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Say Anything: Using Textual Case-Based Reasoning to Enable
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We describe Say Anything, a new interactive storytelling system that collaboratively writes textual narra-
tives with human users. Unlike previous attempts, this interactive storytelling system places no restrictions
on the content or direction of the user’s contribution to the emerging storyline. In response to these contri-
butions, the computer continues the storyline with narration that is both coherent and entertaining. This
capacity for open-domain interactive storytelling is enabled by an extremely large repository of nonfiction
personal stories, which is used as a knowledge base in a case-based reasoning architecture. In this article, we
describe the three main components of our case-based reasoning approach: a million-item corpus of personal
stories mined from internet weblogs, a case retrieval strategy that is optimized for narrative coherence, and
an adaptation strategy that ensures that repurposed sentences from the case base are appropriate for the
user’s emerging fiction. We describe a series of evaluations of the system’s ability to produce coherent and
entertaining stories, and we compare these narratives with single-author stories posted to internet weblogs.
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1. MOTIVATION

Digital interactive storytelling is a compelling new medium for expressing and commu-
nicating ideas where a normally passive storytelling experience is transformed into an
active engagement in the creative process. Recent years have seen incredible progress
in graphics and physical modeling, enabling the creation of visually stunning inter-
active virtual environments. The attraction to these visual capabilities has helped
spark the imagination of an ever-widening audience and fueled the desire for complex
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narrative interactions that parallel the richness of the audiovisual experience. How-
ever, progress on the narrative side of interactive experiences has advanced much
more slowly. One of the primary reasons for the difficulty in this area is the incredible
amount of common sense knowledge required about people’s daily lives and activities
that is required in order to reason about narrative. This problem is typically solved
using hand-authored domain theories, but so far these approaches have been unable
to scale beyond small toy domains. In this article, we describe a new data-driven
approach that leverages millions of stories from blog entries to enable a real-time in-
teractive narrative system that breaks from existing paradigms.

Majewski [2003] argues that there are five possible models for introducing narra-
tive into nonlinear environments. First is the linear narrative model, which simply
removes the choice from the user and forces the prescribed narrative onto the experi-
ence. Second is the string of pearls model, a popular approach in video games, which
strings together a sequence of mini-episodes. Within a single mini-episode the player
has some freedom to explore and uncover optional game elements, but ultimately they
must achieve a specific linear goal in order to proceed to the next episode. Third, the
branching model presents the user with multiple-choice decisions at various points
in the experience, which are used to select a path within a pre-authored narrative
tree. Whereas the branching model creates narrative complexity over time, the fourth
model, the amusement park, distributes this complexity over space, allowing the player
to access different narrative strands by exploring the game world. Fifth, the building
blocks model eschews explicit narrative altogether, providing instead a rich environ-
ment for user-directed action in which the player is the one making all of the important
decisions and who must ultimately interpret these experiences as a coherent narrative
in their own mind.

Majewski’s categorization defines a spectrum of interactive narrative models that
place different burdens on the authors of these systems. On one end of the spectrum,
system authors employing the linear narrative model have full control over the story
(the user has none) and can explore the full range of genres, topics, and storytelling
devices that have been perfected in other narrative media. On the opposite end, system
authors employing the building blocks model enable user-directed action by designing
a world governed by generative models, that is, the “physics” of the world that provides
the users with action effects that are coherent and entertaining. Authors in these
systems are modelers of world behavior, and the authorial control in these systems
is in the design of how the world works. In this approach, interactivity is enabled
when user-directed action intersects with the domains of the modeled environment.
Unsurprisingly, the most successful examples of the building blocks approach enable
interactivity in domains that are relatively easy to model and visualize, for example,
the physical interaction between solid objects. In domains that lack suitable models
altogether, for instance, the social interaction among people, this model of narrative
interactivity often falls flat [Milam et al. 2009].

Because narrative is so deeply connected to the social interactions and experiences
of people, the prospect for open-domain user-directed interactive storytelling is highly
contingent on the development of generative models across the full spectrum of nar-
rative domains. Individual domain models of this sort have a long research history
in artificial intelligence where logical formalizations have been developed for various
phenomena of physics [Hayes 1985], sociology [Hobbs and Sagae 2011], and psychol-
ogy [Gordon and Hobbs 2004]. However, few researchers in this area today believe that
robust computational theories across the full spectrum of narrative domains are just
around the corner. For the foreseeable future, open-domain interactive storytelling
will need to rely on other approaches that produce generative models of what should
happen in the story.
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One attractive alternative is case-based reasoning. Broadly speaking, the approach
of case-based reasoning is to trade off a deep theoretical understanding of a domain
for lots of experience, relying on a rich memory of past solutions to solve current
novel problems. Research on case-based reasoning has its own rich history in artificial
intelligence and has taken on creative challenges from Schechwan cooking [Hammond
1989] to the expressive performance of jazz ballads on the saxophone [Arcos et al.
1998]. The applicability of case-based reasoning to open-domain interactive story-
telling requires a reconsideration of the notions of problems and solutions. Here the
problem is: What happens next? given the user’s current choices and what has hap-
pened so far in the user experience. Solutions, in turn, answer the question of What
happened in previous, similar situations? From an engineering perspective, the suc-
cess of this approach requires a means of amassing of suitably large case library and
the development of competent retrieval and adaptation mechanisms. There are several
routes that could be taken to overcome these engineering challenges. Here we explore
a textual case-based reasoning approach [Weber et al. 2006] where case retrieval and
adaptation are processes that operate on textual representations of cases. By reducing
the complexity of case representation as compared to previous case-based reasoning
applications, we focus on the fundamental problem of scale, namely, developing case
libraries that spanned the full breadth of narrative domains.

In this article we describe an application called Say Anything, which addresses the
problem of open-domain user-directed interactive storytelling using a textual case-
based reasoning approach. Instead of relying on domain knowledge acquired by do-
main experts versed in specific formal languages, this system leverages the personal
stories posted by millions of people to their Internet weblogs. Say Anything is a text-
based interactive storytelling application in which the human and computer take turns
writing sentences of an emerging story. By using weblog stories as a knowledge base,
this system is able to interpret the story that has been written so far and to gener-
ate a sentence that continues the narrative in an appropriate way, regardless of the
narrative choices made in the user’s contribution.

The following paragraph is an example of the type of story domain and inference we
can support, which would be difficult in other frameworks.

You’ll never believe what happened last night! Leigh laughed at my joke but
I couldn’t help but think ‘liz would have laughed harder.’ The joke wasn’t
very funny in a “ha ha” kind of way. It wasn’t anything like that, I thought
he was going to give me a good night kiss but he ended up licking my cheeck,
she declared. It made me sneeze and snort out loud. And now my nose hurts
from the snorting.

In this story, every other sentence (in italic) was produced by the computer during
a writing session with the system. Although this is not the same quality one would
expect from an experienced novelist, it illustrates several beneficial properties of our
system. First, the narrative is about the lives of people and the experiences they find
funny and unexpected. To reason effectively in this domain a large amount of world
knowledge is needed, including the types of activities people typically engage in, what
they find unexpected, and even the types of biological responses given certain physical
stimuli. For example, it correctly concludes that a joke does not have to be verbal, but
can be an unexpected physical act, such as licking a cheek. It also makes a remarkable
inference that snorting is a type of physical act particular to a nose and that it can
actually hurt if it is done with enough force. While these types of inferences could be
implemented in standard domain engineering approaches, many of these mundane
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Fig. 1. Selection dialog window.

pieces of information are usually excluded because of the immense cost and difficulty
of authoring.

2. SAY ANYTHING OVERVIEW

The goal of Say Anything is to collaboratively write a story with a human user that
is entertaining and coherent regardless of the topic or direction of the user’s contribu-
tions. We break from previous interactive storytelling designs by pursuing a loosely
structured data-driven approach that leverages the millions of stories authored by or-
dinary people on their weblogs about their everyday life experiences. In this applica-
tion, a user is initially presented with an empty story. The collaborative process begins
when the user enters the first sentence of the narrative. To add the next sentence, the
system analyzes the story as it exists so far, and finds a similar set of instances in a
massive knowledge base of over one million stories. Using these retrieved stories as
solutions to the problem of what happens next, the system displays the corresponding
next sentences from these stories, offering each as a choice to the user for how the
narrative will continue. An example of this interaction is shown in Figure 1 where the
system displays ten sentences from ten different stories that are similar to the user’s
story as it exists so far. After selecting one of the options, the user can write another
sentence and the cycle continues until the user decides the story is complete or too far
off track. When the user is finished with her story, she is asked to rate the story on
several criteria, shown in Figure 2. In the remainder of this section, we will provide a
more detailed example that illustrates how stories are created in our system. We then
outline the three major system components that are discussed in the remainder of this
article.
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Fig. 2. Rating interface.

2.1. Example

Figure 3 illustrates how the Say Anything system identifies candidate sentences to
contribute to the user’s story. On the left-hand side is a full story, authored using Say
Anything, where every other sentence (in italics) has been contributed by the system.
Here we focus on two sentences added late in the story, which appear between the hor-
izontal lines, representing one turn of the system. The user wrote the first of these two
sentences, while the second was contributed by the system. To suggest this sentence
as a plausible continuation of the user’s story, the system first searches its case base
for stories that are similar to the user’s story as it exists so far. On the right-hand
side of the example is the corresponding portion of the weblog story determined to be
the best match for the user’s story when this turn was taken. The matching algorithm
pays particular attention to the similarity of the last sentence to one of the sentences
in the retrieved story where the overlapping words of “pay,” “repairs,” and “car” help
establish a correspondence between the two texts. From this correspondence, the sys-
tem selects the next sentence in the retrieved story as a plausible continuation of the
user’s story: “Where are we going to get the money?”

The user’s story in this example demonstrates that Say Anything can be used to
write relatively long stories that maintain a moderate degree of coherence. It would
be wrong to claim that this story exemplifies deep aspects of modern narrative theory,
but some basic narrative structure is still readily evident. It begins with a generality
that introduces the subject of the story and contextualizes the specific narrative events
that follow. It continues with some background information, such as when the events
take place and that the main character is married, setting the scene for the remainder
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Fig. 3. The left column shows an entire user story. The right column looks at part of the weblog story used
as a proxy for generating the highlighted sentence. The words highlighted in dark gray show the overlap
leading to the highest similarity score.

of the story. Most of the remainder of the story describes the events constituting the
plot of the narrative.

The plot itself is primarily a sequence of unfortunate events that does very little
to advance the story to a climactic moment. The user does something clever with the
last sentence that enables a basic narrative arc to be constructed despite the relative
lack of structural elements previously in the story. Essentially, they provide a moral
to the story that explains why all of the other discourse was necessary. It is a common
device used in both the collection of weblog stories and in the user-generated stories
created during these experiments. In this case, it seems to work quite effectively by
providing a clear resolution as well as enabling the second to last sentence to function
as a climax or falling action. A simple interpretation of the complete narrative arc is
illustrated in Figure 4.

Although the user’s story is successful on many levels, this example also illustrates
several problems that are the focus of subsequent sections of this article. One of the
biggest areas of concern is the tendency of these interactive stories to wander off topic
after only a few turns. This is a concern shared with other sequential problems that
must make a Markovian assumption to maintain tractability. We have not completely
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Fig. 4. Simple narrative arc of the user’s story in Figure 3.

solved this problem, but we will show in Section 4 how to make use of long-term de-
pendencies that will greatly improve the situation.

2.2. System Architecture

The architecture of our system is a remarkably simple design that follows the basic
philosophy of case-based reasoning (CBR). In this type of reasoning, new problems are
solved analogically by reusing and adapting solutions to problems that have already
been seen before. In order to support this type of reasoning there are four necessary
components.

(1) A case library of previously solved problems;
(2) A retrieval mechanism for matching current problems to cases in the library;
(3) An adaptation component for modifying previous solutions to the unique properties

of the current problem;
(4) The ability to reuse knowledge learned as the system solves new problems.

This design is also consistent with emerging conceptions of textual case-based rea-
soning [Weber et al. 2006]. Textual case-based reasoning follows the same high-level
philosophy as traditional CBR, but tries to reason directly from cases represented as
natural language text. Working with natural language introduces several specific chal-
lenges, such as rethinking optimal similarity measures, how to map free-form text to
structured representations, and what types of adaptation are possible when using this
type of data. The payoff is a system that has access to vast amounts of common sense
knowledge, efficient real-time reasoning, and authentic sounding language generation.

Following the CBR design, our system has three main components: a case library
of previously solved problems, a retrieval mechanism for finding similar cases in the
library, and an adaptation component that fits old solutions to new problems. In
Section 3, we describe how we obtained our case library, which consists of over one mil-
lion stories told by ordinary people, describing their everyday life experiences. These
linear stories are then treated as though they were perfect solutions to our collabo-
rative story writing problem. When the user is finished contributing their sentence,
we analyze the user’s story to try to find the most appropriate weblog story from our
collection. In Section 4, we discuss how the retrieved stories are used to generate re-
sponses for the user’s narrative, and we also describe how we map the raw text of
a story to several different structured representations. In this section, we also show
how the selection history of every user can be reincorporated into the system to im-
prove the candidates proposed by the system in the future. In Section 5 we discuss the
adaptation process that alters retrieved sentences to better match the new story being
written.

3. CASE LIBRARY: BUILDING A CORPUS OF PERSONAL STORIES

Although the full space of possible narratives is infinite, we take the position that
the number of narrative schemas that describe their underlying activities and events
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is a much smaller set. Even though any new story written with our system will be
unique in its prose and discourse, it is very likely that someone, somewhere has al-
ready written a story following the same general narrative schema. In our framework
we generate a narrative through the interpretation of the current story in relation to
an instance already existing in our corpus and a projection from the existing discourse
to the emerging narrative. By posing the generation problem in this way we can treat
any linear narrative as a solution to a previously solved case. Therefore, its success ul-
timately hinges on the availability of a large-scale corpus of narrative stories that has
sufficient coverage over a broad range of human activities. Furthermore, this corpus
should also have the depth to produce the type of sophisticated and nuanced variations
that make human-authored stories so captivating.

Collections and anthologies of stories are as old as the first written stories them-
selves. Most anthologies consist of only a few dozen or a hundred stories. One of the
first efforts to collect a large-scale corpus of stories was the Federal Writer’s Project
of the Works Project Administration [Mangione 1996], which solicited thousands of
personal and fictional stories capturing the life and culture of the time as part of a
broad economic stimulus package started in the 1930s. StoryCorps1 is a contempo-
rary nonprofit organization modeling itself after the Federal Writer’s Project to record
and share the personal stories of Americans from all types of backgrounds. It is one
of the largest manual collections of narrative experiences with over 30,000 recorded
interviews.

Despite the advantages of manual story collection strategies, this process also has
a critical drawback for our application. On the positive side, it is much easier to target
specific domains or create rich ontological categorizations based on topic, demographic,
and other criteria. On the down side, these collections only describe the stories and
events that people feel are important enough to share with a special service. As hu-
mans, we are able to process these stories because we possess the background knowl-
edge to read between the lines and understand what makes them so special. However,
it is precisely this background knowledge that is largely missing from these collections,
which enable reasoning about narratives at all. For this purpose StoryCorps and other
manual collections of “interesting” stories are far too small to contain the breadth
and depth of common sense knowledge necessary to enable the type of open-domain
reasoning we hope to accomplish. To capture this knowledge we are equally interested
in the “boring” stories people tell about everyday life. These contain the simple in-
ferences needed for narrative coherence, such as what happens when you forget your
spouse’s birthday or lock your keys in your car.

Everyday life stories have existed in the text of personal diaries for centuries
[Steinitz 1997]. Until recently, these documentations of mundane aspects of people’s
lives have been largely unavailable to anthropologists, historians, and computer sci-
entists interested in the intricate knowledge about human society and behavior they
possess.

Fortunately, the World Wide Web has enabled people to effortlessly share this type of
story with the entire world through weblogs and other forms of social media. Blogging
was introduced to the world in the late 1990s, but was initially embraced only by
those immersed in information technology. A few years later, there was a dramatic
explosion in user-generated content, mainly credited to the emerging content-creation
tools allowing people to publish their thoughts with little technical ability [Blood 2000].
In 2008, Technorati.com estimated that nearly one-million weblog entries were posted
to the Web every day [Technorati 2008].

1http://storycorps.org/
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Despite the huge amount of user-generated content, most weblog entries are not
journal-style personal reflections on daily or weekly events [Blood 2000], which is our
primary interest. Many weblogs are filter-style, acting as portals to existing content
where users comment and post opinions about world events, politics, sports, and other
issues that are relevant to the target audience. Weblogs have also become a popular
platform for many businesses to publish product releases, company newsletters, daily
specials, advertisements, and spam. The remainder of this section will describe the
methods used to find and extract the journal-style weblog entries containing personal
stories about the author’s own experiences in order to create our case library of per-
sonal narratives.

3.1. Annotating Blog Entries as Stories

The goal of our collection effort was to obtain the broadest collection of personal stories
about everyday life experiences. The Web is an ideal place to find massive amounts of
user-generated textual content, however, even with automated tools such as Nutch2,
identifying and crawling weblogs is a nontrivial task. Fortunately, social media has
become such a high-demand commodity that it has spawned a new community of in-
termediate service providers that sort, filter and compile this type of content, including
blog entries, into a more convenient and accessible package.

One of these companies, Spinn3r.com, released 44 million weblog entries spanning
a two-month period as part of the 2009 International Conference on Weblogs and
Social Media. In addition to simply crawling the sites and providing the raw con-
tent, Spinn3r.com also includes metadata associated with each post provided by Web
feed information, such as Atom Syndication and RSS. This information includes things
like the name of the author, the time and date the post was published, and any cate-
gory tags the author used to describe the post. Along with the syndicated metadata,
Spinn3r.com also includes information from several custom applications that attempt
to identify spam, infer the language, and extract the main content of the post.

Following the work of Gordon and Ganesan [2005], who first proposed the task of
identifying stories from text, we treated the problem as a binary classification task. To
develop a gold-standard training corpus, we randomly selected 5,270 English weblog
posts from the Spinn3r.com dataset. Each of these entries was hand labeled by two
annotators according to the definition proposed by Gordon and Ganesan [2005] with
the following clarification.

Discourse that describes a specific series of causally related events in the
past, spanning a period of time of minutes, hours, or days, where the story-
teller or a close associate is among the participants.

Annotating the corpus was done in an iterative process until all the examples were
given a categorization that both annotators could agree upon. The first round of an-
notations began with the two annotators independently labeling each entry using the
updated definition. In cases where a blog entry contained more than one distinct sub-
ject, it was only labeled a positive example if more than 50% of the content adhered
to our definition. We used Cohen’s κ to assess the level of agreement between the
raters, which was found to be 0.68 at this stage. This indicates a relatively high level
of agreement and is in line with the previous experiments by Gordon and Ganesan
[2005]. After this process, 203 of the entries were classified as stories and there were
still 177 disagreements.

2http://nutch.apache.org/
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After completing the first round of annotation, the two annotators discussed in gen-
eral terms, without looking at or referencing actual blog entries, some of the problem-
atic issues that were encountered. In light of this discussion, each of the blog entries
where there were reshuffled and classified again by both annotators. Once complete,
κ was recomputed, which improved to 0.867. The number was disagreement of entries
classified as stories increased to 229 and only 66 disagreements remained.

To resolve the final differences each of the remaining 66 entries were openly dis-
cussed between the annotators until they settled on a final judgment. Of these entries,
there were three prominent reasons for disagreement. The first reason arose due to
an ambiguity in the causal structure. Pure lists of events chronicling a person’s ex-
periences, which occur quite frequently, do not satisfy the given definition of a story
because they lack the necessary causal structure. There is a continuous gradation
between a simple chronology and a full narration, which leads to unpredictable classi-
fication between annotators. The second source of disagreement arose from the intent
of the blog author. Typically the positive story examples that were initially agreed
upon were authored specifically for the purpose of telling a story. However, many of
the conflicting examples were a mixture of two distinct intents. For example, a cooking
recipe might be described by telling the story of the first time the author prepared the
dish. Another common example of this type of disagreement is technical help posts,
for example, a post on an automotive repair site telling a story of how the author’s car
broke down. Although the purpose of these posts is to share (or ask for) knowledge and
not explicitly to tell a story, it was decided to treat them as positive examples nonethe-
less. The third source of disagreement was based on the time scale of the story. A
few entries closely followed our definition, but occurred over several years or even the
entire life of a person. While not strictly adhering to our definition, a judgment was
made on a case-by-case basis.

At the end of this process the gold-standard corpus contained 4,985 entries3 of which
267 were annotated as stories.

3.2. Training and Applying a Story Classification Algorithm

Robust document classification can be a challenging task that requires a deep under-
standing of discourse structure as well as human cognition. For example, identifying
sarcastic remarks not only requires the ability to parse the surface meaning of the
utterance, but also to know enough about people’s belief structures to know that the
utterance is not to be taken literally. Automated text classification is a very active
area of research4 with a wide variety of techniques, including supervised, unsuper-
vised, and semisupervised machine learning methods. For this work we chose a super-
vised machine learning approach, because these methods tend to perform best when
the categories are predefined and there is sufficient training data.

Several of the features investigated in this section use syntactic parse trees labeled
with dependency relations. In order to obtain this information, we developed a high-
performance sentence detection algorithm that was applied to each entry. Our algo-
rithm is a supervised classification-based approach similar to other state-of-the-art
techniques such as mxTerminator [Reynar and Ratnaparkhi 1997] and Splitta [Gillick
2009]. Our approach is specifically designed for Web text and makes use of the HTML
formatting to help inform boundary detection, which improved the F1 performance
by over 10% (precision: 0.943, recall: 0.897, F1: 0.908) compared with the other

3The annotators disregarded any entry from the initial set of 5,270 if it was no longer available on the Web.
4The Bibliography of Automated Text Categorization
(http://liinwww.ira.uka.de/bibliography/Ai/automated.text.categorization.html) maintains over 650 refer-
ences up to 2007.
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approaches. The resulting sentences were then submitted to an off-the-shelf shift-
reduce dependency parser [Sagae and Lavie 2006] that is among the fastest and most
accurate available.

Using the dependency information from the parse tree, a range of features were
constructed to model each document. These included standard lexical bag-of-word (or
n-gram) distributions that could capture the relative frequency of narrative indicators
such as past-tense verbs, first-person pronouns, and temporal words, such as today,
yesterday, week, etc. To capture slightly longer distance relationships in the text, we
used the dependency relations obtained from the syntactic parses to construct depen-
dency triples consisting of a verb and its subjects and objects. For example, the features
I:SUBJ:helped and Jane:OBJ:helped would be extracted from the sentence, “I helped
Jane last weekend”. We also considered a set of features that uses the distribution
of syntactic roles of words across sentences, first introduced by Barzilay and Lapata
[2005] for modeling document coherence.

In order to find the best features for automatically labeling the Spinn3r.com dataset,
we split the gold-standard corpus just described into a development, training, and test
set to assess the performance of our feature sets. The development set consisted of 250
weblog entries, the training set consisted of 3,985, and the test set contained 750. All
engineering and debugging was performed on the training and development sets until
all the feature sets were completely worked out.

Support vector machines and maximum entropy are common classifiers used in
these types of natural language classification applications. Recently, several online al-
gorithms have been proposed that rival the performance of these popular models, but
are extremely efficient to train and apply. In particular, we chose to use a Confidence-
Weighted Linear Classifier [Dredze et al. 2008]. This classifier is extremely efficient to
train (orders of magnitude faster than SVMs), yet has been shown to perform equally
or better in several NLP-related tasks. This classifier also has very few hyperparame-
ters to set, so there is little or no search required for obtaining optimal performance.

We were able to obtain the highest accuracy using a combination of all our features
reaching a precision, recall, and F1-score of 0.591, 0.414, and 0.487. Similar to many
other document classification tasks, trigrams were among the most predictive features
and reached nearly the same levels of accuracy. These results are sufficient for our
work, but in the future we believe there are still several ways to improve the precision
and recall, such as better feature generation [Wiratunga et al. 2005] and selection
[Guyon and Elisseeff 2003]. However, we believe increasing the size of the training
data would provide the most improvement.

Using a model trained on all of the annotated data available, the story identification
process and preprocessing steps described above were applied to the 25-million En-
glish language weblogs present in the Spinn3r.com corpus. 6.03% of the entries were
extracted, resulting in 1,605,480 identified stories with an average length of 26.24
sentences. Of the 1.6-million stories, 80,142 were held out for development purposes
and as independent training data for various type models that will be described in
Section 4. After excluding these stories, 1,525,338 stories were included in the final
dataset used by the system. A final postprocessing step was performed to clean up the
data, such as capitalizing the first word of a sentence, removing repeated characters,
and attempting to balance dangling parentheticals and quotations.

4. RETRIEVAL

Retrieval is the core inferential mechanism in case-based reasoning. It is the process
of identifying a previously solved solution in our case library to enable reasoning about
the current problem. This is generally a two-step process in which cases are first as-
signed indexes that provide an efficient method for search and retrieval, based on a
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desired similarity measure. Second, this index is used during interaction in order to
query the database for candidate cases. In this section, we will describe the retrieval
process for Say Anything.

Determining what constitutes similarity between textual cases has received a good
deal of attention. Ultimately, the choice of similarity measure for a system is depen-
dent on the structure and final representation of the case library. The vector space
model is a common method used by many researchers that requires very little addi-
tional processing and often performs well in practice even when more information is
available [Recio-Garcı́a et al. 2007]. Similarity based on deeper semantic features has
been shown to improve results in some cases [Burke et al. 1997; Mott et al. 2005], but
these approaches can be difficult to scale to large datasets when real-time search is a
requirement. For a detailed taxonomy of similarity metrics used in CBR, we refer the
reader to Cunningham [2009].

In our application, an ideal characterization of these causal and temporal relations
would be discriminative enough to operate on specific events mentioned in the narra-
tive. Discourse parsing at this level is an important problem in the natural language
processing community and a great deal of effort has been made to develop automated
tools. Some of the most promising work has been the development of several anno-
tated corpora, such as the Rhetorical Structure Theory Discourse Treebank [Carlson
et al. 2001], the Penn Discourse Treebank [Miltsakaki et al. 2004] and TimeBank
[Pustejovsky et al. 2003], which use different linguistic theories to try to capture these
types of relationships. Despite the success of automating several complex linguistic
tasks such as syntactic parsing, the performance of automatically extracting discourse
structure is substantially lower than other processes in standard NLP pipelines, such
as part-of-speech tagging and syntactic parsing. This is at least partly due to lower
agreement between annotators, but also because the relationships often occur at a
much greater distance or are not explicitly stated in the text at all. To compound the
problem, only a limited amount of annotated data is available, and it is almost entirely
news genre text. During a preliminary study, we found that a discourse parser trained
on an existing news genre corpus suffered a dramatic loss in accuracy when applied to
weblog data. Given the relatively low performance on the in-domain data, the results
on the out-of-domain Web data were not acceptable for this work.

In the remainder of this section, we will discuss how we map our purely textual story
cases into several structured representations, and how we compute similarity between
these representations. In one sense, a case in our application is a single utterance (i.e.,
a sentence) since that is the unit of discourse that we use to interface with our user.
On the other hand, we are also concerned with the stories that utterances compose
because the discourse relations are what will allow for the appropriate narrative rea-
soning and enable coherent sentences to be projected. In general, we treat sentences
as the basic unit of indexing and retrieval. However, every sentence maintains enough
information to recreate the entire story, which can be used for additional processing.

Our approach relies heavily on information retrieval techniques, so we will begin
with a brief review of the basic concepts in this area. We will then describe a simple
complete story generation algorithm based solely on a standard vector space model.
Finally, we will describe several new structured representations of our narratives and
how we are able to use these representations to improve the reasoning process while
maintaining real-time interaction.

4.1. Information Retrieval Infrastructure

Finding relevant passages of text is the foundation of information retrieval and is a
common method used in textual case-based reasoning. In this section, we provide
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a review of the basic concepts underlying the Terrier Information Retrieval toolkit
[Ounis 2007], which we used in our system. For a more detailed explanation, please
refer to the Terrier documentation or the Information Retrieval textbook by Manning
et al. [2008].

An inverted index is the key data structure that enables fast lookup of a document
that matches a query of keywords or phrases. The index is created by passing over
all the documents in a corpus and collecting crucial bits of information about each
individual word. This information is then used to build a posting list, which is a table
mapping each unique word in the corpus to the set of documents that mention it. To
prevent recalculation each time, the total number of documents is stored separately
in the index. Additionally, the number of times a word is seen in a document and the
number of documents containing a particular word are also stored with each entry.
The entries in the index are sorted alphabetically, allowing the index to be stored on
disk in a format efficient to search.

Many scoring models are available in Terrier, and we selected the default PL2 scor-
ing function because it has been shown to have relatively good overall early precision5.
PL2 is a probabilistic model that estimates the importance of a word in a document
based on how much its relative frequency diverges from its frequency in the collec-
tion as a whole. The intuition behind this model is that high-information words are
relatively unique and are only found in isolated (but related) subsets of the entire col-
lection. On the other hand, low-information words will be found throughout the entire
corpus following some random distribution.

The exact formula for computing the score is derived from the underlying random
distribution chosen. In PL2, a Poisson distribution is used along with several normal-
ization factors useful for this type of task. The first normalization tries to reduce the
influence of rare words by including a balancing risk factor that penalizes according
to the information gain of the term. In addition to smoothing out the weight of rare
words, term frequencies are also renormalized to a standard document length to help
provide consistent scores across different queries. The final equation for computing
term weights for a document is here.6

1
tfn + 1

(
tfn · log2

tfn
λ

+ (λ − tfn)
)

· log2 e +
(

log2(2π · tfn)
2

)
, (1)

where tfn is the normalized term frequency, according to the standard docu-
ment length (sl) and original document length (dl), defined by the formula tfn =
tf · log2

(
1 + c · sl

dl

)
, and tf is the expected frequency of the term given by its total count

in the corpus divided by the total number of documents in the collection.
These concepts can then be put together to find and rank a set of documents from

a corpus given a new query. Generally, this query is preprocessed7 to standardize the
tokens, such as lowercasing, Unicode normalization, and to remove stop-words that
will significantly degrade efficiency with no gain in accuracy. Once the query has been
preprocessed, all of the documents matching a remaining query term are returned
from the posting list and are scored by the formula:

score(d, Q) =
∑
t∈Q

w(t, d) · qtw, (2)

5Early precision is a measure of precision measures that consider the top k documents, where k is small.
6See http://terrier.org/docs/v3.0/dfr description.html for more information.
7It is also important to preprocess the documents in a consistent way when constructing the inverted index.
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where d is the proposed document, and Q is the set of query terms. w(t, d) represents
Eq. (1), and qtw is the relative frequency of the term in the query between itself and
the most frequent term.

4.2. A Deficient-First Retrieval Model

Using only the information retrieval techniques just described above, it is possible
to build a complete end-to-end narrative generation mechanism capable of responding
and continuing the user’s emerging story in real time. We first create an inverted index
of our story corpus where each sentence is treated as a document from the perspective
of the information retrieval toolkit. Along with the standard information stored in
the posting list that allows efficient scoring, we also store some additional information
that will facilitate some of the processing required by our application. This includes
the database ID of the sentence, the ID of the corresponding story, and the ID of the
next valid sentence. Once the index is created, the first generation algorithm is very
simple.

(1) Create a query from the user’s story.
(2) Find the k most similar sentences in our case library using Terrier.
(3) Return the next sentence from each of the corresponding sentences as candidates

for the user to choose from.

In step (1), we simply take the user’s most recently typed sentence as the query to our
database. Following standard IR practices, we use a series of preprocessing steps in
order to improve the quality of the search, such as tokenization, stop-word removal,
and lowercasing. In steps (2) and (3), a maximum of 10 sentences are returned to the
user. In the unlikely event that no similar sentences are found, an error is reported to
the user and they are free to try again.

This simple model was first demonstrated by Swanson and Gordon [2008], who
showed that this approach could achieve surprisingly good results. This work also
showed that using more informative queries (i.e., bigrams) improved the choices pre-
sented to the user and the quality of the overall stories. In Section 6, we will reeval-
uate this model with new data to provide a direct comparison with the other models
described in Sections 5.

This section will take a more detailed look at places where the simple IR model
breaks down and will investigate what is necessary to do a better job. Figure 5 is a
partial story fragment written using Say Anything. It is annotated with several link
types to illustrate the depth of knowledge required for making correct narrative pre-
dictions and to also suggest several simple discourse attributes that are important to
the ultimate success of generating coherent responses.

At a basic level, a story is nothing more than a description of the state of the world,
how these states change over time, and the effect these changes have on the charac-
ters involved. An event calculus that had sufficient breadth to cover all the possible
states of the world and the axioms to describe how the world is transformed from one
state to another would be an ideal computational representation of a story. The world
has infinitely many possible states and axioms, rendering a complete solution virtually
impossible. In practice, the number of actual activities, events, and states people typi-
cally perform are vastly more limited and the complexity can often be abstracted. Even
in this reduced domain, hand-authored formal theories that have sufficient inferential
coverage are unlikely to be developed in the near future. The severe lack of breadth
in this narrower, but extremely large, domain is one of the primary bottlenecks of
most state-of-the-art storytelling systems today. Instead, hope rests on finding a more

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 16, Publication date: September 2012.



Using Textual Case-Based Reasoning to Enable Open-Domain Interactive Storytelling 16:15

Fig. 5. Story graph analysis.

relaxed representation of events that can be automatically learned from raw text, but
still has enough of the expressiveness that a more formal theory would provide.

The finely dotted lines in Figure 5 are used to loosely represent partial internal
event structure (within a sentence) and the external relationships between consec-
utive events across sentences. Within a sentence, the links are used to indicate the
substructure that encompasses the primary meaning of a specific event (i.e., the de-
pendency structure of the head verb, which could be obtained automatically). For ex-
ample, the first sentence is an event describing a property of the current state of the
world, in particular, that of being a cold and blustery day. In a formal representation
this might be expressed as be(day, cold) & be(day, blustery). Fortunately, the depen-
dency tree structure used in the figure conveys nearly the same information, but is
easier to acquire.

The finely dotted links between sentences represent causal, temporal and other re-
lations between (possibly) separate events. For example, the link between the first
and second sentence might specify that the events are contemporaneous, or that one
elaborates on the other by providing more detailed information about the same state of
affairs. Although long distance dependencies among the events in this story exist (and
are not shown in the figure), the local dependencies are enough to show that many
types of relationships between events impose a structural order in which these events
are narrated. For example, it only makes sense to be warm during the winter if you are
somewhere heated, such as in a moving car with the heater turned on. Representing
the events of a discourse in the way depicted in Figure 5 suggests learning a theory of
event structure could be done empirically and several recent papers have explored dif-
ferent approaches for doing so [Bejan 2008; Chambers and Jurafsky 2008; Manshadi
et al. 2008].

With a highly accurate dependency and discourse parser that provides both the
sentence-level and document-level relationships, it would be possible to make accurate
predictions about changes in the world simply by following the appropriate links in
the graph. Although the tools and mechanics are available to extract this information
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automatically, the relationships are complex, requiring deep understanding or much
larger amounts of training data than is available. Unless the utterance was drawn
from a common literary trope or widely shared event, it is unlikely the event/state of
“purchasing me some Mike’s Hard Lime” has ever been described textually before. To
maintain tractability, certain concessions must be made to limit the amount of infor-
mation used, but it comes at the cost of omitting details that are necessary for a correct
interpretation. In the first sentence, for example, it is probably not crucial to the state
of the world that the cold and blustery day is in “Tiny Town.” In the second sentence
it is important that “Winter” had closed its grip on the “land,” since it might otherwise
be confused with gripping a physical object, such as the car door.

Using informative keywords is a simple alternative to using the full dependency
structure to make predictions, as illustrated by the dark solid lines in Figure 5. This
representation is a generalization of the simple IR-based method described in the pre-
vious section. The reason this generation method works so well is because informative
words in one sentence are often very indicative of the high-value words in the follow-
ing sentence. As can be seen in the figure, nearly every sentence has at least one
word that is very predictive of another word in the following sentence. For example,
“cold” is very predictive of “Winter,” “Winter” is very predictive of “froze,” “car” is very
predictive of “drove” and so on. However, there are also dependencies longer than a
single sentence or two, such as “cold” predicting “warming” (or more aptly “warming”
being explained by it being “cold”), or the words “treacherous” and “blustery.” Even
though properly identified keywords tend to be very predictive of each other, they can
also lead to some very ill-informed interpretations. For example, a keyword-based sys-
tem could easily be fooled into relating the “grip” in sentence 2 with the “door” in
sentence 3 (dash-dotted line).

The previous paragraphs have emphasized the importance of event prediction in
generating a topical continuation of the user’s story. There are also other aspects of
the discourse that determines the acceptability of a sentence presented to the user. Not
only must the candidate sentence be of the appropriate topic, but it must also be struc-
turally correct in terms of its linguistic discourse construction. For example, there can
be cases where a sentence is about the right thing, but does not make sense because it
fails other discourse constraints. Two of the most common areas where the simple IR
algorithm fails are in regards to coreference resolution and in verb agreement. Prob-
lems often arise when the main action of a predicted event is exactly what you would
expect, but the agency of the characters involved is inconsistent with the previous as-
pects of the narration. Although the coreference between the entities in Figure 5 can
be fairly easily interpreted, the thin solid lines hint at how much world knowledge
and experience would be needed to correctly determine what noun phrases refer to
the same physical entity. Presumably, “Patrick” and the narrator “I” are distinct indi-
viduals, but are both included in the interpretation of “we.” It is potentially unclear,
without sufficient world knowledge, that the “we” in sentence 5 does not actually refer
to the “large crowd” in sentence 4 (dash-dotted line). “He” in the last sentence could be
introducing a new character, but is likely to be referring to “Patrick” mentioned three
sentences earlier. However, without further processing to identify “Mike’s Hard Lime”
as a single inanimate object, it would also be difficult to rule out that “He” refers to a
person named “Mike.”

4.3. An Improved Model Using Discriminative Reranking

The previous section examined some of the crucial elements in accurately predict-
ing the next narrative event in a sequence and also some of the required elements
needed to ensure the returned sentence preserves the linguistic integrity of the given
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narrative. This section examines several modifications of the simple IR-based model
that are needed in order to leverage the insights from the previous section. The re-
mainder of this section will describe several new representations of the stories that
address some of these issues and the way in which these representations can be used
to improve the narrative generation.

Several of these problems are not unique to story understanding and generation.
For example, the problem of redundancy in language, where one idea can be expressed
synonymously using different words, is a well studied problem. In our case, retrieving
sentences that only match particular lexical items will potentially overlook a large
number of relevant sentences that mean the same thing but are written with different
words. Several methods have been developed in an attempt to address these types
of issues. Latent Semantic Indexing [Deerwester et al. 1990], for example, indexes
a corpus based on a reduced set of latent topics independent of, but derived from,
the lexical words of individual documents. k-nearest neighbors is another approach
[Smeaton and Van Rijsbergen 1981] that allows documents to be indexed by arbitrary
features. Despite the advantages these types of approaches offer, they are not easy to
scale to large datasets making the real-time requirements of the system difficult to
meet.

What is needed is an approach that has nearly the same retrieval latency as the
simple keyword-based approach, but allows a richer set of features to contribute to the
final score (and rank) of a candidate sentence. The solution investigated in this section
is a two-phase algorithm. The first phase is nearly equivalent to the simple IR-based
method described earlier in this section. The output of the first phase is then used as
input to a discriminative reranking algorithm that can score the sentences based on
an arbitrary set of features, which we think are important to the task. Not only does
this model allow for a richer set of discourse and semantic features, but it also allows
us to learn from each user interaction and will improve the candidates returned in
future turns.

At a high level, the new generation model is similar to the first, with only one addi-
tional step.

(1) Generate a query from the user’s story.
(2) Find the n most similar sentences in our case library using Terrier.
(3) Use the new module to rerank these candidates using discourse and semantic fea-

tures.
(4) Return the next sentence from each of the top k corresponding sentences.

Shen and Joshi [2005] survey several ranking and reranking algorithms that have
been proposed for problems where the input is a set of candidate elements and the de-
sired result is an ordered list. Many of these algorithms are directly analogous to lin-
ear classification algorithms, such as the Perceptron and Support Vector Machines. For
example, a maximum margin ranking algorithm finds the set of rankings for the can-
didates that finds the largest margin between consecutive pairs of candidates, which
generally helps performance on unseen data. In contrast, a Perceptron-based ranking
algorithm8 is extremely efficient and can be trained online to update the ranking model
after every interaction with the user. Even though max-margin-based approaches usu-
ally achieve higher accuracy, we chose a Perceptron based-algorithm because we are
interested in the training efficiency and the simple ability to update the model online
after every interaction.

8Our algorithm is primarily based on the one described in Collins and Duffy [2001], but includes a learning
rate and margin.
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Similar to the classification approach used in Section 3, the ranking algorithm is
a supervised approach that uses a feature vector to represent each instance. In clas-
sification, each training instance is labeled with either a +1 or -1, indicating if the
example is a positive member of the desired class or not. In ranking tasks, we are
given a set of candidates, which are instead labeled with their preferred ordering. The
training algorithm uses this ordering to learn a set of parameters that correctly rank
the candidates in the training data. These parameters are then used to rank each
unseen candidate based on the score computed from its extracted features.

The type of features used to assess the quality of a narrative is critical for the ma-
chine learning algorithm to learn a highly discriminative model. In the next section,
we discuss the features we investigated for improving the set of candidates suggested
by the computer.

4.4. Features for Improving Coherence Through Reranking

One of the core challenges in textual case-based reasoning is mapping the unstruc-
tured text to representations that allow as much inferential power as possible for the
domain. In this section, we will discuss several intermediate representations that can
be constructed from automatic syntactically parsed sentences. These representations
try to capture two important aspects for generating coherent sentences. First, we want
to try to find and return the most semantically related sentences to the user’s story.
Second, we want to ensure, regardless of meaning, that the sentence we return is co-
herent in a structural or grammatical sense.

The most basic representations of our stories simply maps the text to a scalar value.
One of these representations is the PL2 retrieval model score (RMS) determined by
Terrier. We do not expect a large improvement from this feature, but the supervised
nature of the learning algorithm might be able to adjust the weights slightly to improve
the performance. Another straightforward representation of our candidates is simply
by the number of words they contain (SenLen) and the difference in sentence length
between consecutive sentences. Despite the simplicity of this feature we do not expect
many large variations in sentence length in a story, which would disrupt the flow of
discourse.

One of the key limitations of the simple model introduced in Section 4.2 is the
reliance on a single sentence for determining the context and similarity of our textual
cases. We would like a representation that takes into account all of the relevant
information in the corresponding narratives. Swanson and Gordon [2009a] previously
tried incorporating context into their generation model by combining two indexes. The
first index modeled each information retrieval document as a sentence. The second
index modeled each document as a story prefix, which includes all the sentences up to
the sentence used in the first index. Their attempt failed at least in part because they
did not have a good way to weight the contribution of each index, leading to many poor
selections. In this work, the reranker provides exactly the mechanism we need to find
a weight that combines the two models in a more principled and effective manner. To
this end, a feature set based on entire story similarity (DocSim) was constructed.

We cannot fully address the problem of linguistic redundancy mentioned earlier,
because we are ultimately restricted by the term-based index. However, we did inves-
tigate a story representation based on Latent Dirichlet Allocation [Blei et al. 2003],
which is a generative language modeling approach that attempts to uncover the latent
topics responsible for generating individual words. It is similar to the HMM coherence
modeling approach described by Barzilay and Lee [2004]. For our work, we extended
the standard LDA model with an additional hidden layer to represent sentence topics.
We used Gibbs sampling to estimate the probabilities for each variable in the model,
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given 100 latent word and sentence topics. The training set consisted of 24,103 docu-
ments from the held-out portion of the story corpus. This set of documents consisted of
475,342 sentences, 3,554,440 words, and a vocabulary size of 141,867. The priors were
chosen using a linear regression from a large set of trials with parameter variations
on a (much smaller) separate set of held out training data.

Three feature sets were extracted from our LDA representation. The first feature
set (LDAZ) uses the maximum likely word topic assignments and creates relative fre-
quency unigram and bigram features for the document based on these assignments.
Similarly, the exact same process was performed, except the unigrams and bigrams
were constructed from the maximum likely sentence topic assignments (LDA�). The
final feature set (LDAE) extracted the per-word entropy9 of each document including
the candidate sentence using LDA as a probabilistic language model.

So far the representations have primarily focused on the lexical semantics between
the user and weblog story. Many of the candidates are not problematic because they
are off topic, but due to invalid syntactic or structural constructions, for example, when
it is difficult or impossible to interpret the candidate sentence within the context of
the user’s entire story. Assuming “Patrick” is a boy in Figure 5, it would be difficult to
interpret the story if the next sentence after

Patrick was having trouble opening his car door that was froze shut.

was

As she drove away I could still hear the laughter of the large crowd.

It is possible to devise a context in which these sentences are acceptable, the shift in
pronoun makes this discourse more challenging to interpret. The next several fea-
ture sets examine different ways to model the quality of a candidate in terms of its
coherence within the user’s story alone.

Discourse coherence is a complex relationship between many entities that can often
span long distances in a text. Marcu [1997] argues that any globally coherent text must
also be locally coherent. Focusing on this easier problem has allowed several tractable
computational models of coherence to be developed.

A natural way of capturing this intuition is asking: how likely is the current sen-
tence given the previous sentence? The LDA representation described before is one
way of answering this question. Soricut and Marcu [2006] proposed another method
using statistical machine translation. In their approach, the words in one sentence are
treated as if they were generated by the words in the previous one (or vice versa). They
show that this is an effective method for reordering a set of scrambled sentences. As
in their work, we use IBM Model 1 [Brown et al. 1993] to derive our features. To train
our model we extracted 2,035,966 pairs of consecutive sentences from the same held-
out story data described earlier. We used the statistical machine translation toolkit
GIZA++ [Och and Ney 2003] to learn the translation probabilities from these sentence
pairs.

Two different feature sets were created using the transition probabilities learned
from our models. The first set of features (IBM(BG)) was created by extracting all pairs
of words across the user’s sentence (source) and the hypothesis candidate sentence
(target), similar to a bigram. The values for these features were then assigned based
on the transition probability of the source and target words. The second feature set
(IBM1) was simply the translation probability of the candidate sentence given the
previous sentence as calculated by IBM model 1.

9Calculated simply as log2 p(x).
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Barzilay and Lapata [2005] introduced a different type of document representation,
which they call an entity grid, that they show is capable of extracting high-value
discourse features from a document. An entity grid (EG) is a matrix representation
of a document, where each column represents a unique word in the document and
each row corresponds to a sentence. The cells of the matrix contain the dependency
relation of the corresponding word (e.g., Subject) in the given sentence. n-gram
style features are then obtained by traversing down each column and assigning a
value to each feature based on its relative frequency in the grid. Each candidate
sentence will have different words and dependency relationships assigned to them,
causing each entity grid to produce a different set of features and relative frequency
distributions.

We also included two additional representations that could be used to estimate the
coherence between sentences. The first (COREF) is a structure similar to an entity
grid in which there are two columns, one each for the subject and object of a sentence.
In this representation, a cell contains the corresponding word matching the column
type and sentence. We also employ a similar structure for measuring the distribution
of verb tenses across sentences (VA), because we expect most verbs to be past tense
and for there to be relatively few shifts in tense between sentences.

4.5. Offline Coherence Evaluation of Discriminative Reranking

In order to train our reranking component we need a set of training instances in which
we already know the ordering of each candidate. Fortunately, the design of our system
provides an easy way to collect all the training data we need without any extra hand
annotation. All we need to do is run the system with the simple information retrieval
model and record the interaction history. Every time a user selects a candidate other
than the highlighted default candidate (which has the highest score), we have a small
training instance in which the order is known. The selected candidate is ranked 1st
and the default candidate is ranked second. Given the way English text is read (left-
to-right and top-to-bottom), it is assumed that the user has at least read the first
sentence. However, due to visual stimuli and other psychological factors, there is no
guarantee the user will read the other sentences in any particular order, if they will
read them at all.

We gathered our training data by collecting about one thousand stories from dozens
of individuals using the simple information retrieval model. During the process of writ-
ing these stories people took a total of 5,310 turns writing sentences with the system.
Of the 5,310 possible turns, the users selected one of the other 9 alternate sentences
4,395 times. On each of these turns we can assume that one of two things happened.
Either the default sentence did not make sense with the story at all (semantically
or syntactically) or the user found one of the other sentences more interesting. Our
reranking algorithm is agnostic to the particular reason and should work equally well
for both.

Following a standard approach, a development, training, and testing dataset were
created from the 4,395 pairs of sentences. The development set was composed of 100
stories and a total of 381 sentence pairs. 3305 sentence pairs from 900 stories were
included in the training set. The remaining 184 stories and 688 selection candidates
were used as test data. Although training the reranker only uses pairs of sentences,
during testing the model is applied to all candidate sentences retrieved in the first
retrieval phase. Each feature set described in Section 4.5 was applied on its own as
well as several other combinations.

The results are summarized in Table I. The table shows the average original rank of
the candidate selected by the user (RANK0) from 0 (best) to 9 (worst). Accompanying
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Table I. Average (± stdev) Ratings by the Authors

Training (CV) Testing
Features # Rank0 Rank1 %1st Rank0 Rank1 %1st

Simple
RMS 1 4.79 4.21 10.7 4.73 4.27 10.8
SenLen 2 4.79 3.77 15.2 4.73 3.71 16.1

Semantic
DocSim 3 4.79 3.88 14.5 4.73 3.76 15.3

Coherence
IBM(BG) 4 4.79 3.82 20.4 4.73 3.96 19.8
IBM1 5 4.79 3.34 16.4 4.73 3.17 15.6
EG 6 4.79 0.36 89.0 4.73 0.33 88.7
COREF 7 4.79 1.50 50.3 4.73 1.40 50.4
VA 8 4.79 3.91 12.1 4.73 3.77 14.8
LDAZ 9 4.79 4.42 10.0 4.73 4.63 8.9
LDA� 10 4.79 4.40 11.3 4.73 4.55 10.2
LDAE 11 4.79 3.02 21.8 4.73 2.85 23.8

Combos
2,3,4,6,7,11 12 4.79 0.40 84.9 4.73 0.36 85.5

this information is the average rank of the selected candidate after it was reranked
using the corresponding feature set (RANK1). The percent of selected candidates that
were reranked to the top of the collection is also reported (%1st). The results on the
left-hand side of the table report results from a 10-fold cross-validation on the training
data, with an average of 330.5 tenfold test examples in each fold. The values on the
right hand side indicate the performance on the testing data, which contained 688
examples.

It is surprising how well the simple sentence length heuristic works, improving the
position of the selected candidate by almost a full rank. Similarly, in light of Swanson
and Gordon’s [2008] previous attempt, it is reassuring to see that the similarity of the
entire document can be used to improve the ranking of a candidate sentence. Entity-
grids (EG) are clearly the best performing feature set. It is astounding that they are
almost always able to rank the selected candidate sentence at the top of the list. The
coreference features are also considerably better than almost every other feature set.
In general, the LDA feature sets perform relatively well, however, we did notice a high
degree of variability depending on the priors and number of Gibbs sampling iterations
used for convergence.

Even though entity grids are the most predictive feature for these offline experi-
ments, it is not 100% clear that using these features in isolation will translate into
the most entertaining and usable sentences for the users during live testing (i.e., story
writing). For example, the simple IR method may be doing such a poor job that only
one reasonable sentence is present among the candidates, and in this case entity-grid
features correlate well with this type of sentence. Once the set of candidates is in-
creased beyond 10 in the retrieval phase, more plausible candidate sentences might
be found. While entity grids would probably rank them all high, they might lack the
fine-grained lexical details that could differentiate them relative to each other. The
only true way to find out is to have users write stories with each of the models. This
is not the most practical approach in terms of time and resources. For live testing we
decided to use feature set 12, because of its excellent performance (0.37 Rank1 on the
test set), it combines several disparate types of features, and it is extremely efficient
to apply (relative to the other feature combinations).
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5. ADAPTATION
Knowledge of human beliefs, activities, and expectations is vital to produce interac-
tive stories that people will find meaningful. Regardless of the size of our corpus we
will eventually reach a point of diminishing returns. Linguists often refer to the infi-
nite productivity of language [Lyons 1977], which refers to a human’s ability to speak
and understand an infinite number of possible utterances. One of the consequences
of this productivity is that even two relatively short sentences expressing a similar
thought have an incredibly low chance of being communicated using the exact same
surface form. This poses a daunting challenge for text-based reasoning systems such
as ours.

One way of dealing with this problem is by adapting previously uttered sentences to
match the desired meaning of the current discourse, for example, changing the proper
name in a sentence whose meaning would be the same otherwise. Adaptation is a fun-
damental concern of textual case-based reasoning, but it has received the least amount
of attention. There has been some recent work in using introspection to adapt the sim-
ilarity metric [Jayanthi et al. 2010], however, Lamontagne and Lapalme [2004] is the
only work we are aware of that has an actual textual revision phase. Their system is an
automated email response program for high-volume support centers. Given an email
request, they try to identify passages in previous responses that may be relevant to
the current inquiry using a text classification algorithm. Certain portions of these re-
sponses, primarily named entities, were identified as potential substitution candidates
using an information extraction toolkit. A set of rules is then used to decide whether
the entity should be replaced by an alternative.

The solution in our framework is to start with a large but finite collection of ut-
terances and define a set of rules that can modify them to fit the user’s story more
closely. This is a powerful mechanism that could potentially be used to handle deep
similarities between texts. For example, consider the following two related stories.
First, a story about a young boy who overcomes all odds to start on a major league
baseball team by neverending practice and determination. Second, one about a young
woman who overcomes many obstacles to become a successful corporate executive by
achieving high grades in school and enduring long working hours at her company. At
a certain level these stories are significantly different. One focuses on a man’s tri-
umphs in sports, while the other is about a woman’s corporate success in her pro-
fessional career. Neither the characters nor their occupations seem to capture the
essence of either one of these stories. In both cases, the purpose of these stories is
to convey the fundamental proposition that working hard is a critical ingredient to
success.

At a surface level these two stories are not particularly good proxies for one an-
other, at least in terms of how they would operate in our narrative generation sys-
tem. In many cases there would probably be sufficient lexical overlap to rank at least
some of the corresponding sentences highly. In many other cases, the entities in the
proposed sentences would contain erroneous domain-specific references. For example,
both would probably mention phrases like “work hard” and “long hours,” but also con-
tain domain-specific words such as “baseball,” “games,” or “executive.” It would be an
incredible benefit, drastically reducing the necessary size of the case library, if the rel-
evant aspects of these stories could be extracted and the domain-specific aspects of one
could be altered to reflect the domain of the other. For example, one could imagine
a mapping between athletic training facilities in the sports domain to an academic
institution in the other, or from a baseball stadium to corporate headquarters.

Although this example illustrates the ultimate goal of an effective adaptation sys-
tem, the types of rules necessary for this translation are complex and not practical at
this time. Instead, we focus on adaptation rules that target surface-level aspects of a

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 16, Publication date: September 2012.



Using Textual Case-Based Reasoning to Enable Open-Domain Interactive Storytelling 16:23

Fig. 6. Step (1) and (2): Potential replacements along with their relative frequency.

sentence, such as pronoun and verb agreement, that we know are problematic but are
easier to start with.

The sentence adaptation algorithm is a five step process. Step (1) begins by iden-
tifying all of the pronouns and proper names used in the subject or object position in
the parse tree. For each identified position a set of valid replacement words is created
using a replacement table for each type of word that could appear. The first set of
tables correspond to five different classes of pronouns: subjective (e.g., I, he, she, we),
objective (e.g., me, him, her, us), reflexive (e.g., myself, himself, herself, ourselves),
possessive (e.g., mine, his, hers, ours) and possessive determiners (e.g., my, his, her,
our). If the target word is contained within one of these tables, then this set is used
for the candidate replacements. Proper names are handled slightly differently. Simi-
lar to before, they can also be replaced from a set of pronouns, based on whether the
noun functioned as the subject or object. In addition they can also be replaced by other
proper names. This is accomplished by maintaining an extra data structure that keeps
track of all previous mentions of proper names in the story (i.e., the cast of characters).

Step (2) of the process involves generating a new sentence for a subset of every
possible combination of the replacements in each target word set. Unfortunately, the
number of combinations for sentences with more than a few target replacement can-
didates becomes prohibitively large. To prevent the set of candidates from exploding,
a simple heuristic was used to limit the total number of possibilities. For any given
target word, a maximum of two alternatives were selected as possible replacements.
These alternatives were chosen by sampling the entire set of valid possibilities based
on each word’s relative frequency of occurrence in the entire story. For example, the
valid replacements for the pronoun “he” are the subjective pronouns I, we, you, she,
one and they. So, if “I” had been seen 4 times, “she” 2 times and “you” 1 time then the
relative frequency of each term would be I/0.38, we/0.07, you/0.14, she/0.21, one/0.07
and they/0.07 (add-one smoothing is used to prevent 0s and allow a small chance for
any pronoun to be selected). These first steps, (1) and (2), are illustrated in Figure 6.

It is hoped that the characters participating in the events of one of these alternative
sentences (or the original) will more closely adhere to the narrative intentions implied
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Fig. 7. Step 3: Illustration of how verb agreement is fixed using a dictionary.

by the user’s story. However, small changes to the subject of a verb can lead to incor-
rect grammatical agreement between the two. For example, when the subject of the
sentence.

I have more than one lemonade.

is changed to “He,” then the new sentence is no longer gramatically correct. Step (3)
combats this issue with a special dictionary [Courtois and Silberztein 1989] that pro-
vides, where applicable, the number, person, gender, and tense for every lexical entry
in the dictionary. The entry containing all lexical variations of any verb whose subject
has been adapted is looked up in the dictionary using the number and person informa-
tion available from the unaltered sentence. The lexical variation corresponding to this
entry that matches the number and person information of the new adapted subject is
then used to replace the previously ungrammatical verb. Figure 7 gives an example of
this process. “I” is the original subject of the verb “intend,” but the subject is changed
to the pronoun “he,” which renders the verb agreement incorrect. A specific entry for
“intend” is found in the dictionary by matching the lexical features of the subject (i.e.,
first person and singular) with the lexical form of the verb as seen in the original
sentence. This entry contains many inflected lexical forms depending on the subject’s
person and number as well as the verb’s tense. The new lexical form is determined by
using the new person and number (i.e., 3rd person and singular), while maintaining
the same tense. The two relevant inflections are shown in the dictionary entry, but the
others have been excluded due to space constraints.

Changing the subject and object can also cause more unintended side effects than
just incompatible verb agreement. Altering a noun in the sentence can also disrupt
the coreference interpretation within the candidate sentence. For example, consider
the following sentence:

Jane1 purchased me2 some lemonade and I2 intended to give her1 one of
mine2.

Given only the information present in this sentence, we would expect the coreference
between the pronouns to be assigned according to the given indexes. If we change
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Fig. 8. Step (4): Illustration of how the coreference between pronouns is resolved.

“Jane” to “Patrick” to better fit our story from Section 4, then the interpretation
changes considerably. Step (4) attempts to preserve the coreference interpretation
of the unaltered sentence with the adapted one. To do this we used a coreference
resolution algorithm, similar to the one proposed by Hobbs [1976]. Pronouns in the
unaltered sentence are resolved in the following way. Starting with pronouns lowest
in the parse, the tree is traversed to the closest node in the upper-left portion of the
tree that matches the number and gender of the originating pronoun. The gender of
proper names was estimated using frequency data collected as part of the 1990 United
States census10. Using a procedure similar to Step (1), these coreference assignments
are used in the adapted sentence to change the pronouns of nodes lower in the tree to
correspond with their assigned coreferent higher in the tree if necessary. Once again,
this may cause problems with the verb agreement in the sentence and is addressed in
the same way as Step (3). A simplified illustration of the process is shown in Figure 8.

The 4 steps outlined provide an adaptation mechanism that addresses some of the
most prominent concerns discussed in the previous section. However, there are still a
few problems that this approach introduces. First, even with the sampling restrictions
in Step (2), the total number of new candidates can prohibit them from being processed
in real time. Second, entity grids, the most important feature set during reranking, are
not lexicalized. In other words, the changes made to the adapted sentences will have
only a small impact on the overall score given by the reranker. This means that the
adapted sentences of an unaltered sentence with a high reranking score will also have
a high score. In effect, this could end up populating the list of candidates returned to
the user with only a single sentence and its minor variations. To avoid these issues,
a Step (5) is included for each candidate sentence. In this step all of the adaptation
candidates for the sentences are processed by the reranker. The top two of these al-
ternatives, plus the original unaltered sentence, are pushed onto a global set of candi-
dates. After all of the candidates from phase 1 (basic retrieval) have been processed,

10http://www.census.gov/genealogy/names/
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Table II. Average (+/− stdev) Ratings by the Authors

Model #Stories Coherence Believability Usability Entertainment
Unigram 601 3.46 ± 1.11 3.53 ± 1.16 3.08 ± 1.19 3.99 ± 1.05
Bigram 567 3.63 ± 1.11 3.59 ± 1.20 3.27 ± 1.19 4.14 ± 1.02
Reranking 443 3.51 ± 1.15 3.62 ± 1.20 3.85 ± 1.05 4.38 ± 0.83
Adaptation 429 3.46 ± 1.07 3.55 ± 1.19 3.90 ± 1.02 4.33 ± 0.85

the stack of global candidates are reranked, and finally the top 10 are sent to the user
as before.

6. EVALUATION

To evaluate the different components of our system we performed a large user study.
We used Amazon’s Mechanical Turk to crowd-source the authoring of our stories and to
collect numerous subjective ratings for each story on several criteria. It has been shown
that high-quality annotation and data can be obtain from Mechanical Turk [Callison
2009]. Several steps were taken to help minimize noisy data. First, we placed an
8-sentence (4-turn) minimum requirement on the stories to force some development
in the narratives. Second, we required the workers to be located in the United States
and to have a minimum task acceptance rate of 97%. Third, every story was manually
verified to remove obvious spam, and, finally, several objective verification questions
were asked along with our subjective ratings to help identify fraudulent work.

Using this methodology, we were able to collect a total of 2,040 stories and 15,384
independent (approximately 8 per story) ratings. For the simple information retrieval
model, we collected 601 stories in which the user’s most recent sentence was converted
into a unigram query. We also collected 567 stories for this simple model that also
included bigram keywords in the query. After collecting these stories, we learned a
reranking model as described in Section 4 and collected 443 stories that only used the
reranker and 429 stories that used both the reranking and adaptation components.

As mention in Section 2, after completing a story, the authors were asked to subjec-
tively rate their stories and experience on several criteria.

(1) Does the story make sense? (Coherence)
(2) Is the story believable? (Believability)
(3) Did you have fun writing the story? (Entertainment)
(4) How easy was it to write? (Usability)

The independent raters were also asked a similar set of questions except for ques-
tion 4). The remainder of this section will present the results of the surveys for the
authors and independent raters.

6.1. Author Evaluations

Table II presents the results of the authors’ subjective ratings on their own stories
for the four categories Coherence, Believability, Usability and Entertainment. As in
Swanson and Gordon [2009a], using bigram queries provides an overall improvement
over unigram queries and is significant (p < 0.05) for all categories except Believabil-
ity. Surprisingly, the authors did not believe their stories were more coherent when us-
ing the reranking model, despite its excellent performance in the offline experiments.
In fact, there was even a slight decrease from the bigram-only model. Although they
rated these stories slightly more believable, the result was not dramatic nor statisti-
cally significant. However, there was a large and statistically significant jump in both
usability and in entertainment. This result is perplexing. Presumably, if the system is
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Table III. Story Authoring Statistics (average value +/− stdev)

Model Max Len Avg Len % Top MRR Time(s) Time(s)/Sen
Unigram 27 9.41 ± 2.31 0.08 ± 0.09 0.36 ± 0.30 460.5 ± 411.8 44.9 ± 32.0
Bigram 25 9.50 ± 2.51 0.09 ± 0.10 0.34 ± 0.29 492.4 ± 463.7 47.9 ± 35.6
Reranking 27 9.54 ± 2.68 0.07 ± 0.08 0.28 ± 0.07 399.2 ± 294.3 40.1 ± 22.8
Adaptation 36 9.63 ± 3.07 0.04 ± 0.04 0.23 ± 0.04 406.1 ± 286.5 39.3 ± 20.6

easier and more fun to use, it is because the responses are more coherent and appro-
priate. So, some other explanation must be the reason for this discrepancy.

One possibility is that the system is in fact performing better locally. Each sentence
returned is much more appropriate given the local context (i.e., the previous sentence
only). However, the candidate sentence still fails to be cohesive within the entire story.
Another possibility is that there is an inverse (or no) correlation between coherence
and entertainment. Sentences could be entertaining because they are incoherent in a
way similar to Mad Libs, which stresses the ability to interpret unexpected and often
incongruous phrases. In our previous work [Swanson and Gordon 2009b], we found
that randomly returning sentences to users produced less entertaining and less coher-
ent stories than the information retrieval models used in that system. Psychological
factors may also be another possibility for this dissonance. It seems reasonable to be-
lieve that many people enter into their stories with a predefined vision of how it should
proceed. So, even though the model may be returning sentences that do make (better)
sense for the story that is actually there, they do not conform to the story the author
imagines should be there. In general there was no statistically significant difference
between the reranking and adaptation models.

In addition to the strictly subjective ratings shown in Table II, several more objec-
tive measures were also tracked in Table III. One indirect way to measure how well
our system is doing is by counting how many turns the user is taking. Presumably, the
number of turns a user takes is a reflection of how engaged they are with the system.
We looked at both the maximum number of turns taken with each model as well as the
average number of turns. In general, the average number of turns increases as we add
functionality to Say Anything, but the differences are quite small and not statistically
significant. In all, the cases in which the users were writing more sentences (> 9) than
they were required to write were written in order to complete the task.

Similar to the offline reranking experiments in Section 4, we looked at how often the
user selected the top-ranked candidate (% Top) and the mean reciprocal rank (MRR),
which is the average of the reciprocal ranks of the selected candidate. It is surpris-
ing that the MRR for the simple information retrieval methods is greater than for
the reranking and adaptation models. We believe that the same reasons given for the
strange coherence results are also a reasonable explanation for why the ranks are
different than expected.

Finally, we also kept track of how long the users were taking to write their stories.
The total amount of time in seconds is reported under Time(s) and also the average
number of seconds per sentence (Time(s)/Sen) in order to normalize by story length. We
initially believed that users would spend more time with the system if it was producing
better candidates since they would be able to continue their stories longer. However,
as the model complexity increases, the amount of time spent decreases. In combina-
tion with the higher usability and entertainment ratings, we now believe the reduced
amount of time is more evidence that the quality of the candidates is improving despite
the lower coherence ratings. What we suspect is that the user is having an easier time
finding a sentence that they like and so it takes them less time in general to complete
each turn and, therefore, for the story overall.
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Table IV. Average (+/− stdev) Ratings by Independent Readers

Model Coherence (#Ratings) Believability (#Ratings) Entertainment (#Ratings)
Human 3.65 ± 1.24 (0878) 3.70 ± 1.26 (0867) 2.96 ± 1.26 (0867)
Unigram 3.29 ± 1.33 (3901) 3.30 ± 1.32 (3901) 2.84 ± 1.26 (3895)
Bigram 3.42 ± 1.27 (3505) 3.41 ± 1.28 (3509) 2.91 ± 1.23 (3506)
Reranking 3.55 ± 1.24 (3067) 3.51 ± 1.26 (3064) 2.98 ± 1.24 (3058)
Adaptation 3.51 ± 1.22 (3048) 3.48 ± 1.27 (3049) 2.94 ± 1.22 (3042)

6.2. Story Rating Results

The results in the previous section show that certain aspects of the new narrative gen-
eration algorithm improve the user’s experience with the system as indicated by their
subjective ratings and the reduced amount of time needed to write a story without
a significant reduction in coherence. The coherence and believability ratings provide
a less clear picture of the overall quality of the stories generated with the reranking
model. The lack of improvement in these ratings could simply reflect that these sto-
ries are not any better (or more coherent) than before. On the other hand, several
factors discussed in the previous section could also be at play. This section examines
the results of independent ratings by users and will shed some light on which of these
scenarios is more likely.

Table IV compares the average ratings from the independent pool of raters for all
the models. We see that the reranking and adaptation models are rated significantly
higher in coherence and believability than the unigram and bigram models11 despite
having the poorest ratings among the authors. These results seem to offer a different
explanation from what was indicated by the authors evaluation of their own composi-
tions. When other readers judge the quality of the narratives written with the rerank-
ing models, they are rated significantly higher than the information retrieval methods
alone. In fact, the stories written with the reranking models are rated almost as highly
on coherence as human-authored stories from our weblog corpus and are even rated
more enjoyable to read. These results appear to lend credence to the idea that people
are not good at objectively assessing their own stories and providing impartial ratings
for coherence judgments. Even though the authors themselves did not rate their own
stories higher on coherence, other people clearly thought they were easier and more
coherent to read.

The adaptation model was not able to improve over the reranker alone and is even
rated slightly below it, although the differences are not statistically significant. The
reranking model is successful because it is able to push incoherent sentences out of
the list of sentences returned to the user while bringing more coherent sentences to
the top. Many of the incoherent sentences that the reranker removes from the list are
potentially more appropriate choices for the user except for minor problems with the
sentence, such as an incompatible pronoun. The primary motivation of the adaptation
component was to try to leverage the best of both worlds. We would like the reranker to
find better choices based on a richer set of features than the simple word-based index
but still be able to keep the semantically relevant choices by fixing their inconsisten-
cies. In a best-case scenario this should produce a candidate list filled with extremely
relevant and coherent sentences. It appears the adaptation component provided the
opposite effect. For reasons stated at the end of Section 5, a highly ranked unmodified
candidate sentence will probably produce alternative adapted sentences that are also
highly ranked. If one sentence makes it into the set returned to the user, the other
two variations will also. Even though one of these alternatives is more likely to be
coherent with the user’s story, it also removes two other distinct options the user can

11 p < 0.05

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 3, Article 16, Publication date: September 2012.



Using Textual Case-Based Reasoning to Enable Open-Domain Interactive Storytelling 16:29

choose from. It then becomes a question of whether it is better to present the user with
a narrow, but more likely correct, selection of relevant candidates or a broader range
of possibly incoherent candidates. These results suggest that without a more sophis-
ticated method for adapting the candidate sentences, it is more effective to provide a
broader range of sentences using only the reranker.

7. RELATED WORK

TALE-SPIN [Meehan 1976] is generally considered to be the first modern attempt at
an automated story generation system, although some template-based systems had
come before it. The major insight in this work was a change in representation. Mee-
han used a formal language to model the story elements, a set of rules for how these
elements interacted, and an AI reasoning mechanism to determine how to apply the
rules in a given context. To generate a story, one input a set of initial conditions and
the system would translate the output of the reasoning engine into simple English sen-
tences. Perhaps without even realizing it, Meehan had separated the story generation
process along the lines of the fabula and the sujet. The prose of TALE-SPIN and other
early narrative generation systems could hardly be called artistic by a traditional nar-
rative analysis. Since that time, there has been a substantial improvement in both the
prose, for example StoryBook [Callaway and Lester 2002], and the sophistication in
which narrative devices are employed to express literary effects, such as suspense in
the work of Cheong and Young [2008].

Gervás [2009] surveys several of the most significant advances in automatic story
generation beginning with Klein’s Novel Writer [1973] and ending with Montfort’s
Narrator [2007]. These systems use several different mechanisms for generation, in-
cluding template-based, case-based, and planning. However, all of the systems use
hard-coded domain knowledge leading to the authoring and scalability problems dis-
cussed earlier in the article.

While interactive narrative shares many of the same properties as the narrative
generation systems, significant differences arise because of the temporal and spatial
dynamics. Some of the earliest examples of interactive storytelling are the text ad-
venture games Zork [Anderson et al. 1979] and its predecessor Adventure [Crowther
and Woods 1977]. There is little to no artificial intelligence to these systems, they, too,
model the world using hard-coded domain knowledge using a formal representation.
Part of the environment is made available to the user through textual descriptions,
such as “You are standing in a forest with a large rock in front of you.” Using textual
commands, such as “MOVE ROCK”, one could manipulate the environment in order
to progress through the story world and eventually solve the puzzle. Although these
systems produce textual descriptions from the underlying domain model, similar to
TALE-SPIN, the “story” in these cases is basically a literal transcription of the plot
elements uncovered by the user as they discover them. Although most text adventure
games still follow this basic model, Montfort’s narrator in his system nn [Montfort
2007] is a notable exception that tries to tell the story of the game so far using narra-
tive devices such as point-of-view and flashbacks.

In the overall landscape of digital media, most graphics-based interactive story-
telling systems and games are still not much more than pictorial versions of their
text-based predecessors. The difficulty in moving beyond the fabula in interactive sto-
rytelling is a well-know problem in the community and has been coined the “narrative
paradox” by Aylett [1999]. That is, once a user is given agency in the process, an ap-
parent conflict between freedom and directed narrative goals arises.

Within the interactive storytelling community there has been a concerted effort to
overcome these opposing forces. There are too many to describe in detail, but we will
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highlight a few representatives that will make it clear where our system falls in the
landscape and how our architecture is a departure from the norm. For a more compre-
hensive review of other interactive storytelling systems, we recommend Arinbjarnar
et al. [2009].

Façade [Mateas and Stern 2003] is generally considered one of the first complete
media experiences that successfully balanced user freedom, while maintaining a di-
rected and emotionally expressive narrative. In Façade, beats are the building blocks
of a story. A beat is a short atomic sequence of actions that must be performed together.
There is no fixed order in which the beats must occur, but each beat is annotated with
a set of preconditions that determine the context in which it is available to the story
and a set of effects, which modify the world state when they are executed. A global
drama manager monitors the entire state of the experience and tries to pick one of the
available beats that will create the best story.

Although Façade was a major step forward, it suffers at least two major drawbacks.
First, it presented a natural language interface to the user in order to give the player
as much freedom as possible to interact with the environment. Despite this apparent
virtue, mapping natural language to a pre-authored domain model is an extremely
challenging task, and this often led to system misinterpretations. These errors in turn
usually caused the players to feel less in control. Second, it took three man-years to
author Façade, which produced a 20–25 minute playable experience that has enough
variability to be replayed about 3–5 times. Although this amount of effort may be
within the same scope of other large media productions, such as films, it highlights the
difficulty required to create such an experience. Furthermore, it is unclear how this
type of approach scales to larger domains. Would a 40–50 minute experience take 6
man-years to author? What about one with twice the number of non-player charac-
ters? A case could be made that economies of scale, reusable components, and famil-
iarity with the system could lead to a decrease in authoring time. However, practical
experience in similar authoring environments seems to indicate that a larger web of
preconditions and effects dramatically increases the complexity of authoring coherent
sequences and the debugging of unexpected outcomes.

Many other architectures for interactive storytelling have also been proposed, that
differ significantly in the way they model user interaction and story generation. Clas-
sical planning-based approaches, such as Mimesis [Riedl et al. 2008], have become pop-
ular because of their ability to model complex causal and temporal structures. Search-
based drama management is an alternative method for real-time narrative planning
that heuristically explores and evaluates a bounded depth in the search space. This
method was first proposed by Weyhrauch [1997] and has been further explored by
Cavazza et al. [2002] and Nelson and Mateas [2005]. Probabilistic and decision-
theoretic approaches [Mott and Lester 2006] are also alluring because of their ability
to model uncertainty and incomplete information. There are also several case-based in-
teractive storytelling systems that have been developed, most notably MEXICA [Pérez
Y Pérez 1999], OPIATE [Fairclough 2004], work by Gervás et al. [2005], Sharma et al.
[2007], and Hajarnis et al. [2011].

Although these approaches have considerable differences, there is one common
theme among nearly all of them. In each case, a domain model must be authored by
hand in the formal representation of choice. This is done with beats in Façade, STRIPS-
like operators in planning approaches, Bayesian networks (or other graph structures)
in probabilistic approaches, and other hybrid formats used in systems, such as MEX-
ICA. Creating new story environments in these systems requires an expert in the par-
ticular knowledge representation format and the same pitfalls discussed in relation
to Façade are equally concerning. Requiring expert domain engineers also poses an-
other problem. It can be unclear if the success of a system is due to a superior system
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architecture or if it is due to the expertise of the knowledge engineer in formulating a
well designed domain.

8. CONCLUSIONS

Interactive narrative is a genre of storytelling that allows active participation by the
reader to affect the development and outcome of the story. It is a highly compelling
medium because of the fundamental connection between stories and human nature.
However, this also makes it extraordinarily challenging because of the breadth and
depth of common sense knowledge required to understand and produce compelling
event sequences when a participant is allowed to change the narrative world around
them.

Section 7 discussed several typical ways that researchers have attempted to tackle
these problems. These approaches usually model the major events (i.e., scenes or beats)
of the narrative in a formal language, such as planning operators. Stories are generally
produced from these representations using some kind of planning mechanism, for ex-
ample, a partial-order causal-link planner [Riedl and Young 2010] or heuristic search
in task networks [Cavazza et al. 2002]. As the user changes the state of the world
through his or her interaction, the planning algorithm can reformulate the goals of
the story and adjust its direction to suit the events as they have actually unfolded.

This methodology is reasonable, intuitive, and it has been shown to be effective for
many limited domain use cases. However, a major component of its operation and
success remains a persistent roadblock for common sense reasoning about real-world
stories. Where does the content come from and how do we know the causal and tempo-
ral structure of the scenes? In traditional systems this type of knowledge acquisition
is done explicitly by the authors. However, the breadth and depth of common sense
knowledge required to reason about stories is composed of vast amounts of seemingly
obvious and boring pieces of information about people’s everyday lives and experiences.
We as humans acquire so much of this knowledge subconsciously through our own ex-
periences that we do not even realize that we know it or that it is even important. Even
with breakthroughs in intelligent user interfaces to aid in the authoring of interactive
stories [Cheong et al. 2008; Mehta et al. 2009; Pizzi and Cavazza 2008], it remains an
open question whether the necessary knowledge can be acquired by hand.

Standard interactive storytelling systems have primarily focused on detailed mod-
els of narrative tropes, but there is not a clear vision of how these approaches can
scale to worlds that have the richness of human experience. Our work offers an alter-
native approach for the large-scale knowledge acquisition required to give the user a
high degree of freedom and depth in an interactive experience. Instead of relying on
a small number of domain-specific axioms, we leverage the experiences of millions of
people to solve this authoring problem. From a technical perspective, our approach
is a departure from most other interactive storytelling system. Despite the seem-
ingly stark differences, the ultimate goal of the systems is the same. We are striving
to provide a virtual story world that allows the user to manipulate the environ-
ment, while maintaining a coherent narrative structure for the entire experience. In
the future we hope the benefits of goal-oriented long-term planning can be merged
with our large-scale data-driven approach to achieve more focused and structured
experiences.
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Reasoning, P. Funk and P. A. González Calero Eds., Springer, Berlin, 242–256.

LYONS, J. 1977. Semantics: Vol. 1 Rev. Cambridge University Press.
MAJEWSKI, J. 2003. Theorising Video Game Narrative. Master of Film and Television. Bond University,

Australia.
MANGIONE, J. 1996. The Dream and the Deal: The Federal Writers’ Project, 1935–1943. Syracuse University

Press.
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