordinated actions. We adopt the definition for Collective Intelligence as: ``A property of groups that emerges from synergies among data-information-knowledge, software-hardware, and individuals (those with new insights as well as recognized authorities) that enables just-in-time knowledge for better decisions than these three elements acting alone.'' Collective Intelligence emerges from new ways of connecting humans and AI to enable decision-advantage, in part by creating and leveraging additional sources of information that might otherwise not be included. Aggregative crowdsourced forecasting (ACF) is a recent key advancement towards Collective Intelligence wherein predictions (Xtextbackslash% probability that Y will happen) and rationales (why I believe it is this probability that X will happen) are elicited independently from a diverse crowd, aggregated, and then used to inform higher-level decision-making. This research asks whether ACF, as a key way to enable Operational Collective Intelligence, could be brought to bear on operational scenarios (i.e., sequences of events with defined agents, components, and interactions) and decision-making, and considers whether such a capability could provide novel operational capabilities to enable new forms of decision-advantage.},
note = {Publisher: [object Object]
Version Number: 1},
keywords = {DTIC, Social Simulation, UARC},
pubstate = {published},
tppubtype = {article}
}
Awada, Mohamad; Gerber, Burcin Becerik; Lucas, Gale M.; Roll, Shawn C.
Stress appraisal in the workplace and its associations with productivity and mood: Insights from a multimodal machine learning analysis Journal Article
In: PLoS ONE, vol. 19, no. 1, pp. e0296468, 2024, ISSN: 1932-6203.
Abstract | Links | BibTeX | Tags: DTIC, Machine Learning, UARC
@article{awada_stress_2024,
title = {Stress appraisal in the workplace and its associations with productivity and mood: Insights from a multimodal machine learning analysis},
author = {Mohamad Awada and Burcin Becerik Gerber and Gale M. Lucas and Shawn C. Roll},
editor = {Iftikhar Ahmed Khan},
url = {https://dx.plos.org/10.1371/journal.pone.0296468},
doi = {10.1371/journal.pone.0296468},
issn = {1932-6203},
year = {2024},
date = {2024-01-01},
urldate = {2024-02-21},
journal = {PLoS ONE},
volume = {19},
number = {1},
pages = {e0296468},
abstract = {Previous studies have primarily focused on predicting stress arousal, encompassing physiological, behavioral, and psychological responses to stressors, while neglecting the examination of stress appraisal. Stress appraisal involves the cognitive evaluation of a situation as stressful or non-stressful, and as a threat/pressure or a challenge/opportunity. In this study, we investigated several research questions related to the association between states of stress appraisal (i.e., boredom, eustress, coexisting eustress-distress, distress) and various factors such as stress levels, mood, productivity, physiological and behavioral responses, as well as the most effective ML algorithms and data signals for predicting stress appraisal. The results support the Yerkes-Dodson law, showing that a moderate stress level is associated with increased productivity and positive mood, while low and high levels of stress are related to decreased productivity and negative mood, with distress overpowering eustress when they coexist. Changes in stress appraisal relative to physiological and behavioral features were examined through the lenses of stress arousal, activity engagement, and performance. An XGBOOST model achieved the best prediction accuracies of stress appraisal, reaching 82.78% when combining physiological and behavioral features and 79.55% using only the physiological dataset. The small accuracy difference of 3% indicates that physiological data alone may be adequate to accurately predict stress appraisal, and the feature importance results identified electrodermal activity, skin temperature, and blood volume pulse as the most useful physiologic features. Implementing these models within work environments can serve as a foundation for designing workplace policies, practices, and stress management strategies that prioritize the promotion of eustress while reducing distress and boredom. Such efforts can foster a supportive work environment to enhance employee well-being and productivity.},
keywords = {DTIC, Machine Learning, UARC},
pubstate = {published},
tppubtype = {article}
}
Spiegel, Brennan M. R.; Rizzo, Albert; Persky, Susan; Liran, Omer; Wiederhold, Brenda; Woods, Susan; Donovan, Kate; Sarkar, Korak; Xiang, Henry; Joo, Sun; Jotwani, Rohan; Lang, Min; Paul, Margot; Senter-Zapata, Mike; Widmeier, Keith; Zhang, Haipeng
What Is Medical Extended Reality? A Taxonomy Defining the Current Breadth and Depth of an Evolving Field Journal Article
In: Journal of Medical Extended Reality, vol. 1, no. 1, pp. 4–12, 2024, ISSN: 2994-1520.
Links | BibTeX | Tags: DTIC, MedVR, UARC
@article{spiegel_what_2024,
title = {What Is Medical Extended Reality? A Taxonomy Defining the Current Breadth and Depth of an Evolving Field},
author = {Brennan M. R. Spiegel and Albert Rizzo and Susan Persky and Omer Liran and Brenda Wiederhold and Susan Woods and Kate Donovan and Korak Sarkar and Henry Xiang and Sun Joo and Rohan Jotwani and Min Lang and Margot Paul and Mike Senter-Zapata and Keith Widmeier and Haipeng Zhang},
url = {https://www.liebertpub.com/doi/10.1089/jmxr.2023.0012},
doi = {10.1089/jmxr.2023.0012},
issn = {2994-1520},
year = {2024},
date = {2024-01-01},
urldate = {2024-02-20},
journal = {Journal of Medical Extended Reality},
volume = {1},
number = {1},
pages = {4–12},
keywords = {DTIC, MedVR, UARC},
pubstate = {published},
tppubtype = {article}
}
Barrett, Trevor; Faulk, Robert; Sergeant, Army Master; Boberg, Jill; Bartels, Matthew; Colonel, Marine Lieutenant; Saxon, Leslie A.
Force plate assessments in reconnaissance marine training company Journal Article
In: BMC Sports Sci Med Rehabil, vol. 16, no. 1, pp. 16, 2024, ISSN: 2052-1847.
Abstract | Links | BibTeX | Tags: DTIC, MedVR, UARC
@article{barrett_force_2024,
title = {Force plate assessments in reconnaissance marine training company},
author = {Trevor Barrett and Robert Faulk and Army Master Sergeant and Jill Boberg and Matthew Bartels and Marine Lieutenant Colonel and Leslie A. Saxon},
url = {https://bmcsportsscimedrehabil.biomedcentral.com/articles/10.1186/s13102-023-00796-z},
doi = {10.1186/s13102-023-00796-z},
issn = {2052-1847},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-22},
journal = {BMC Sports Sci Med Rehabil},
volume = {16},
number = {1},
pages = {16},
abstract = {Abstract
The ability to obtain dynamic movement assessments using force plate technology holds the promise of providing more detailed knowledge of the strength, balance and forces generated by active-duty military personnel. To date, there are not well-defined use cases for implementation of force plate assessments in military training environments. We sought to determine if force plate technology assessments could provide additional insights, related to the likelihood of graduation, beyond that provided by traditional physical fitness tests (PFT’s), in an elite Marine training school. Serial force plate measures were also obtained on those Marines successfully completing training to determine if consistent measures reflecting the effects of training on muscle skeletal load-over-time could be accurately measured. A pre-training force plate assessment performed in 112 Marines did not predict graduation rates. For Marines who successfully completed the course, serial measures obtained throughout training were highly variable for each individual and no firm conclusions could be drawn related to load imposed or the fitness attained during training.},
keywords = {DTIC, MedVR, UARC},
pubstate = {published},
tppubtype = {article}
}
The ability to obtain dynamic movement assessments using force plate technology holds the promise of providing more detailed knowledge of the strength, balance and forces generated by active-duty military personnel. To date, there are not well-defined use cases for implementation of force plate assessments in military training environments. We sought to determine if force plate technology assessments could provide additional insights, related to the likelihood of graduation, beyond that provided by traditional physical fitness tests (PFT’s), in an elite Marine training school. Serial force plate measures were also obtained on those Marines successfully completing training to determine if consistent measures reflecting the effects of training on muscle skeletal load-over-time could be accurately measured. A pre-training force plate assessment performed in 112 Marines did not predict graduation rates. For Marines who successfully completed the course, serial measures obtained throughout training were highly variable for each individual and no firm conclusions could be drawn related to load imposed or the fitness attained during training.
Rodrigues, Patrick B.; Becerik-Gerber, Burcin; Soibelman, Lucio; Lucas, Gale M.; Roll, Shawn C.
Virtual Environment for Studying the Effects of Operational and Environmental Sounds on Teleoperated Demolition Proceedings Article
In: Computing in Civil Engineering 2023, pp. 54–61, American Society of Civil Engineers, Corvallis, Oregon, 2024, ISBN: 978-0-7844-8523-1.
Links | BibTeX | Tags: DTIC, Virtual Humans, VR
@inproceedings{rodrigues_virtual_2024,
title = {Virtual Environment for Studying the Effects of Operational and Environmental Sounds on Teleoperated Demolition},
author = {Patrick B. Rodrigues and Burcin Becerik-Gerber and Lucio Soibelman and Gale M. Lucas and Shawn C. Roll},
url = {https://ascelibrary.org/doi/10.1061/9780784485231.007},
doi = {10.1061/9780784485231.007},
isbn = {978-0-7844-8523-1},
year = {2024},
date = {2024-01-01},
urldate = {2024-04-16},
booktitle = {Computing in Civil Engineering 2023},
pages = {54–61},
publisher = {American Society of Civil Engineers},
address = {Corvallis, Oregon},
keywords = {DTIC, Virtual Humans, VR},
pubstate = {published},
tppubtype = {inproceedings}
}
2023
Tak, Ala Nekouvaght; Becerik-Gerber, Burçin; Soibelman, Lucio; Lucas, Gale
A framework for investigating the acceptance of smart home technologies: Findings for residential smart HVAC systems Journal Article
In: Building and Environment, vol. 245, pp. 110935, 2023, ISSN: 03601323.
Links | BibTeX | Tags: DTIC, UARC, Virtual Humans
@article{tak_framework_2023,
title = {A framework for investigating the acceptance of smart home technologies: Findings for residential smart HVAC systems},
author = {Ala Nekouvaght Tak and Burçin Becerik-Gerber and Lucio Soibelman and Gale Lucas},
url = {https://linkinghub.elsevier.com/retrieve/pii/S0360132323009629},
doi = {10.1016/j.buildenv.2023.110935},
issn = {03601323},
year = {2023},
date = {2023-11-01},
urldate = {2023-12-07},
journal = {Building and Environment},
volume = {245},
pages = {110935},
keywords = {DTIC, UARC, Virtual Humans},
pubstate = {published},
tppubtype = {article}
}
Cho, Hyundong; Liu, Shuai; Shi, Taiwei; Jain, Darpan; Rizk, Basem; Huang, Yuyang; Lu, Zixun; Wen, Nuan; Gratch, Jonathan; Ferrara, Emilio; May, Jonathan
Can Language Model Moderators Improve the Health of Online Discourse? Miscellaneous
2023, (arXiv:2311.10781 [cs]).
Abstract | Links | BibTeX | Tags: AI, Dialogue, DTIC, UARC, Virtual Humans
@misc{cho_can_2023,
title = {Can Language Model Moderators Improve the Health of Online Discourse?},
author = {Hyundong Cho and Shuai Liu and Taiwei Shi and Darpan Jain and Basem Rizk and Yuyang Huang and Zixun Lu and Nuan Wen and Jonathan Gratch and Emilio Ferrara and Jonathan May},
url = {http://arxiv.org/abs/2311.10781},
year = {2023},
date = {2023-11-01},
urldate = {2023-12-07},
publisher = {arXiv},
abstract = {Human moderation of online conversation is essential to maintaining civility and focus in a dialogue, but is challenging to scale and harmful to moderators. The inclusion of sophisticated natural language generation modules as a force multiplier aid moderators is a tantalizing prospect, but adequate evaluation approaches have so far been elusive. In this paper, we establish a systematic definition of conversational moderation effectiveness through a multidisciplinary lens that incorporates insights from social science. We then propose a comprehensive evaluation framework that uses this definition to asses models' moderation capabilities independently of human intervention. With our framework, we conduct the first known study of conversational dialogue models as moderators, finding that appropriately prompted models can provide specific and fair feedback on toxic behavior but struggle to influence users to increase their levels of respect and cooperation.},
note = {arXiv:2311.10781 [cs]},
keywords = {AI, Dialogue, DTIC, UARC, Virtual Humans},
pubstate = {published},
tppubtype = {misc}
}
Yang, Daniel; Kommineni, Aditya; Alshehri, Mohammad; Mohanty, Nilamadhab; Modi, Vedant; Gratch, Jonathan; Narayanan, Shrikanth
Context Unlocks Emotions: Text-based Emotion Classification Dataset Auditing with Large Language Models Miscellaneous
2023, (arXiv:2311.03551 [cs]).
Abstract | Links | BibTeX | Tags: AI, DTIC, UARC, Virtual Humans
@misc{yang_context_2023,
title = {Context Unlocks Emotions: Text-based Emotion Classification Dataset Auditing with Large Language Models},
author = {Daniel Yang and Aditya Kommineni and Mohammad Alshehri and Nilamadhab Mohanty and Vedant Modi and Jonathan Gratch and Shrikanth Narayanan},
url = {http://arxiv.org/abs/2311.03551},
year = {2023},
date = {2023-11-01},
urldate = {2023-12-07},
publisher = {arXiv},
abstract = {The lack of contextual information in text data can make the annotation process of text-based emotion classification datasets challenging. As a result, such datasets often contain labels that fail to consider all the relevant emotions in the vocabulary. This misalignment between text inputs and labels can degrade the performance of machine learning models trained on top of them. As re-annotating entire datasets is a costly and time-consuming task that cannot be done at scale, we propose to use the expressive capabilities of large language models to synthesize additional context for input text to increase its alignment with the annotated emotional labels. In this work, we propose a formal definition of textual context to motivate a prompting strategy to enhance such contextual information. We provide both human and empirical evaluation to demonstrate the efficacy of the enhanced context. Our method improves alignment between inputs and their human-annotated labels from both an empirical and human-evaluated standpoint.},
note = {arXiv:2311.03551 [cs]},
keywords = {AI, DTIC, UARC, Virtual Humans},
pubstate = {published},
tppubtype = {misc}
}
Chang, Di; Shi, Yichun; Gao, Quankai; Fu, Jessica; Xu, Hongyi; Song, Guoxian; Yan, Qing; Yang, Xiao; Soleymani, Mohammad
MagicDance: Realistic Human Dance Video Generation with Motions & Facial Expressions Transfer Miscellaneous
2023, (arXiv:2311.12052 [cs]).
Abstract | Links | BibTeX | Tags: DTIC, UARC, Virtual Humans
@misc{chang_magicdance_2023,
title = {MagicDance: Realistic Human Dance Video Generation with Motions & Facial Expressions Transfer},
author = {Di Chang and Yichun Shi and Quankai Gao and Jessica Fu and Hongyi Xu and Guoxian Song and Qing Yan and Xiao Yang and Mohammad Soleymani},
url = {http://arxiv.org/abs/2311.12052},
year = {2023},
date = {2023-11-01},
urldate = {2023-12-07},
publisher = {arXiv},
abstract = {In this work, we propose MagicDance, a diffusion-based model for 2D human motion and facial expression transfer on challenging human dance videos. Specifically, we aim to generate human dance videos of any target identity driven by novel pose sequences while keeping the identity unchanged. To this end, we propose a two-stage training strategy to disentangle human motions and appearance (e.g., facial expressions, skin tone and dressing), consisting of the pretraining of an appearance-control block and fine-tuning of an appearance-pose-joint-control block over human dance poses of the same dataset. Our novel design enables robust appearance control with temporally consistent upper body, facial attributes, and even background. The model also generalizes well on unseen human identities and complex motion sequences without the need for any fine-tuning with additional data with diverse human attributes by leveraging the prior knowledge of image diffusion models. Moreover, the proposed model is easy to use and can be considered as a plug-in module/extension to Stable Diffusion. We also demonstrate the model's ability for zero-shot 2D animation generation, enabling not only the appearance transfer from one identity to another but also allowing for cartoon-like stylization given only pose inputs. Extensive experiments demonstrate our superior performance on the TikTok dataset.},
note = {arXiv:2311.12052 [cs]},
keywords = {DTIC, UARC, Virtual Humans},
pubstate = {published},
tppubtype = {misc}
}
Liu, Ruying; Awada, Mohamad; Gerber, Burcin Becerik; Lucas, Gale M.; Roll, Shawn C.
Gender moderates the effects of ambient bergamot scent on stress restoration in offices Journal Article
In: Journal of Environmental Psychology, vol. 91, pp. 102135, 2023, ISSN: 02724944.
Links | BibTeX | Tags: DTIC, UARC, Virtual Humans
@article{liu_gender_2023,
title = {Gender moderates the effects of ambient bergamot scent on stress restoration in offices},
author = {Ruying Liu and Mohamad Awada and Burcin Becerik Gerber and Gale M. Lucas and Shawn C. Roll},
url = {https://linkinghub.elsevier.com/retrieve/pii/S0272494423001834},
doi = {10.1016/j.jenvp.2023.102135},
issn = {02724944},
year = {2023},
date = {2023-11-01},
urldate = {2023-09-20},
journal = {Journal of Environmental Psychology},
volume = {91},
pages = {102135},
keywords = {DTIC, UARC, Virtual Humans},
pubstate = {published},
tppubtype = {article}
}
Wang, Timothy S.; Gordon, Andrew S.
Playing Story Creation Games with Large Language Models: Experiments with GPT-3.5 Book Section
In: Holloway-Attaway, Lissa; Murray, John T. (Ed.): Interactive Storytelling, vol. 14384, pp. 297–305, Springer Nature Switzerland, Cham, 2023, ISBN: 978-3-031-47657-0 978-3-031-47658-7, (Series Title: Lecture Notes in Computer Science).
Links | BibTeX | Tags: DTIC, Narrative, UARC
@incollection{holloway-attaway_playing_2023,
title = {Playing Story Creation Games with Large Language Models: Experiments with GPT-3.5},
author = {Timothy S. Wang and Andrew S. Gordon},
editor = {Lissa Holloway-Attaway and John T. Murray},
url = {https://link.springer.com/10.1007/978-3-031-47658-7_28},
doi = {10.1007/978-3-031-47658-7_28},
isbn = {978-3-031-47657-0 978-3-031-47658-7},
year = {2023},
date = {2023-10-01},
urldate = {2023-12-07},
booktitle = {Interactive Storytelling},
volume = {14384},
pages = {297–305},
publisher = {Springer Nature Switzerland},
address = {Cham},
note = {Series Title: Lecture Notes in Computer Science},
keywords = {DTIC, Narrative, UARC},
pubstate = {published},
tppubtype = {incollection}
}