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Abstract 
Due to bandwidth limitations, the speech recognizer in dis-
tributed speech recognition (DSR) applications has to use en-
coded speech – either traditional speech encoding or speech 
encoding optimized for recognition. The penalty incurred in
reducing the bitrate is degradation in speech recognition perfor-
mance. The diversity of the applications using DSR implies that
a variety of speech encoders can be used to compress speech. 
By treating the encoder variability as a mismatch we propose 
using model transformation to reduce the speech recognition 
performance degradation. The advantage of using model trans-
formation is that only a single model set needs to be trained at
the server, which can be adapted on the fly to the input speech
data. We were able to reduce the word error rate by 61.9 %,
63.3 % and 56.3 % for MELP, GSM and MFCC-encoded data,
respectively, by using MAP adaptation, which shows the gener-
ality of our proposed scheme. 

1. Introduction 
The recent explosion in mobile computing and communication
devices has generated a wide interest in the distributed speech
recognition paradigm. The more straightforward method 
(sometimes called network speech recognition (NSR)) shown
in Figure 1 involves encoding speech using a “standard” speech 
encoder before transmission to the client. Speech compression 
algorithms are, however, typically designed to effect minimal 
degradation in the perceived quality of the decoded speech. Al-
though the signal distortions introduced by these speech com-
pression techniques may be perceptually irrelevant, they may
be detrimental in the context of ASR. Ideally, since compressed
speech is used for recognition (classification) at the server, the
compression technique should be optimized to introduce mini-
mal degradation of speech recognition accuracy. This can be ac-
complished by adopting a “client-server” system, where speech 
features are extracted at the client (device), then compressed 
and transmitted to a remote server hosting the speech recog-
nizer as shown in Figure 2. Recognition from the encoded fea-
ture vectors performs better than when encoded speech is used
for recognition. However there is some recognition degradation
when compared to clean (uncompressed) feature vectors.

The effect of compression of speech (features) for speech 
recognition has been reported previously [1, 2, 3, 4]. In pre-
vious work [3], we developed simple encoders to compress
the mel frequency cepstral coefficients (MFCCs) derived from
the speech utterance. These experiments assumed a scenario 
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wherein the models, trained using unquantized features, were 
kept fixed. For the TI-46 digit database, the baseline word er-
ror rate of 0.24 % for uncompressed speech degraded by 447 %
(1.15 % error) for a MELP coder at 2.4 kbps and by 500 %
(1.26 % error) at 1 kbps when the MFCC features were directly
quantized. In this work we wish to investigate the comple-
mentary problem of optimizing the speech recognizer to take 
into account that it is operating on compressed speech. The 
novelty of our approach is that we view the differences in the 
compression underlying the train and test utterances as a mis-
match which results in degradation of the classifier’s perfor-
mance. This mismatch can be reduced by using robust adap-
tation techniques such as Maximum Likelihood Linear Regres-
sion (MLLR) [5] or Bayesian adaptive techniques [6] to modify
the reference models using the observed quantized MFCCs. 
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Figure 1: Distributed speech recognition setup with a standard
speech encoder. 
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Figure 2: Distributed speech recognition setup with a MFCC 
encoder. 

For the TIDIGITS database we achieved a reduction of 
56.3% in word error rate(WER) by adapting the clean models 
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to the MFCC encoded data. Improvements of 61.9% and 63.3%
were achieved when the speech was compressed by MELP and
GSM. Section 2 contains the details of the adaptation schemes.
Experimental details are presented in Section 3. Section 4 
presents our results and our conclusions are presented in Sec-
tion 5. 

2. Model Adaptation 
One of the major problems for robust speech recognition is the
mismatch between the training and testing conditions. Speech
recognition performance, with speech models trained on clean
data, significantly degrades when the test utterances are noisy 
(channel noise, ambient environment noise). Similarly the per-
formance is also degraded due to long term and short term 
speaker variations. It is well known that speaker dependent 
models usually outperform speaker independent models. To 
improve robustness, techniques proposed involve (i) finding in-
variant features; (ii) allowing model parameters/feature vectors
to vary within a neighborhood specified by the training data; 
(iii) transforming the models so they are more likely to have
produced the observed data; (iv) incorporate newly acquired ap-
plication specific data into existing models.

With wider use of speech recognition applications, espe-
cially in mobile devices, we have an additional source for mis-
match, namely speech encoding. The distortion introduced by
speech encoders can also be thought of as a mismatch between
the training and testing conditions. It is relatively easy to re-
move this mismatch by the use of a family of models each 
trained with data from different encoding schemes, and choose
the one that best matches the unknown test data. However,
such schemes are not attractive since it might not be possible to
have models trained for all different compression schemes be-
cause the choice of the compression scheme used by the client
may be made dynamically depending on the computational re-
sources/load at the client and the quality of service (QoS) it 
wishes to provide the user. Scalable encoders, which could be 
combined with scalable recognition schemes [7], wherein the 
recognition is refined in every pass with more data (and/or bet-
ter models) until a satisfactory decision (say in the likelihood 
sense) can be made, further complicates the creation of pre-
defined models. Depending on the optimization criteria used for 
compression (recognition performance or human perception),
more variability in the compression schemes used by the differ-
ent clients can be expected.

This mismatch introduced by the choice of different speech
compression schemes can be solved in similar manner as other
mismatches. The models at the server can be trained using clean
speech (or a particular compression scheme) and we can allevi-
ate the mismatch between testing and training phases by the 
use of model transformation/adaptation to optimize classifica-
tion by ensuring that the transformed/adapted models are more
likely to have produced the observed data. Note that simple
signal processing techniques are not likely to be helpful as the
distortion introduced by compression is not invertible. How-
ever adaptation schemes, which operate on the models rather 
than the input speech are more likely to be able to reduce the 
mismatch. 

The two popular adaptation techniques which have been 
used previously are MLLR and Maximum a posteriori (MAP)
estimation. In the MLLR technique a transformation is com-
puted for the means and variances of the different mixture com-
ponents after observing the new data. Regression classes are de-
fined to facilitate transformation even when a limited amount of 

data is observed. MAP in contrast assumes that model param-
eters are random and have a prior distribution. The observed 
data can be combined with the existing models to obtain new 
models by maximizing the posterior density of the models given
the observed data. Unlike MLLR, in MAP we can modify not
only the means and variances of the Gaussian mixtures but can
also modify the mixture weights, the initial probabilities and 
the transition probabilities. For both methods, adaptation can 
be carried out either in batch mode or in an incremental man-
ner. In batch mode adaptation (or supervised adaptation) the
transcription corresponding to the unknown utterance is avail-
able. Incremental adaptation (or unsupervised adaptation) does
not require the transcription and the result of recognition is used
as the “true” transcription of the unknown utterance. 

3. Experimental Setup 

The experiments were carried out on the TIDIGITS corpus us-
ing HTK 3.0 speech recognizer, with MFCCs as the front end.
The database consists of variable length connected digit utter-
ances (1 to 7 digits per utterance). The “train” part of the 
database consisted of 8623 utterances spoken by 55 male and 57
female speakers and the “test” part of the database consisted of
8700 utterances spoken by 56 male and 57 female speakers (the
train and test speakers were different). Context-independent 
digit models were initially trained (on the server) using clean 
speech from the “train” part of the database. A silence model 
was used before and after the digit utterance to take care of the
pre and post utterance silence. In addition a short pause model
was used to account for inter-digit short pauses. The testing (us-
ing utterances from the “test” part of the database) was carried
out using MELP compressed speech, GSM compressed speech
and the MFCC encoder proposed in [3]. The MFCC encoder 
was used at two different rates 2.07 kbps (denoted MFCC-HR)
and 1.22 kbps (denoted MFCC-LR). The baseline performance 
was determined by using “matched” models for the different 
compression schemes, i.e., the training was done using speech
encoded by the same method as that used during the testing 
phase. The original database contains speech sampled at 20 
kHz, however both MELP and GSM require the input speech 
to be sampled at 8 kHz. One method to overcome this would 
be downsample the speech to 8 kHz, encode the speech and 
then upsample the decoded speech back to 20 kHz, however 
when this method was used the performance obtained was poor.
The reason for this could be that the spectrum of the upsam-
pled speech is flat from 4 kHz to 10 kHz while the spectrum of
the original speech was not. To overcome this we can down-
sample all the speech (training and testing) to 8 kHz and per-
form all our experiments using this downsampled data. Now the 
training phase also uses downsampled speech to build the initial
models. For consistency the MFCC encoder also was used with 
the downsampled speech data. The experiments were carried 
out for two different settings (i) unsupervised MLLR adapta-
tion and (ii) supervised MAP adaptation. For the unsupervised
MLLR adaptation, the models were adapted once every 20 ut-
terances. For the supervised MAP adaptation the original mod-
els were adapted for each speaker individually, i.e., part of the
testing data from each speaker was used to adapt the original
models to that particular speaker and the adapted models were
used to recognize the test utterances of that speaker. The results 
for the different experiments are shown in Tables 1 to 4 for the
different compression schemes, and for the baseline recognition
on uncompressed speech. 
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Compression Clean Models 
( ) 

Clean Models 
+ MLLR ( ) 

Matched 
Models ( ) 

Matched Models 
+ MLLR ( ) 

MLLR 
gain 

Clean speech 1.88 (7.56) 1.57 (6.57) - - 16.5% 
MELP 3.14 (12.07) 2.32 (8.70) 2.70 (10.47) 1.87 (8.53) 26.1% 
GSM 2.50 (8.76) 1.73 (7.33) 2.29 (8.61) 1.55 (6.91) 30.8% 
MFCC-LR 4.81 (14.78) 2.24 (8.49) 2.70 (10.25) 1.85 (8.08) 53.4% 
MFCC-HR 2.10 (8.06) 1.60 (6.82) 2.05 (7.87) 1.58 (6.87) 23.8% 

Table 1: Word error rate (in percentage) for supervised MLLR adaptation. String error rate (in percentage) is shown in brackets. The 
improvements in MLLR are decrease (in percentage) in word error rate with respect to clean model results. 

4. Results and Discussion 

4.1. Adaptation with a Single Model 

Table 1 shows the results for the unsupervised MLLR adapta-
tion experiment. We observe that consistently for all the com-
pression schemes MLLR adaptation results in good improve-
ments in the recognition performance. The results after adap-
tation are in fact better than when “matched” models are used. 
The is because we are using unsupervised adaptation and up-
dating the models once every 20 utterances, and the utterances
from each speaker are together, so we are benefiting from in-
ter utterance similarities (as indicated by the improved perfor-
mance with adaptation on clean speech). To ensure that the 
comparisons are consistent we performed adaptation on the 
matched models (shown in column 5).

To show the advantage of adaptation with a single model, 
we can compute the degradation before and after adaptation. 
These can be evaluated by comparing the recognition perfor-
mance with clean models to the recognition performance with
matched models (baseline, no mismatch in training and test-
ing). The single model degradation before adaptation is defined 
as , where is the er-
ror when compressed data is used for testing and clean speech
is used for training, is the error when compressed data 
is used for training and testing. Similarly the single model 
degradation after adaptation is defined as 

( and are defined as above 
except that adaptation is used). These degradations are shown
in Table 2. Observe that there is significant degradation before
adaptation for MFCC-LR. However after adaptation the degra-
dation is reduced substantially. For MFCC-HR, by adaptation
from clean models we get almost same performance as adapta-
tion from matched models (1.60 % vs. 1.58 %). These results 
imply that with adaptation from a single model we are not only
able to reduce the absolute error rates but we are also able to re-
duce the degradation from matched conditions (for MELP and
GSM the relative degradation increased but the absolute error 
rate decreased; for GSM the relative increase was very small).
This result is very significant because it demonstrates that we 
do not need encoder specific models to be trained at the server,
instead we can achieve the same performance with adaptation 
of models trained from clean speech.

The results of the supervised MAP adaptation are shown in
Table 3. The supervised MAP results are better than the unsu-
pervised MLLR results as expected. For MELP and GSM, MAP
adaptation provides better results when compared to MLLR, 
however for the MFCC encoders the MAP performance does 
not provide as significant a decrease as for MELP and GSM (in
fact for MFCC-LR, the MAP performance was worse than the
MLLR performance). The reason for this could be that while 
MLLR does not model the initial parameters as a random vec-
tor MAP explicitly does. The MFCC encoder quantizes the 

Compression Degradation before 
Adaptation ( ) 

Degradation after 
Adaptation ( )

MELP 16.30 24.06 
GSM 9.17 11.61 
MFCC-LR 78.15 21.08 
MFCC-HR 2.38 1.27 

Table 2: Degradation (in percentage) in word error rate be-
fore and after adaptation for the different coding schemes. The 
degradation is with respect to using matched models for each 
compression scheme. 

MFCCs directly and this means that the actual distribution of 
the encoded MFCCs is not a continuous distribution anymore 
but a discrete distribution. However in the MAP formulation 
the MFCCs are modeled as continuous distributions and the 
conjugate distribution which lies in the same class as the orig-
inal distribution is used as the prior distribution. Therefore the 
MAP formulation is no longer optimal and this could be lead-
ing to the fact that we get less improvement with MAP than with
MLLR for the MFCC encoders. Nevertheless, the improvement 
by using MAP adaptation is obvious from the results; we get 
more than 60% reduction using MAP for GSM and MELP. The 
reductions for the other methods are also significant. 

Compression Clean 
Models 

MAP MAP 
gain 

Clean speech 1.86 (7.54) 0.67 (3.85) 64.0% 
MELP 3.12 (12.05) 1.19 (6.06) 61.9% 
GSM 2.48 (8.72) 0.91 (4.09) 63.3% 
MFCC-LR 4.78 (14.73) 3.34 (10.89) 30.1% 
MFCC-HR 2.08 (8.01) 0.91 (4.36) 56.3% 

Table 3: Word error rate (in percentage) for supervised MAP 
adaptation. String error rate (in percentage) is shown in brack-
ets. The improvements for MAP is decrease (in percentage) in
word error rate with respect to clean model results. 

4.2. Encoder Optimized for Recognition 

As mentioned before, compression introduces degradation in 
recognition performance. The compression degradation can be
found by comparing the results with compression to those ob-
tained with clean speech. The compression degradation before
adaptation can be found as
and the compression degradation after adaptation can be found 
as , where is the error 
when clean speech is used for training and testing ( corre-
sponds to the case when adaptation is used). These degradations
are shown in Table 4 along with the rate required for the differ-
ent compression schemes. The rate required by the MFCC en-
coders is significantly less than that required by GSM and is less 
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Compression Degradation before 
Adaptation ( ) 

Degradation after 
Adaptation ( ) 

Rate 
(kbps) 

MELP 67.02 47.77 2.4 
GSM 32.98 10.19 13 
MFCC-LR 155.85 42.68 1.22 
MFCC-HR 11.70 1.91 2.07 

Table 4: Degradation (in percentage) in word error rate be-
fore and after adaptation for the different coding schemes. The 
degradation is with respect to using clean speech for testing. 
Uncompressed speech requires 128 kbps and uncompressed 
MFCCs require 38.4 kbps. 

than that required by MELP. However minimum degradation is
introduced by the MFCC-HR encoder among all the compres-
sion schemes (WER only degraded from 1.57 % to 1.60 %).
Also notice that after adaptation MFCC-LR encoder operating
at half the rate of MELP actually provides better results than 
MELP. This justifies our initial claim that compression schemes
optimized for recognition should be used to compress speech 
used with recognizers for better performance. Another impor-
tant point to be noticed from this table is that consistently for all
the encoding schemes the degradation after adaptation is lesser
then the degradation before adaptation, which implies that adap-
tation is compensating for the compression mismatch in addi-
tion to compensating for other mismatches. 

4.3. Effect of Adaptation Data 

It is also important to find the dependency of the adaptation 
schemes on the amount of input data required. To find this 
we used MLLR adaptation in supervised mode and changed the
amount of the adaptation data used. The experiments were car-
ried out for clean data, MELP, GSM and MFCC-encoded data.
The number of speakers in the test corpus was 113. The number
of utterances chosen per speaker for adaptation was 1, 2, 4 and 8
resulting in 113, 226, 452 and 904 utterances used as adaptation
data for the four different cases. The results of string error rate
and word error rate are shown in Figure 3. Observe that with 
increased adaptation data the error rates decrease for the dif-
ferent encoders. Using more than 904 utterances provided no 
further improvement in performance. One of the drawbacks of 
this scheme is that improvements are seen only after sufficient
adaptation data has been observed, which may not be practical
in some situations. This is basically a problem of the adaptation
schemes (MLLR and MAP) which we have used here. To over-
come this it may be necessary to combine MLLR/MAP adap-
tation with other rapid adaptation schemes which can operate 
with lesser adaptation data. 

5. Conclusions 
In this paper we investigated the use of model adaptation to re-
duce the speech degradation introduced by encoding speech be-
fore recognition. We showed that we were able to improve the
recognition performance for MELP, GSM and a MFCC encoder
suggesting that adaptation schemes can be used in DSR applica-
tions to increase the robustness of the speech recognition. The 
additional advantage of the proposed scheme is that it will in-
volve almost no increase in complexity because the adaptation
schemes generally have to be used to compensate for other mis-
matches. Compression distortion (unlike other distortions) is
not totally random as we now have knowledge of the distortion
introduced (based on the compression scheme) and this can be 
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Figure 3: Effect of adaptation data on string error rate and word
error rate for clean and encoded data. 
exploited in the adaptation procedure. Our next goal is to use
this information to further improve the recognition performance
when compressed data is used for recognition. 
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