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Abstract—Automatic acoustic scene classification of real life,
complex and unstructured acoustic scenes is a challenging task
as the number of acoustic sources present in the audio stream
are unknown and overlapping in time. In this work, we present
a novel approach to classification such unstructured acoustic
scenes. Motivated by the bottom-up attention model of the human
auditory system, salient events of an audio clip are extracted in an
unsupervised manner and presented to the classification system.
Similar to latent semantic indexing of text documents, the classi-
fication system uses unit-document frequency measure to index
the clip in a continuous, latent space. This allows for developing
a completely class-independent approach to audio classification.
Our results on the BBC sound effects library indicates that
using the saliency-driven attention selection approach presented
in this paper, 17.5% relative improvement can be obtained in
frame-based classification and 25% relative improvement can be
obtained using the latent audio indexing approach.

I. INTRODUCTION

Automatic categorization of complex, unstructured 1 acous-
tic scenes is a difficult task as the appropriate label eventually
associated with the audio clip of an unknown scene depends
on the key acoustic event present in it. For example, an
audio clip labeled crash may have human conversation and/or
other related sources in it but the highlight “crash” of the
vehicle is used to categorize the acoustic scene. When any
(unknown) number of acoustic sources can be present in a clip
but only one or a handful of them are relevant, the approach
adopted by conventional audio classification systems would
entail classifying every source in the scene and then implement
an application specific post processing. This approach has
two major drawbacks that can be immediately identified. (1)
A large amount of computational resources are committed
to processing feature-level information that is subsequently
marginalized and (2) it is not possible to train for every
possible acoustic source a priori. Motivated by this, in this
paper, we present a novel approach that addresses the two
issues by combining models of human attention-driven pro-
cessing with class-independent representation of audio clips.
We test our system on the BBC sound effects library [1]
that consists of a large variety of audio clips belonging to

1where an acoustic scene may consist of any number of unknown sources
which may also overlap in time.

MMSP’09, October 5-7, 2009, Rio de Janeiro, Brazil.
978-1-4244-4464-9/09/$25.00 c©2009 IEEE.

acoustic scene categories such as household, military, office
etcetera. This data set is particularly challenging for machine-
based classification task because almost all the clips contains
multiple, unknown number of unique acoustic sources present
in it.

Axiomatically, it is known that in comparison to machine-
based systems, humans can precisely process and interpret
complex scenes rapidly despite the tremendous amount of
stimuli impinging our senses. One of the key enablers of
this capability is a neural mechanism, called “attention”, that
selects a subset of available sensory information before fully
processing all stimuli at once [2], [3]. Attention can be thought
as a spotlight that is directed towards a target of interest in
a scene to enhance the processing in the related area while
ignoring the stimuli that fall outside of the spotlighted area
[4]. In a scene, some stimuli are inherently salient within the
context, and they attract attention. For example, a red flower
among yellow flowers or the sound of a siren in a street
immediately and unconsciously attracts attention. Saliency-
driven attention is a rapid, bottom-up, task-independent pro-
cess, and it detects the objects that perceptually pop-out of
a scene by significantly differing from their neighbors [2].
The second form of attention is a top-down task-dependent
process which uses prior knowledge and learned past expertise
to focus attention on the target locations in a scene to enhance
information processing [2], [3]. For example in vision, it was
shown that gaze patterns depend on the task performed while
viewing the same scene [5]. The gaze of the observer fell on
faces when estimating the peoples age, but fell on clothing
when estimating the peoples material conditions. Similarly in
audition, it is the selective attention that allows a listener to
extract a particular persons speech in the presence of others
(the cocktail party phenomenon) by focusing on a variety of
acoustic cues such as pitch, timbre, spatial location, etc. [3].

As stated previously, one caveat of the conventional audio
content processing approaches is that they process the entire
signal or acoustical scene fully and equally in details (i.e.
recognizing each and every source/event in an acoustic scene).
This issue can be alleviated by taking advantage of a selective
attention mechanism similar to what humans perform. Thus,
here we propose a novel method that emulates human audi-
tory attention for acoustic scene recognition. The algorithm
first detects the salient audio events in a cluttered auditory
scene in an unsupervised manner, and then processes only
the selected events with a previously learned representation



for acoustic scene recognition. It is important to note that
saliency (and its definition) does not depend on any individual
acoustic source; hence we are interested in class-independent
representation approach for a classification framework. For
class-independent representation of audio clips, we use latent
perceptual indexing (LPI) [6], [7], which seeks a single vector
representation of an audio clip within a collection by using
unit-document frequency measures. The main advantage of
this approach is that it allows for comparison of arbitrary audio
clips through vector similarity measure that also embodies
both semantic and perceptual similarities [7]. By combining
this with saliency-based attention model, called latent indexing
using saliency (LISA), the work presented here allows us to
process only a subset of meaningful information in a complex
acoustic scene. This has the potential to improve classification
accuracy of unstructured audio clips and additionally, reduce
the computational bandwidth2 required to process audio con-
tent.

The paper is organized as follows: first a comprehensive dis-
cussion of related work in audio content processing is present
in Section II, then auditory saliency map model is explained in
Section III-A followed by latent perceptual indexing in Section
III-C. The experimental results and conclusions are presented
in Section IV and V, respectively.

II. RELATED WORK

Starting from [8], typical examples of audio classification
systems use category based modeling for a selection of audio
clips [8], [9], [10]. In [8], [9] the system is evaluated on a vari-
ety of categories such as animals, bells, crowds, female, laugh-
ter, machines, male voices, percussion instruments, telephone,
water sounds etcetera. While the performance of these systems
is notable, they were trained and tested on homogenous3 clips.
Examples of similar approaches that deal with more complex
acoustic scenes include sports highlighting [11], context-aware
listening for robots [12] and also in background/foreground
audio tracking [13]. While these methods target more complex
acoustic scenes they are still based on the typical classification
approaches of category-based modeling and therefore they are
difficult to generalize to clips of unstructured acoustic scenes.

Examples of other approaches that deal with clips of un-
structured acoustic scenes are [14], [15]. In [14] the author
improves on the naive labeling scheme by creating a mapping
from each node of a hierarchical model in the abstract semantic
space to the acoustic feature space. The nodes in the hierarchi-
cal model (represented probabilistically as words) are mapped
onto their corresponding acoustic models. In [15], the authors
have adopted a similar approach of modeling features with text
labels in the captions. In such cases, however, the focus has
mainly been on relating the audio clips to its language-level
descriptions.

In contrast to these approaches and the typical class-based
training approaches presented earlier, in this work we focus
on selectively processing the audio events similar to the way
humans detect important segments in a cluttered acoustic scene
and subsequently use them to classify the given clip. In the

2In terms of amount of training data and/or runtime memory requirements.
3Audio clips or segments that contain only one acoustic source in it, for

example an instance of laughter.

literature, computational attention models have been mostly
explored for vision. For example in [2], a concept of saliency
map was proposed to understand bottom-up visual attention
in primates, and it was shown that the model could replicate
several properties of human attention, i.e. detecting traffic
signs, detecting colors etc. Inspired by the visual saliency map,
a bottom-up auditory attention model was proposed by us in
[16], and it was shown that the model could detect prominent
syllables in speech. Here, we use the bottom-up attention
model to detect salient audio events present in an acoustic
scene. As far as we know, there has been no work in this area
that applies saliency-based attention models to recognition of
unstructured acoustic scenes.

III. PROPOSED METHOD

The block diagram of the proposed method is shown in
Fig. 1. First, audio signal is fed into a salient event detector
which is described in Section III-A. The output of the salient
event detector is a one dimensional saliency score time-aligned
with the original acoustic signal. As explained in section IV,
the audio events for subsequent classification are selected in
a decreasing order of saliency. To capture the audio event
corresponding to a salient point, the sound around each salient
point is extracted using a window of duration W that centers
on that time point. In other words, we assume that an audio
segment of duration W that centers on a salient point (in
time) corresponds to a salient audio event. The perceptually
motivated features are extracted from the detected salient audio
events and indexed into the latent space (‘Learner’ in training)
as explained in Section III-C. Classification of an unknown
test clip (the ‘Predictor’) is performed by comparing it with
a collection of labeled audio clips (‘Learner’ in training) in
the latent space. It is important to note that the collection of
labeled training clips are used only to assess the performance
of the approach presented here, the actual information used
to derive the latent representation are derived in a class-
independent manner. Details of the experiments are given in
Section IV. Next, the salient audio event detector is explained.

A. Audio Saliency Map
At the core of the proposed method is our previously

described bottom-up auditory attention model which computes
an auditory saliency map from the input sound [16]. The block
diagram of the auditory attention model is given in Fig 2.
First, an auditory spectrum of sound is estimated using an
early auditory (EA) system model. The EA model consists of
cochlear filtering, inner hair cell, and lateral inhibitory stages
mimicking the process from basilar membrane to the cochlear
nucleus in the auditory system [17]. The cochlear filtering
is implemented using a bank of 128 overlapping constant-Q
asymmetric band-pass filters. For analysis, audio frames of 20
milliseconds (ms) with 10 ms shift are used, i.e. each 10 ms
audio frame is represented by a 128 dimensional vector.

Next, the auditory spectrum is analyzed by extracting a
set of multi-scale features which consist of intensity (I),
frequency contrast (F ), temporal contrast (T ) and orientation
(O) feature channels. They are extracted using 2D spectro-
temporal receptive filters mimicking the analysis stages in the
primary auditory cortex. Each of the receptive filters (RF)
simulated for feature extraction is illustrated with gray scaled



Fig. 1. Salient Audio Event Detection. W is the duration of the window that centers on the detected salient time point to extract salient audio event.

Fig. 2. Auditory saliency map model.

images in Fig. 2 next to its corresponding feature channel. The
excitation phase and inhibition phase are shown with white and
black color, respectively. For example, the frequency contrast
filter corresponds to receptive fields in the auditory cortex with
an excitatory phase and simultaneous symmetric inhibitory
side bands. The RF for generating frequency contrast, temporal
contrast and orientation features are implemented using 2D
Gabor filters with angles (θ) 0o, 90o, {45o, 135o}, respectively.
The RF for intensity feature is implemented using a 2D
Gaussian kernel. The multi-scale features are obtained using a
dyadic pyramid: the input spectrum is filtered, and decimated
by a factor of two, and this is repeated. Finally, eight scales
are created (if audio segment duration W ≥ 1.28 s; otherwise
there are fewer scales), yielding size reduction factors ranging
from 1:1 (scale 1) to 1:128 (scale 8).

As shown in Fig 2, after extracting features at multiple
scales, “center-surround” differences are calculated resulting
in “feature maps”. The center-surround operation mimics
the properties of local cortical inhibition, and detects the
local temporal and spatial discontinuities in feature channels.
Center-surround differences are computed as point wise dif-
ferences across scales using three center scales c = {2, 3, 4}
and two surround scales s = c + δ with δε{3, 4} resulting

in six feature maps for each of the feature channels. In
total, there are 30 features maps computed: six for each
intensity, frequency contrast, temporal contrast and twelve for
orientation since it has two angles θ = {45o, 135o}. Each
feature map is normalized in the order of within-scale, across-
scale, and across-features. The normalization algorithm is an
iterative, nonlinear operation simulating competition between
the neighboring salient locations using a large 2D difference
of Gaussians filter [16]. As a result of normalization, possible
noisy feature maps are reduced to sparse representations
of only those locations which strongly stand-out from their
surroundings [2], [16]. All normalized maps are then summed
to provide bottom-up input to the saliency map.

The saliency map holds non-negative values and its max-
imum defines the most salient location in 2D auditory spec-
trum. It is assumed that saliency combines additively across
frequency channels. The saliency map is summed across
frequency channels for each time point, and normalized to
[0, 1] range for each audio clip, yielding a saliency score S(t)
for each time point t. Then, the local maxima of S(t) are
found and the audio event at the corresponding time point is
marked as salient together with its saliency score. Later, these
salient points are selected in the order of decreasing saliency
score as discussed in Section IV.

B. Discussion

The bottom-up attention model is capable of detecting only
the salient audio events represented in at least one of the
four implemented features; i.e., intensity, frequency contrast,
temporal contrast and orientation features. In Fig. 3, a sample
sound clip tagged with “goat machine milked” is shown. In
the figure, the first and second tiers show the waveform and
the spectrum of the clip, respectively. The third tier shows
the transcription where M represents machine noise and G
represents goat voice. The fourth tier shows the saliency score
results obtained from the bottom-up auditory attention model.
For this clip, the model detects location of all goat voices in
the sound clip. Although the third goat event from the left is
drowned in the machine sound in the background, the model
could successfully detect this event as well. This alludes to
the fact that the model is not limited to intensity feature. This
scene can be summarized as follows; in the scene the voice of
goat pops out perceptually while the machine noise becomes
less prominent as in the figure-ground phenomenon in visual



Fig. 3. Results of a sample sound clip tagged as “goat machine milked”.
The tiers shows i) waveform of sound, ii) spectrum, iii) transcription where
M represents machine noise and G represents goat voice iv) saliency score.

perception.
Similarly, another example from the database we used is

a sound clip tagged with “wigeon at pool”. For this clip,
the auditory attention model detects the locations of the bird
tweets and suppresses the background water sound.

C. Latent Perceptual Indexing
In this work, latent perceptual indexing (LPI) [6] is used

for class-independent representation of audio clips. An entire
audio clip from a collection of audio clips is represented as
a single vector in a latent perceptual space; this is similar
to latent semantic indexing/mapping (LSI) [18], [19] for text
documents. First, a bag of feature-vectors is extracted from a
given audio clip. Then, this clip is characterized by calculating
the number of feature-vectors that are quantized into each
of the reference clusters of signal features (analogous to
the term-document frequency counts in information retrieval).
By applying this procedure to the whole collection of clips,
it results in a sparse matrix where each row represents a
quantitative characterization of a complete clip in terms of
the reference clusters. The reference clusters are obtained by
unsupervised clustering of the whole collection of features
extracted from the clips in the library, and assumed to represent
distinct perceptual qualities. A reduced rank approximation
of this sparse representation is obtained by singular-value
decomposition resulting in mapping audio clips to points in
a latent perceptual space. Thus each audio clip is represented
as a single vector. The LPI approach is similar to LSI of text
documents [19]; the units or reference clusters in LPI are taken
to be equivalent to terms (or words) in LSI and the audio clips
in LPI are equivalent to text documents in LSI.

This method is implemented as follows. Let us assume that
a collection of M audio clips is available in a database with
the ith clip having Ti feature-vectors. Then, the procedure
involved in obtaining a representation in the latent perceptual
space listed below:

STEP 1. The collection of all the feature-vectors obtained from all the
clips in the database is clustered using the k-means clustering algorithm.
This results in C reference clusters.

STEP 2. Let the ith audio clip have a total of Ti frames.
FOR audio clip Ai where, i ∈ {1, . . . , M}, DO:

i. Calculate : fi,j =
∑ t=Ti

t=1 I(lab(t)=j)

Ti
.∀j ∈ 1, . . . , C. Here I(·) ∈

{0, 1} is an indicator function.
I (lab(t) = j) = 1 if the tth frame is labeled to be in the jth

cluster, otherwise I(·) = 0.
ii. Assign F (i, j) = fi,j the (i, j)th element of the sparse matrix

FM×C .

STEP 3. END FOR loop;
STEP 4. Obtain FM×C = UM×M · SM×C · (VC×C)

T
by SVD.

STEP 5. Obtain the approximation of F as F̃M×C =

ŨM×R · S̃R×R · (ṼC×R)
T

by retaining the R largest singular values.

In addition to the F matrix obtained at the end of step 3, an
entropy-based weighting term also weighs each column [19].
The approximation F̃ is obtained by the span of basis vectors
that have significant singular values. By retaining only the
significant singular values, the randomness in quantization is
eliminated. The similarity measure between a given test audio
clip and the audio clips in the training set in the latent space
is computed using cosine vector similarity function [6], [19].
Using this measure, the k-nearest neighbor (KNN) is used for
classification of an unknown test audio clip.

In LPI, all segments or feature-vectors of an audio clip
are used for indexing. Here, we propose a modified method
called latent indexing using saliency (LISA) which combines
saliency based audio event selection with class independent
LPI method for audio scene recognition. In other words,
LISA uses only selected salient segments of an audio clip
whereas the original LPI uses the whole audio clip for scene
recognition. The information processed by SVD of the term-
document matrix in LPI is different from the segments selected
by the saliency map. In LPI, one attempts to derive the
underlying perceptual structure by eliminating randomness
caused by different recording conditions or realizations of
the same acoustic source. However, auditory saliency model
selects salient events in an audio clip while ignoring parts
that would typically constitute ‘background’ in an acoustic
scene. As our result illustrates, by combining the two in
LISA, we attempt to use only a subset of meaningful acoustic
information in an unsupervised manner to classify a given
acoustic scene. It is important to note that in the next section,
for LPI and LISA, the category labels are only used to asses
and compare the performance of the different approaches. The
latent representation derived is obtained using only unsuper-
vised k−means algorithm for reference clusters and SVD of
the term-document matrix.

IV. EXPERIMENTS AND RESULTS

For the experiments in this paper 2,491 whole audio clips
from the BBC Sound Effects Library [1] were used. The sound
clips consist of natural unconstrained audio recorded in real
environments that is composed of many mixed audio events
and sources. The duration of clips varies from 1 second to 9.5
minutes. The database is available pre-organized according to
high-level semantic categories and their corresponding subcat-
egories. Each clip in the library is labeled with a semantically
high-level category that best describes the acoustic properties
of the scene. There are twenty one categories with varying
number of sound clips under each category as in Table I.

The twelve dimensional Mel-frequency cepstral coefficients
(MFCCs) (C0 energy feature was excluded) were extracted
from each audio clip for sound classification experiments. The
MFCCs are based on the early auditory system of humans
and successfully used in generic audio classification task in
the literature [20]. Instead of the features extracted from the
front-end of auditory saliency model, we preferred to use the
standard MFCC features here since the focus of this work is



TABLE I
DISTRIBUTION OF CLIPS UNDER EACH CATEGORY

Category No. of files Category No. of files
IMPACT 16 NATURE 85
OPEN 8 SPORTS 151
TRANSPORTATION 295 HUMAN 357
AMBIENCES 311 EXPLOSIONS 18
MILITARY 102 MACHINERY 117
ANIMALS 359 SCI-FI 121
OFFICE 144 POLICE 96
HORROR 98 PUBLIC 44
AUTOMOBILES 53 DOORS 4
MUSIC 25 HOUSEHOLD 38
ELECTRONICS 49

acoustic scene classification based on salient acoustic events
rather than definition and presentation of new features. The
MFCC features were extracted every 10 ms with a Hamming
window of 20 ms length. The length of audio segment for
audio classification task was analyzed empirically in [20], and
the best audio classification accuracy was obtained using 1
second (sec) window. Thus, mean and standard deviation of the
MFCC features were estimated over 1 sec window resulting
in 24 dimensional feature vector representing each 1 sec audio
segment.

All classification performances are evaluated by ten-fold
cross-validation. In this, 10% of the whole database is chosen
as the test set and the remaining were retained as the train
set. This is repeated ten times (without replacement) and the
final result is the average of these repetitions. Chance-level
performance, which is dependent on data distribution amongst
the categories, was estimated to be 14.4%.

First, we establish a baseline system based on the conven-
tional approach of creating category-based models. A 3-layer
neural network is used for baseline classification experiments.
The neural network had Din inputs, (Din + Dout)/2 hidden
nodes and Dout output nodes, where Din = 24 is the length
of feature vector, and Dout = 21 since there are twenty one
classes. The neural network is used together with 1 sec audio
segments. Later, the output of 1 sec frame classification results
were combined by majority voting to obtain the sound clip
classification result since some clips are longer than 1 sec.
The baseline result is obtained by using all the frames in all
the clips (i.e., without using the auditory saliency model) and
it was 40.0% accuracy.

For the first experiment, the saliency model is used to scan
and detect salient audio events in a scene as explained in
Section III-A and only these salient segments are used for
classification. The saliency score takes values between 0.0
and 1.0. A value close to 0.0 indicates no saliency and 1.0
indicates the most salient point in an audio clip. The score
for each clip is sorted, and the top N locations are marked
as salient. Then, W = 1 sec window centered on a marked
time location is used to extract the corresponding salient audio
event. 24 dimensional MFCC features are extracted from these
segments as explained previously. The reduction in data gained
by keeping only top N salient events is illustrated in Fig. 4.
The number of retained salient audio events are varied starting
from N = 1 to N = all sal (all the detected salient points
are used irrespective of their saliency score). Retaining only
the top salient point provides 98.8% data reduction. Retaining
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Fig. 4. Amount of data reduction as a function of the number of retained
salient points (N ).

all the salient audio events still provides more than 40% data
reduction.

For classification, the ‘learner’ in Fig. 1 is implemented
using a 3-layer neural network to test the effectiveness
of salient audio event detection for frame-based classifica-
tion. The frame-based classification results after applying the
saliency model are shown as a function of N in Fig. 5.
Additionally, Fig. 5 presents the baseline result using all
the frames (40% accuracy) and the chance level (14.4%) for
comparison purpose. It can be observed that the performance
obtained by retaining only the top salient location (N = 1)
is better than using all of the frames (the whole sound clip).
The best result is 46.9% clip accuracy obtained with N = 15.
This provides approximately 7% absolute improvement over
the baseline while reducing the amount of data processed by
the classifier by more than 85% as shown in Fig. 4. A reduction
in performance is observed when all the salient locations are
used for classification. This however, is still above the baseline
result.

Finally, the results obtained using LISA are illustrated in
Fig 6. In the experiments the number of reference clusters in
LISA are varied starting from C = 200 to C = 2000 with
a step size of 100. For KNN, K = 7 nearest neighbors were
found to have the best performance. In Fig. 6, we present the
best accuracy results obtained with C reference clusters by
retaining top N salient points. The best performance of 49.7%
was obtained with LISA by retaining the top 35 salient points
and using C = 1700 clusters. LISA provides approximately
10% absolute improvement over the baseline frame-based
classification and 3% absolute improvement over frame-based
classification using only the salient segments. Results obtained
using only LPI (i.e. using the whole audio clip without salient
event selection) is also shown in Fig. 6. LPI achieves 50.4%
classification accuracy using C = 2000 clusters. As a result,
it can be seen that comparable results to LPI using all the
feature vectors can be obtained by using only top 35 salient
points (data reduction of approximately 74%). Consequently,
we can also say that in most cases, the salient segments of an
audio clip are the defining moments of the audio clip of an
unstructured acoustic scene.
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V. CONCLUSION AND DISCUSSION

In this paper, a novel method called LISA that mimics
human auditory attention for acoustic scene recognition was
presented. LISA first detects the salient audio events present
in an unstructured audio clip using a bottom-up auditory
attention model, and then processes only the selected salient
events for acoustic scene recognition using latent perceptual
indexing. The salient event detection algorithm is completely
unsupervised; it can be used to obtain salient, defining audio
events in an acoustic scene cluttered with different (unknown)
acoustic sources. This allows us to categorize unstructured
audio clips of acoustic scenes without processing the whole
clip. Additionally for such scenes, using the term-document
frequency measures to derive a representation is desirable as
it makes no assumptions about the individual sources present
in it. This makes this approach applicable to a variety of audio
content processing problems. The performance of the method
is tested using the BBC sounds effect library, and it is shown
that LISA provides 10% absolute (25% relative) improvement
over the baseline by retaining only top 35 salient points, and
reduces the amount of data approximately 74%. It is shown
that LPI and LISA perform approximately the same however
LISA uses less number of data points and reference clusters
since it only uses selected salient events in an audio clip.

The auditory saliency model behaves as a highlighting
mechanism that selects only the events that pop-out of an
acoustic scene while ignoring segments or sources that are part
of the background. For example, in the previously discussed
example in Section III-B, the saliency model detects the loca-
tions of goat sound and ignores the machine sound in the clip
tagged with “goat machine milked”. Hence, the predicted label
for this clip would be “Animal” when only salient segments are
considered for classification. However, the high level semantic
label for this clip provided with the database was“Machine”.
As it can be seen from the detailed tag, this is not completely
incorrect since the clip description includes an animal sound.
Relating semantic descriptions (with multiple tags) to ranked
salient segments of acoustic scenes is an interesting avenue to
explore with many applications in audio content processing.
This is a part of our planned future work for this framework.

0 10 20 30 40 50 all_sal
10

15

20

25

30

35

40

45

50

55

A
cc

ur
ac

y 
%

N

Chance
LISA
LPIC=500 

C=1600 

C=1000 C=1700
C=1700 C=1600 C=1400 

C=1700 
C=1200 C=1400 

C=2000 
C=2000 

C=2000 

Fig. 6. Clip accuracy results obtained with LISA and LPI methods.
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