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Abstract

We propose a representation of local dialogue context motivated
by the need to react appropriately to meta-dialogue, such as various
sorts of corrections to the sequence of an instruction and response
action. Such context includes at least the following aspects: the
words and linguistic structures uttered, the domain correlates of those
linguistics structures, and plans and actions in response. Each of
these is needed as part of the context in order to be able to correctly
interpret the range of possible corrections. Partitioning knowledge
of dialogue structure in this way may lead to an ability to represent
generic dialogue structure (e.g., in the form of axioms), which can be
particularized to the domain, topic and content of the dialogue.

1 Introduction

Many simple dialogue systems are constructed in a more or less holistic
fashion, not making clear differentiations between linguistic, dialogue, and
domain components or reasoning, treating everything other than speech
input and output as the “dialogue component”. Such architectures allow
shortcuts in the design process and fine-tuning to the particular anticipated
task and dialogue interaction, which can speed up both system implementa-
tion time and run-time. However, the resulting systems are not particularly
portable to other domains, tasks within the same domain, or even very ro-
bust in the face of different styles of interaction in accomplishing the task.
Often, where the dialogue component is concerned, all that can be carried



over into the next system is the experience gained by building such a sys-
tem. Toolkits for constructing scripted dialogues, such as [Sutton et al.,
1996] make the construction process faster, but do not address the underly-
ing problem of partitioning dialogue knowledge from linguistic and domain
knowledge in order to reuse the same dialogue strategies.

Simply partitioning the knowledge sources is also not sufficient to achieve
domain-independent reusable dialogue modules. Like a holistic system, a
dialogue component (in the narrow sense, dealing strictly with context up-
dates and decision-making about what to say) must have appropriate access
to both linguistic and domain knowledge sources in order to perform appro-
priate dialogue actions. While there will always be a certain amount of work
involved in adapting a generic dialogue module to particular linguistic pro-
cessing components and domain knowledge sources and manipulators, there
is still some room for generic dialogue function, abstracting away from the
specific representations provided by other modules. The key is being able
to represent aspects of the dialogue in a suitably abstract fashion, to allow
reasoning about generalities without relying on peculiarities of interfaces to
linguistic and domain modules. We maintain, agreeing with [McRoy et al.,
1997], that it is important to keep several different kinds of representations
of an utterance available as context, in order to act appropriately in the
face of meta-dialogue, such as corrections, as well as to be able to give the
right kind of feedback about problems in the system’s ability to interpret
and act appropriately.

As an example of a simple dialogue episode which can motivate the
kinds of representation we propose, consider the exchange schema in (1).
In order to understand and respond to [3] properly, B must at least keep
some context around of [1] and [2]. This raises the question as to how to
represent this context in a compact and useful form.

(1) [1] A:do X.
[2] B: [does something]
[3] A:no,do...

In the next section, we quickly review several structural proposals for
representation of local exchanges like (1). Then in Section 3, we recon-
sider these proposals in the light of a suite of examples of different kinds
of negative feedback. This leads us, in Section 4, to propose a represen-
tation based on considering not just the utterances themselves, but other
intensional information associated with the utterances. These include, for a
request produced by the user of a system: the literal request, an interpreted
version, still at the level of natural language description, and a domain-
specific version. For the reply, this also includes both the plan leading to
its performance, as well as observed feedback. These various levels provide
both a source for detecting potential or actual incoherence in dialogue, as
well as serving as a source of potential repair requests. In Section 5, we
illustrate these levels in action in a dialogue manager for the TRAINS-96
system [Allen et al., 1996]. Finally, we conclude with some observations of
more general applicability of these levels.

2 Representations of Local Dialogue Struc-
ture

There have been several proposals for the kind of dialogue unit represented
in (1), using structural terms like adjacency pair [Schegloff and Sacks, 1973],



exchange [Sinclair and Coulthard, 1975], game [Severinson Eklundh, 1983,
Carletta et al., 1997], IR-unit [Ahrenberg et al., 1990] and argumentation
act [Traum and Hinkelman, 1992]. At an abstract level, we need an IRF-
unit which can contain the three moves or acts: Initiative, Response, and

Feedback, as indicated in (2).

(2) [1] Initiative: Request(Act) [Instruct]
[2] Response: Do(Act)
[3] Feedback: Eval [+ Counter-Request(Act’)]

There are several ways in which this unit could be structured. In Figure 1
we show several proposed structures for this or similar units for questions.
(A) shows a flat structure containing all three acts, as proposed by [Sinclair
and Coulthard, 1975]. Some authors prefer to allow only binary branching
units, which leads to structures (B) through (D). (B) was proposed by
[Wells et al., 1981] (though with the unit names Solicit-Give and Give-
Acknowledge), and is also used by [McRoy et al., 1997]. (C) and (D) were
both proposed in [Severinson Eklundh, 1983], the former for information-
seeking questions, and the latter for exam-questions. (E) shows a finite
automaton which could be induced from these structures, allowing multiple
rejections and counter-requests before a final acceptance.

There may be different motivations for these different types of structures,
but for the present purposes, we will consider them strictly in terms of
what kind of context is provided for the antecedent of the utterance [3]. In
particular, what is the utterance of “no” referring to: A’s initial utterance
[1], B’s reaction in [2], or some other construct? Of course such examinations
really require both the structure itself as well as an algorithm for traversing
the structure and deciding on a referent. For the present purposes, we will
consider a default algorithm, in which one looks first to (all) siblings of
the current node, and then siblings of a parent, etc. Structure (A) would
predict a choice of [1] or [2], equally. Structures (B) and (C) would have a
preference for [2] as the antecedent (with (C) allowing [1] as a dispreferred
option, and (B) disallowing it), while (D) would see the unit of [1] and [2]
combined as the most likely antecedent, i.e., not necessarily a rejection of
[2] in and of itself, but of [1] and [2] together as the realization of the goal
that inspired production of [1] (for reasons that might be due to problems
with either of the utterances/actions themselves, or the coherence of the
two).

3 Examples

In order to decide on which structure is most appropriate, as well as what
kinds of representations are needed for the task, it will be helpful to examine
a suite of instantiations of the exchange schema in (1). We first examine
some examples of corrections to exchanges found in human-human task
oriented dialogue, specifically the Maptask. We then turn to the TRAINS-
96 domain, abstracting some simpler examples that can straightforwardly
be tested in a spoken dialogue system.

3.1 Maptask Corpus Examples

We draw examples of correction exchanges from the DCTEM (examples 3 - 7)
[Taylor et al., 1998] and HCRC [Carletta et al., 1997] (example 8) Maptask

corpora. In the dialogues comprising these corpora, two people are looking
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at their own versions of maps of the same territory. The maps are slightly
different, and neither can see the other person’s map. One person (the
Giver, indicated by [G]) is attempting to give directions to the other (the
follower, indicated by [F]). For each excerpt, identifying information about
the specific dialogue is given above.

In (3) the giver has requested an action: “go west”, which the follower
confirms. But then the giver changes his mind (realizes he has made a
mistake) and corrects to: “[go] east”.

(3) <text id=r120.f.q2c5.10.2-4.3-1>

[G]: You'll ... You’ll go north ... and then you’ll turn
west, onto the bridge.

[F]: Okay.

[G]: Or, east. Correction.

[F]: Okay.

In (4), the requested action, go west at the bottom of the ravine itself,
has been (slightly) misunderstood as a request to go west on the word
‘ravine’ despite explicit instructions to the contrary.

(4) <text id=r110.p.q4c3.36.5-6.11-3>
[G]: then curve back out...and then, at the bottom of
the ravine, not the word {cilravine}, the ravine

itself...

[F]: {gg|Uh-huh}

[G]: you’re going to head west.

[F]: Okay. So basically I'm going to be on the...I'm
going to curve...and I'm going to be on the west
side of the ravine?

[G]: Right.

[F]: And then, on the word {cilravine}, go west,
right?

[G]: No. In line with the bottom of the ravine itself ...

[F]: Okay.

[G]: go west.

Example (5) is a little trickier, since the action request is implied: [look]
in the area of the playground [and tell me what you see]. The giver clarifies
the action: look to the east of that ([are you looking] ‘to the east of it?’).
The follower reports a tyre swing. ‘No. To the east of it, further.” Here the
giver has used an imprecise direction, [look] ‘to the east’, which has been
disambiguated incorrectly by the follower (look only a little to the east).
When the follower reports what he sees, the giver repeats the same request,
‘to the east of it’, but then clarifies with the more precise ‘further’.

(5) <text id=r120.f.q3c5.22.2-4.7-1>
[G]: Okay ... Have you got anything in the {fp|uh}
adventure playground area? Like...
: Yeah, they’re ... tyres?
: To the east of it?

F]
]:
]
]

o= o=

: A tyre swing?
: {£plUh}, no, to the east of it, further. My map’s
empty here.

—

=

. A privately owned fields?
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In (6), the giver requests an action: ‘curve toward the train crossing ...’
containing an ambiguous designator ‘the train crossing’ which the follower
disambiguates in a way not consonant with the giver’s intention. In this
exchange the sign that this is the case comes when the follower realizes
that the rest of the instruction: ‘up along the west side of the waterfall’
is incompatible with ‘towards the train crossing.” He initiates a repair by
explaining the position of his train crossing. The giver acknowledges the
repair: ‘no no, not that train crossing’ and here it does not seem far-fetched
to claim that there is an implied: ‘the other train crossing.” The interspersed
confirmations (F: Okay. G: Okay ...) seems to bear out the supposition that
there is a task (searching for the other train crossing) which is being carried
out. In this case, the task fails, because the giver’s map has no other
train crossing, and other repairs must be attempted to allow a complete
interpretation of the giver’s original intention. In the current case the sign
of the problem with the disambiguation is the contradiction between two
parts of the giver’s request, and this contradiction is noticed by the follower.

(6) <text id=r120.f.q3c5.22.2-4.7-1>
[G]: Okay, curve down towards the train crossing ...
and up along the west side of the waterfall. Stop
when you get to the top of the waterfall.
F]: Wait, my train crossing is {fplum} {br|north
west=northwest} of the waterfall.

—

[G]: {£g|0Oh} no no, not that train crossing.
[F]: Okay.

[G]: Okay ...

[F]: T only have a waterfall, then.

Example (7) is more straightforward: the follower, in response to a com-
plicated and ambiguous set of instructions (which are not worth taking
space with here), checks his understanding by saying: ‘I’ll go right to the
rope rope bridge’. The giver things this is a mistake, that the user is going
to turn right to get to the bridge, rather than go straight there. So he gives
a less ambiguous instruction: ‘go due north’ However, the follower had the
correct intention all along.

(7) <text id=r130.f.q2c5.10.2-4.3-1>
[F]: 'l go right to the rope rope bridge.
[G]: No, you want to go due north ...
[F]: Yeah.

Example (8) is a common exchange for anyone giving real-time direc-
tions, e.g. while driving in a car. The request is ‘go to the left.” The follower
does the correct thing, but says ‘right, OK’ which is understood as being the
opposite of what the giver wanted. Hence the re-assertion of the direction,
in this case in just the same form: ‘No, [go] left’

(8) (HCRC Maptask Corpus [g2nc7.trn])
[G]: So, {fgleh}, go to the left two inches.
[F]: {£g|Eh}, right, okay.
[G]: No, left.

3.2 Example Suite

For more easy comparison, we cast various types of repair, such as those
found in examples (3 - 8), above, from the maptask corpus in a suite of



minimally different examples. We use the TRAINS-96 domain [Allen et al.,
1996], in which a user interacts with a dialogue system to provide routes for
trains. Figure 2 illustrates an episode from this task, in which there are two
trains of interest, Northstar, which is currently at Boston, and Metroliner,
which started the task at Boston, but is now at Albany. Given this same
context, consider the dialogues in (9) through (15).

Figure 2: Trains Scenario
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(3]

In each of these, the semantic structure of utterance [3] is something like
(16). Context is used to determine what “X” refers to, and also to construe
“Y” to be appropriately coherent, if possible.
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(16) Don’tDo(X) & Do(Y)

Example (9) is similar to corpus example (3) — a changed instruction.
Example (10) is a very common sort of exchange, where, as in example
(4), the second contribution indicates a misunderstanding of the original.
Examples (11) and (12) involve clarifications to an ambiguous reference.
The tyre swing (5) and train crossing (6) examples are similar to these types.
The successful adjudication of the problems in the exchange will rely on
treating the combined user utterance as the expression of a single intention
. ‘send the Boston Train to New York ... no, send the Boston Train’ which is
only incoherent in the case that the system disambiguates ‘the Boston Train’
the same way each time. This strikes us as very similar to reasoning required
in maptask example (6), in which the giver’s instructions are only incoherent
on one interpretation of the designator ‘the train crossing.” The difference is
only that there is no accessible option for the follower in (6) for an alternate
disambiguation (there is no other train crossing on the follower’s map), and
this fact dictates a different repair strategy. Example (13) is very similar
to the rope bridge example (7), although this may not be immediately
apparent. The potential difficulty is that, although in the examples from
the corpora the feedback from the follower 1s verbal, in the case of the
TRAINS-96 system, the feedback is visual: one sees the train move. It is
easy to imagine that the verbal report of the follower being misinterpreted,
but less easy to imagine that the same ambiguity could arise in the case
of the clear image of trains moving around the screen: one can simply see
whether the intention is being carried out. But this is not necessarily so:
the trains in the TRAINS system are color-coded, rather than labeled with
their names.! Thus the user sees the green train moving (which is in fact
the correct train for the system to move) but thinks it should be the red
train moving. Assuming that the problem is the ambiguity of the initial
instruction, the user is more specific, but the system has done the right
thing all along. Example (14) is very similar to the left-right-left corpus
example (8). Example (15) can be seen as a slight modification of (9): the
user has changed his mind, however in this case, the system has complied
with the new rather than originally expressed intention. The user may either
be unaware of (or have misunderstood) the actual action, or want to avoid
a possible repair by the system, upon recognizing the discrepancy between
original directive and action.

3.3 Examples and Structures

Let us now turn back to the different structures in Figure 1, and see if
the examples from the previous sections have any implications for which
structures would be most useful. The coherence of Dialogue (9) but lack of
coherence of (15) indicates a problem with (A): it seems that after [2], [1] is
no longer a possible antecedent in the same way. The contrast between (9)
and (10) shows that the problem with [2] can be either a lack of coherence
with [1], or a change in intention. This would seem to be a problem for
(B), which does not preserve [1] as part of the context for [3]. Likewise, in
(11) and (12), the source of the problem is likely the interpretation of the
referring expression, “the Boston train”. This is important for interpreting
[3] coherently in (12), and recognizing (13) as incoherent. It is less easy
to see how this information can be retrieved from (C) as opposed to (D).

I The name labels for the trains in Figure 2 were added for illustrative purposes, and
not part of the actual display.



In general, for these examples, the source of the correction in [3] can be
anywhere in the space including what A actually said in [1] (true 3rd turn
repair), B’s interpretation of that, or B’s response in [2] (2nd turn repair).
(D) seems to be the most useful candidate representation, since it provides
the complex act of [1] and [2] together as a likely antecedent for [3]. (E)
captures the move sequences correctly, but does not help much with the
referential dependencies.

The interesting issue for these examples is how to respond to [3] in each
case. For examples (9), (10) and (11), B can just undo the action performed
in [2] and proceed to do the one mentioned in (3). In fact, this is just what
the Rochester TRATNS-96 system [Allen et al., 1996] will do. For (12), the
situation is a bit more complex. B must recognize that the previous choice
of anchor for the referring expression “the Boston train” was likely to be
wrong, and choose a different candidate, given A’s response. For (13), (14)
and (15), there is no obvious strategy to make [3] coherent, so some sort
of repair would be warranted to overcome the incoherence. In order to be
able to engage in fruitful dialogue rather than just respond to a sequence of
commands, the important thing to realize is that [3] is a complex command
with structure like (16), rather than unrelated cancel and request acts. To
engage in natural dialogues, it is important to find a coherent interpretation
when possible, and note and repair the incoherence when it is not possible
to find such an interpretation.

4 Owur Approach: Internal Representations

Our approach to the problem of representing local sub-dialogue structure of
an IRF unit such as (2) is to represent not just the moves [1], [2], and [3],
themselves, as part of the IRF unit, but also, like [McRoy et al., 1997], some
associated internal structures, which can help provide likely candidates for
resolving any seeming incoherence. Thus, our counterpart of the Req-Do
sub-structure in Figure 1 (D) includes not just the two acts, but each of the
following components:

1. L-req (for “literal”, or “locutionary”) the actual words said.

2. I-req (for “interpreted”, “intentional” or “illocutionary”) the direct
logical interpretation. This level maintains all ambiguity present in
the original, including lack of a specific referent for “the Boston train”.

3. D-req (for “disambiguated” or “domain”) a precisification of the I-req
that actually represents a specific request for an action that can be
performed by the domain module. For simple, unambiguous requests,
in which the representation output by the language module and used
by the domain module are the same, D-req can be just about identical
with T-req; for cases with ambiguity or divergences in representation,
it may involve several operations to get from I-req to D-req. D-Req
represents what should be done in a manner that the domain reasoner
can understand.

4. P-act (for “plan”) a specification of how to do the requested act in
D-req. A plan suitable for execution, which, if carried out will satisfy
the original request

5. E-Act (for “execution”) the action the system actually takes in ful-
filling the request, which could be a physical (or simulated) action, or
natural language production, or some combination.



6. O-Act (for “observation”) concerns monitoring or observation of the
system’s act. Even if the system performed the act correctly, it might
not have evidence of this fact. For linguistic actions, this is related
to grounding [Clark and Schaefer, 1989, Traum, 1994]. Grounding
involves adding to the common ground between conversational partic-
ipants, e.g., by presenting material and acknowledging and/or repair-
ing presented material. For linguistic actions, or actions whose only
evidence is through linguistic reports (e.g., the maptask examples in
Section 3.1), the grounding process is the best indication of the success
or failure of the action. Likewise, for environments such as TRAINS,
in which there is visual evidence, monitoring the reactions to these
acts are a primary method for grounding, as well as telling whether
requested acts are successful (in terms of meeting the intentions of the
requester).

Assaid above, the interpretation of D-req from I-req could involve several
intermediate actions. In the case of dialogues (11), (12), and (13), it involves
construction of a new query (corresponding to “which engine is the Boston
engine”), calculating the answer to this query (perhaps using messages to a
domain reasoner), and then fitting this answer into the D-req for the main
request (replacing the more indirect information present in the I-req) I.e.,
in processing (13), “Boston train” will give “train at Boston” at the I-req
level, but “Metroliner” in D-req.

In the example dialogues, utterance [1] has the same L-req and T-req
in (11), (12), and (13) (though different from (9) and (14)). For (11) and
(12), the D-req is the same as in (9), while in (13), the D-req is the same as
(14), depending on the interpretation of “the Boston train” as Northstar or
Metroliner, respectively.

Using this more fine-grained notion of the Req-Do unit, we can re-
examine the likely sources for the correction in [3] in each of the cases.
For (9), the obvious interpretation is that there was a problem with I-req:
either A mis-spoke in [1], or changed his mind, or B misheard; pinpointing
the exact source of the problem is not important, given that the same action
can be taken to rectify the situation in each case. For (10), B must have
misheard (or somehow made a mistake in execution). For (11), the most
natural interpretation is that there was a problem at the D-req level, and
A meant Metroliner rather than Northstar. For (12), things are a bit more
subtle. Probably the problem is the same as for (11), but less information
is provided by A about the correction — B must use the information that
Northstar is probably not the correct choice when interpreting the repair.
For (13), (14), or (15), the problem is most likely with P-act or E-act, or
L-req (i.e., in the speech recognizer, but then with L-req for [1] or [3]7) or
some unresolvable contradiction. With luck, the confusion can be cleared
up using a subdialogue with the user. While it is not always crucial to
identify the exact source of the problem, it is important to recognize these
situations of incoherence when they occur, and not just undo the previous
act and redo the very same thing.

4.1 Repair at various levels

In addition to being able to repair when faced with an unresolvable contra-
diction, as in dialogues (13), (14) and (15), repair is also an option whenever
there is difficulty computing any of these components of the representation,
or when the system is insufficiently confident of its computation. Some ex-
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amples of the kinds of repairs that concern difficulties at the different levels
are shown in (17).

(17) L-req: “what was the third word?”
I-req: “is Metroliner an engine?”
D-req: “which train did you mean when you said ‘Boston train’?”

P-act: “is going through Albany an appropriate way to send Metro-
liner to NY?”

E-Act: “should I do that now or after I send Bullet through?”
O-Act: “is it there now?”

A central issue for dialogue management becomes which strategy to use
when facing uncertainty about the user’s intent. E.g., in the case of two
possible candidates for the referent of an expression like “the boston engine”,
one could either pick one and try it, or ask for clarification, as above. The
decision should be motivated by factors such as how difficult it will be to
correct a mistake and the likelyhood of picking incorrectly — in general users
have litttle tolerance for multiple confirmations when things are going well.
The representations here give a general set of possibilities from which to
choose, based on actual circumstances, while current systems mainly allow
only pre-designed decision points. See [Traum and Dillenbourg, 1998] and
[Horvitz and Paek, 2000] for some ideas on how to use utility theory to
choose which action to perform.

5 Implementation: ACDM

We have implemented this approach to dialogue representation in the Alma
Carne Dialog Manager (ACDM), using Active Logic [Elgot-Drapkin and
Perlis, 1990, Elgot-Drapkin et al., 1996, Gurney et al., 1997]. The dialog
manager and reasoner are relatively domain and system independent, re-
lying however on translation actions to convert between the internal logic
and external system components. Alma (Active Logic MAchine) (described
briefly in [Purang et al., 1999]), the current implementation of active logic,
combines logical reasoning in time with an ability to perform and monitor
the progress of external actions. Carne is used to model aspects of the
agent’s behavior which need not be expressed logically. Carne can run pro-
cedures for Alma, and acts as the I/O channel to Alma. ACDM is aimed
at achieving a higher degree of conversational adequacy [Perlis et al., 1998]
than other current dialog systems.

5.1 Active logic

Active logics [Elgot-Drapkin and Perlis, 1990, Gurney et al., 1997, Perlis et
al., 1999] were developed as a means of combining the best of two worlds —
inference and reactivity — without giving up much of either. This requires
a special evolving-during-inference model of time. The motivations for this
were twofold: all physically realizable agents must deal with resource limita-
tions the world presents, including time limitations; and people in particular
have limited memories [Baddeley, 1990] and processing speeds, so that in-
ference goes step by step rather than instantaneously as in many theoretical
models of rationality. A consequence of such a resource-limited approach is
that agents are not (even weakly) omniscient: there is no one moment at
which an agent has acquired all logical consequences of its beliefs. This is
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not only a restriction for real agents (and hence for humans) but it is also an
advantage when the agent has contradictory beliefs (as real agents will often
have, if only because their information sources are too complex to check for
consistency). In this case, an omniscient and logically complete reasoner is
by definition swamped with all sentences of its language as beliefs, with no
way to distinguish safe subsets to work with. By contrast, active logics, like
human reasoners, have at any time only a finite belief set, and can reason
about their present and past beliefs, forming new beliefs (and possibly giv-
ing up old ones) as they do so; and this occurs even when their beliefs may
be inconsistent. (See [Miller, 1993] for details.)

Active logics can be seen either as formalisms per se, or as inference
engines that implement formalisms. This dual-role aspect is not accidental:
it is inherent to the conception of an active logic that it have a behavior,
i.e., the notion of theoremhood depends directly on two things that are not
part of traditional logics: (i) what is in the current evolving belief set, and
(i) what the current evolving time is. Our view of active logic here is as an
on-board agent tool, not as an external specification for an agent.

5.1.1 Formalism

The formal changes to move from a first order logic to an active logic are,
in some respects, quite modest. The principal change is that inference rules
become time-sensitive. The most obvious case is that of reasoning about
time itself, as in the rule:

i Now (i)

i+1: Now(i+1)

The above indicates that from the belief (at time i) that the current time
is in fact 7, one concludes that it now is the later time ¢ 4+ 1. That is, time
does not stand still as one reasons.

Note that temporal logics [Allen and Ferguson, 1994, McDermott, 1982,
Rescher and Urquhart, 1971] also have a notion of past, present and future,
but these do not change as theorems are derived. These are specification
logics external to the reasoner. This contrasts strongly with the agent-based
on board character of active logic.

Technically, an active logic consists of a first-order language, a set of
time-sensitive inference rules, and an observation-function that specifies an
environment in which the logic “runs”. Thus an active logic is not pure
formalism but is a hybrid of formal system and embedded inference engine,
where the formal behavior is tied to the environment via the observations
and the internal monitoring of time-passage (see [Elgot-Drapkin and Perlis,
1990] for a detailed description). Further formal details are given below.

5.1.2 Properties of active logic

Active logics are able to react to incoming information while reasoning is
ongoing, blending new inputs into its inferences without having to start up a
new theorem-proving effort. Thus, any helpful communications of a partner
(or user) — whether as new initiatives, or in response to system requests
— can be fully integrated with the system’s evolving reasoning. Similarly,
external observations of actions or events can be made during the reasoning
process and also factored into that process.

Thus the notion of theorem for active logics is a bit different from that
of more traditional logics, in several respects:

12



1. Time sensitivity. Theorems come and go; that is, a proposition once
proved remains proved but only in the sense of it being a historical fact
that it was once proved. That historical fact is recorded for potential
use, but the proposition itself need not continue to be available for use
in future inferences; it might not even be reprovable if the “axioms”
(belief) set has changed sufficiently. As a trivial example, suppose
Now(noon) — Lunchtime is an axiom. At time t=noon, Now(noon)
will be inferred from the rule given earlier, and Lunchtime will be in-
ferred a step later. But then Now(noon+1) is inferred, and Lunchtime
is no longer inferable since its premise Now(noon) is no longer in the
belief set. Lunchtime will remain in the belief set until it is no longer
“inherited”; the rules for inheritance are themselves inference rules.
One such involves contradiction; see next item.

2. Contradictions. If a direct contradiction (P and —P) occurs in the
belief set at time t, that fact is noted at time t+1 by means of the
inference rule

t+1: Contra(t+1,P, “P)

See [Miller, 1993] for details on handling contradictions

Truth maintenance systems [Doyle, 1979] also tolerate contradictions
and resolve them typically using justification information. This hap-
pens in a separate process which runs while the reasoning engine is
waiting. We do not think that this will work in general since the
reasoning needed to resolve the contradiction will depend on the very
information that generated that contradiction. Resolution of contra-
dictions is itself, in general, a reasoning process much like any other.

3. Metareasoning

In active logic, there is a single stream of reasoning, which can monitor
itself by looking backwards at one moment to see what it has been
doing in the past, including the very recent past.

All of this is carried out in the same inferential process, without the
need for level upon level of meta-reasoners. This is not to say that
there is no metareasoning here, but rather that it is “in-line” metar-
easoning, all at one level. The advantages of this are (i) simplicity of
design, (ii) no infinite regress, and (iii) no reasoning time at higher
levels unaccounted for at lower levels. A potential disadvantage is the
possibility of vicious self-reference. This matter is a topic of current
investigation. However the contradiction handling capability should
be a powerful tool even there.

5.2 Alma/Carne

Alma is our implementation of active logic. Tt generally conforms to the
description of active logic given above, with some variations for greater
efficiency or ease of implementation. Alma is written in Prolog and has a
Java user interface. Although Alma cannot currently be run across the web,
reasoning episodes (saved in history files) can be viewed with the interface
on our web-site (http://www.cs.umd.edu/projects/active/demos).
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At each step, the inference rules are applied to the formulas in the KB
at that step and the resulting set of formulas is the KB for the next step.
Application of the inference rules can result in formulas being added or
removed from the KB. By default though, all formulas are inherited from
one step to the next (an exception being now). Some features of Alma are:

e The current step number, 7', is represented in the KB as now(T') and
changes as the program executes. One can reason about the current
time by using now(7) in the axioms.

o Three variants of the conditional are available in Alma for better con-
trol of the reasoning:

if This acts like the familiar material conditional.

fif If fif(¢, conclusion())) and ¢ are in the KB, then ¢ is asserted.
This does not allow contraposition: if = is in the KB, we do not
obtain —¢. Another feature of fif is that the antecedent must be
in the KB before the fif is used. If, for example, ¢ is o A § and
« is in the KB, we cannot derive fif(g, conclusion(i)). Only if
both a and § are in the KB at the same time will ¢ be derived.
fif formulas can only be used in forward chaining proofs.

bif This is used to mark conditionals for use exclusively in backward
chaining proofs. Tt can be used rather than ¢f or fif to avoid
generating large amounts of true but uninteresting facts, while
still allowing the ability to prove interesting information on de-
mand.

e If there is a direct contradiction (e.g., ¢, =¢) in the KB, the formulas
are made unavailable for use in further inference and distrusted(i)
is asserted, where ¥ stands for each of the contradicting formulas
(e.g., ¢ and —¢) and their consequences. The fact that there is a
contradiction is asserted: contra(N1, N2,T) where N1 and N2 are
the names of the contradictands (e.g., ¢ and —¢) and T is the time at
which the contradiction was detected.

Asserting reinstate(N) for a formula N that has been in a contradic-
tion results in a new formulasimilar to N being added to the database.
This can be used to resolve contradictions. The choice of which for-
mula to reinstate is not determined by Alma inference rules, however
Alma can use user-specified axioms to reason about how to make this
choice.

e Some computations may be more easily, conveniently or efficiently
done through procedures rather than as logical inference. The reserved
predicate eval_bound is used to execute Prolog programs in the Alma
process. This form allows one to specify that some variables need
to be bound before executing the program. eval_bound(p(X,Y), [X])
will execute program p(X,Y) only if X is bound.

e Programs that are more complex or requre longer asynchronous run-
time are executed in Carne (see details below). Carne also allows Alma
to interface with external processes enabling Alma to be embedded in
larger systems, such as the TRAINS-96 system [Allen et al., 1996].
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5.2.1 Carne

Carne is a process that communicates with Alma but runs independently.
The main purpose of Carne is to run complex non-logical computations
asynchronously from Alma steps. These can include input-output, interfac-
ing with other running systems and long-running computations that take
too long to run within a step.

Alma requests actions from Carne by asserting formulas of the form
call(X,Y, Z) in the KB. A formula of this type is the premise of an inference
rule which causes Carne to execute program X. Y is used to pass relevant
information to Carne and 7 is an identifier that links the call to assertions
about the status of the call. The status of the execution: doing(X, 7),
done(X,Z) or error(X, Z) is asserted in the Alma KB based on information
provided by Carne. As the call is executed, doing(X,7) is first asserted.
When the program has completed in Carne, doing(X, Z) is replaced with
done(X,7) in Alma. If the program fails, error(X, 7) is asserted instead.
This enables Alma to reason about actions it has requested.

Carne can add and delete formulas in the Alma KB. This is used to
modify the KB as a result of computations and for external input to be
added to the KB. Carne also has a KQML parser which facilitates connection
of Alma/Carne to other systems.

5.3 Maryland version of TRAINS-96

ACDM is a dialogue manager built using ALMA and Carne. Tt is integrated
within the TRATNS-96 system from the University of Rochester [Allen et al.,
1996], replacing their discourse manager. The TRAINS-96 system consists
of a set of heterogeneous modules communicating through a central hub
using messages in KQML [External Interfaces Working Group, 1993]. This
architecture is well suited for swapping in different components to do the
same or similar job and assessing the results. As well as the architecture
itself, we have been using the parser, domain problem solver, and display
modules, replacing the discourse manager component with our own dialogue
manager and multi-modal generator. The functions of the modules in the
Maryland version of the system are summarized in (18).

(18) Speech Recognizer: produces a word stream from spoken utterance
(using Microsoft’s Whisper Engine).
Parser: produces interpretation of sentence input, as shown in Figure
3 (source for I-req).

Problem Solver: answers queries for problem state, also does plan-
ning requests (helps produce P-act from D-req).

Display Manager: shows objects on screen.

Dialogue manager: uses Active Logic to maintain a logical repre-
sentation of dialog state and act appropriately.

Output Manager: provides multimodal presentations of system out-
put, including calls to display manager, printed text, and speech.

Speech Qutput: converts text messages to output speech (using the
Festival system).

For purposes of illustration, we will consider a scenario of the same type
as that shown in (12). Tn this scenario there are 3 trains in the domain:
Metroliner, Bullet and Northstar, and Metroliner and Bullet are at Toronto.
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(TELL :CONTENT
(SA-REQUEST :FOCUS :V11916 :0BJECTS
((:DESCRIPTION (:STATUS :NAME) (:VAR :V11868) (:CLASS :CITY)
(:LEX :TORONTO) (:SORT :INDIVIDUAL))
(:DESCRIPTION (:STATUS :DEFINITE) (:VAR :V11879)
(:CLASS :TRAIN) (:SORT :INDIVIDUAL)
(:CONSTRAINT (:ASSOC-WITH :V11879 :V11868)))
(:DESCRIPTION (:STATUS :NAME) (:VAR :V11916) (:CLASS :CITY)
(:LEX :MONTREAL) (:SORT :INDIVIDUAL)))
:PATHS ((:PATH (:VAR :V11908)
(:CONSTRAINT (:TO :V11908 :V11916))))
:DEFS NIL :SEMANTICS
(:PROP (:VAR :V11855) (:CLASS :MOVE)
(: CONSTRAINT
(:AND (:LSUBJ :V11855 :*YQU*) (:LOBJ :V11855 :V11879)
(:LCOMP :V11855 :¥11908))))
:NOISE NIL :SOCIAL-CONTEXT NIL :RELIABILITY 100 :MODE KEYBOARD
:SYNTAX ((:SUBJECT . :*YOU*) (:0BJECT . :V11879)) :SETTING NIL
:INPUT (SEND THE TORONTO TRAIN TO MONTREAL))
:RE 3)

Figure 3: Parser OQutput for “Send the Toronto train to Montreal”

The initial user utterance will be : “Send the Toronto train to Montreal”.
The output from the parser for this utterance (see Figure 3) includes the
utterance type (sa-request), the objects mentioned in the utterance (1 train
and 2 cities), and the properties of the objects (name, type etc.). The parser
parses Toronto train as the train that is associated with Toronto.

5.4 KQML message processing

ACDM receives the message from the parser in KQMIL format which, when
translated by Carne, causes formulas that represent the information content
of the message to be asserted as axioms in the Alma database. For the
current scenario, some of the assertions made to represent the information
content are shown below. The number before the colon is an identifier for the
formula that appears after the colon. The formulas represent information
including the message number(kqml294), sender (parser), message type (sa-
request) etc.

2732: kqml_expr(kqml296, [kqml297, kqml303, ...]))
2761: kqml_kv (kqml294, [content, kqml295])

2763: kqml_kv (kqml294, [sender, parser])

2765: kqml_head(kqm1295, sa-request)

2767: kqml_kv(kqml295, [objects, kqml296])

2780: kqml_kv (kqml297, [var, v11868])

2781: kqml_kv(kgml297, [class, city])

2782: kqml_kv (kqml297, [lex, toronto])

2806: new_message_kv(kqml294)
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5.5 L-req level

When it receives a message from the parser, Alma determines that the mes-
sage content is a user utterance and hence asserts this fact in the database
as shown below (2808). In addition, it realizes that the syntax of the ut-
terance exists in its database as kgmi_kv and kgml_head assertions.? Alma
updates the list of utterances that it maintains to include the new message
as an utterance. As a result, kqml294 gets added to the list of utterances
as shown below(2814).

2808: lreq(utterance(kqml294), kqml294)
2814: utt_list([kqml294, kqml200, kqml98, ...]1))

Once L-req level processing is completed, Alma reasons that the I-req
level processing has to be carried out. The specific axiom that causes this
reasoning is shown in (19). This uses the fif construction, which means
that a new compute_ireq formula will be triggered for each new utterance.
Having this formula in the database will also (under normal circumstances)
trigger a call to carne to produce the ireq representation.

(19) fif(lreq(utterance(1D),ID),

conclusion(compute_ireq(ID))).

5.6 I-req level

At the T-req level, Alma requests from Carne an initial interpretation of the
utterance. Carne uses the parser output represented in logic as kqml_kv
and kgml_head assertions, to produce the initial interpretation. Some of the
assertions that Carne makes in the Alma database during the processing at
this level are listed below.

2823: ireq(type(kqml294, sa-request), kqml294)
2825: ireq(obj(kqml294, v11868), kqml294)
2830: ireq(lex(v11868, toronto), kqml294)
2832: ireq(class(v11868, city), kqml294)

2834: ireq(obj (kqml294, v11879), kqml294)
2837: ireq(at-loc(v11879, v11868), kqul294)
2841: ireq(class(v11879, train), kqml294)
2843: ireq(obj(kqml294, v11916), kqml294)
2848: ireq(lex(v11916, montreal), kqml294)
2850: ireq(class(v11916, city), kqml294)

2852: ireq(path(kqml1294, v11908), kqml294)
2853: ireq(to(v11908, v11916), kqml294)

2855: ireq(sem(kqml294, v11855), kqml294)
2860: ireq(1lf(v11855, [move, v11879, v11916]), kqml294)
2861: ireq(lex(v11879, null), kqml294)

2867: done(compute_ireq(kqml294))

Some examples of the kind of information in this interpretation include:
o identifying the speech act type of the utterance (eg., 2823)

o identifying the different objects (eg., 2843) and paths (eg., 2852) men-
tioned in the utterance

e associating the properties mentioned in the utterance to their corre-

sponding objects/paths (eg., 2830, 2832, 2853)

2These are syntactic operators representing frame-type objects with a head and mul-
tiple keyword-value pairs.
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e identifying the semantics of the utterance (eg., 2855, 2860)

Note in particular assertion (2837). Currently, the system automatically
translates assoc-with (in the parser message) into at-loc (at location)
when moving from the parser message to the I-Req level. This is a temporary
shortcut in the implementation — once we have enhanced Alma to reason
about other interpretations of ‘associated with’, Carne will be modified to
pass back assoc-with at the I-Req level, to be disambiguated at the D-Req
level.

In the present scenario, the semantics of the utterance represented us-
ing 2855 and 2860 is move v11879 to v11916 where v11916 is known to be
montreal from 2848. However, v11879 has a lex value of null. All objects
that have a null value for lez, are considered underspecified, since the ref-
erents for such objects are not directly available from the parser output. In
the scenario under consideration, v11879 refers to the object designated by
the user as Toronto train. In order to find the referent for such objects, ad-
ditional background information is required (e.g., from the knowledge base
in the domain problem solver) .

Once the initial interpretation is done, 2867 gets asserted and hence
Alma reasons that D-req level processing has to be done to disambiguate
all ambiguous objects. The axiom that triggers this reasoning is shown in

(20).

(20) fif(done(compute_ireq(I1D)),
conclusion(compute_dreq(ID))).

5.7 D-req level

At this level, ambiguous objects get disambiguated and the user intention
is determined. In the present scenario, we would like object v11879 to be
disambiguated as either metroliner or bullet as appropriate since those are
the two trains at Toronto. We would also wish the user intention to be
determined as: “move the object v11879 to Montreal”.

The first step in the disambiguation process requires binding all inten-
sional objects in IREQ to internally known object names. This is easy for
names, since we assume a unique, fixed binding. For more complex refer-
ring expressions, this involves getting enough domain information to disam-
biguate the objects. In the current scenario, Alma requests that Carne find
the current position of the trains in the system to determine the candidate
set for the unbound object variable (v11879). Carne responds by asserting
this set in the Alma database as follows:

2985: dreq(candidates(v11879, [metroliner, bullet]), kqml294)

The choice of candidate is determined by coherence with previous infor-
mation about user intentions. In the simple case, where no such information
exists, ACDM simply picks the first item, and asserts that as the identifica-
tion of the variable as shown below (2994). This now leads to an ascription
of the disambiguated semantics of the request as the intention of the user,
represented in 2997. We will return to the more general issue of reference
resolution and user intentions in section 5.13 below, when considering the
correction case.

2994: dreq(lex(v11879, [metroliner]), kqml294)
2997: move([metroliner], montreal)
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When the D-req has been fully specified, Alma proceeds to P-act pro-
cessing using the rule in (21).

(21) fif(done(compute_dreq(ID)),
conclusion(compute_pact(ID))).

5.8 P-act level

The response strategy is determined at this level. If the user intention in-
volves changing the state of the world, then Alma requests Carne to obtain a
plan to cause the required change of state. Carne consults with the problem
solver and asserts the plan in the Alma database as a series of assertions as
shown below. Carne also asserts the state in which the problem solver will
be, if the plan were to be implemented (3205).

3176: pact(plan(plan679), kqml294)

3200: pact(action(kqml294, plan679, go709), kqml294)
3201: pact (type(go709, go), kqml294)

3202: pact(from(go709, toronto), kqml294)

3203: pact(to(go709, montreal), kqml294)

3204: pact(track(go709, montreal-toronto), kqml294)
3205: pact(psstate(kqml294, pss879), kqml294)

3207: done (compute_pact (kqml294))

The completion of the P-act level processing would cause the assertion
of 3207, which in turn would trigger the axiom in (22).

(22) fif(done(compute_pact(1D)),

conclusion(compute_eact(1D))).

5.9 E-act level

Changing the problem solver (domain) state by executing the plan specified
at the previous level and providing a response to the user are done at this
level. Alma instructs carne to send messages to both the domain problem
solver, to execute the above plan, and also to send a message to the output
manager, to communicate this change of state to the user. The output
manager currently has three choices of modality in which to express this
information:

e NL Speech (via a call to the speech output module)
e NL Text (by displaying the text on the display window)

e Graphical Display (via a call to the Display manager to move or high-
light trains, or draw or highlight paths)

Currently, for an execution like moving a train, the output manager
chooses to use all three modalities, simultaneously speaking and displaying
the message indicating the path to be used, while drawing and highlighting
the path on the map.

Other kinds of output include coordinated use of modalities (such as
highlighting a train or city to indicate reference), or use of only verbal
modalities, such as for a clarification request.

Once Alma requests Carne to provide the natural language response
and change the problem solver state if required, E-act level processing is
complete. Hence, the following formula (3275) is asserted.

3275: done (compute_eact (kqml294))
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5.10 O-act level

This level keeps track of domain changes; particularly it deals with con-
firming that the actions that the system initiated to cause a change in the
domain state have been performed correctly. For instance, if a plan is suc-
cessfully executed, then Alma makes a note of that fact.

In this scenario, the system is waiting for positive feedback from the user
to deduce successful execution. In our example, instead of receiving such
confirmation, the user provides a correction, “No, Send the Toronto Train
to Montreal.”

5.11 Handling rejection utterances

The parser output for the “no” utterance can be seen in Figure 4.

(TELL :CONTENT
(SA-REJECT :FOCUS NIL :0BJECTS NIL :PATHS NIL :DEFS NIL
:SEMANTICS :NO :NOISE NIL :SOCIAL-CONTEXT NIL
:RELIABILITY 100 :MODE KEYBOARD
:SYNTAX ((:SUBJECT) (:0BJECT)) :SETTING NIL :INPUT (NO))
:RE 4)

Figure 4: Parser Output for “No”

This rejection goes through the previously mentioned levels of process-
ing, and when it reaches the D-req level, the details of the previous utterance
processing are examined to determine the intention behind the current utter-
ance. (Although we plan to implement a more intelligent version of context
sensitivity in the future, in our current implementation, we assume that the
rejection implied in the statement “No.” applies to the immediately pre-
ceding user utterance or system response.) If the preceding utterance was a
request type utterance then we represent the intention behind the current
utterance as the negation of the intention that has been ascribed to the
previous utterance. In the current case, this causes the following assertion
to be made in the Alma database, which in turn causes a contradiction in
the system’s beliefs.

3448: not (move ([metroliner], montreal))

The contradiction detection inference rule will now be applied, causing
both 2997 and 3448 to be distrusted and 3450 to be asserted. Here 1494
denotes the time at which the contradiction was detected and the other
numbers are all formula identifiers.

3450: contra(3448, 2997, 1494)
3451: distrusted (2997, 1494)
3452: distrusted (3448, 1494)

Assertion 3450 triggers the rule shown in Figure 5 which causes the most
recently added of the contradicting formulas to be reinstated resulting in
the following new assertion.?

3This is just one of many contradiction resolution strategies we are considering. This
one is appropriate in the case of new information that is assumed to take precedence over
prior information. In other cases, however, one would prefer more entrenched information,
or other, perhaps perceptually-guided resolution strategies. Active logic and the Alma
implementation give the expressive power needed to reason about these possibilities and
consider which is best for which purposes).
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fif(and(contra(X,Y,Z),
and(eval_bound(name_to_time(X,T1), [X]),
and(eval_bound(name_to_time(Y,T2), [Y]),
eval_bound(( T2 > T1 -> ReForm = X; ReForm=Y), [T1, T2,X,Y])))),
conclusion(reinstate(ReForm))).

Figure 5: Recency-based Contradiction handling axiom

3455: not (move([metroliner], montreal))

Thus the system, will now believe that “metroliner” should not be sent
to Montreal and this information will be used in interpreting the next ut-
terances especially in cases of reference resolution.

5.12 Interpreting the correction

Now the user repeats “Send the Toronto train to Montreal”. Initial pro-
cessing is the same as for the first utterance. When calculating D-req, when
disambiguating “the Toronto train” we again have two choices: Bullet and
Metroliner. But since Metroliner has been proscribed from moving to Mon-
treal in the cancellation above, the disambiguation procedure picks Bullet:

3934: dreq(lex(v11992, [bullet]), kqml416)

This then results in the disambiguated user intention: Send Bullet to
Montreal. The same steps are carried out for P-act and E-act. However,
we assume that this time the user gives positive feedback, e.g., by going on
to another instruction, or acknowledging, and we get at the O-act level:

3287: oact(plan_confirmed(kqm1294, kqml390), kqml294)

But what if the user rejects that too and again repeats the original
request? Given the state of the system, there will be no unrejected possi-
bilities left. In this case, ACDM initiates a clarification subdialog with the
user, by issuing the request: “Please specify the train by name” to find out
exactly which train is to be sent. A specific train name will over-ride the
previous intention information.

5.13 Intention-based Reference Resolution

Now let us re-consider the more general case of reference resolution, espe-
cially with consideration of the intentional constraints in (23) and (24).

(23) not(move([bullet],Montreal))

(24) not(move([metroliner],Montreal))

There are three relevant cases for using this information in guiding ref-
erence resolution in a case like formula 2985, with two plausible candidates.
We take these in turn:

Without (23) and (24) in Alma database If neither of constraints
(23) and (24) are present in the Alma database, both “Bullet” and “Metro-
liner” are equally likely candidates to resolve the contradiction. Therefore,
as in the original sentence, ACDM chooses the first item in the list.
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With (24) in Alma database If we only know (24), as in the correction
case, above, the only likely possibility to resolve the reference for object
v11879 is bullet and hence the system asserts the following intention in the
Alma database.

3937: move([bullet], montreal)

With both (23) and (24) in Alma database If both (23) and (24)
are present in the database, none of the candidates can be used to resolve
the reference for object v11879. Hence, it would be advisable to get help
from the user, by asking a clarifying question about the user’s intention. In
order to denote that the system has not been able to resolve the reference,
ACDM asserts 5082 in its database. This will lead to a clarification request,
as mentioned above.

5082: ref_confusion(kqml294, v11879, [bullet, metroliner]))

5.14 Evaluation

We have yet to undergo detailed user evaluations with the Maryland Trains
system. However informal tests, such as the one described in this section,
indicate important improvements over a purely object-level dialogue sys-
tem, such as the original Rochester TRAINS-96 system. Given repetitions
of “send the Toronto Train to Montreal”, .... “No,...”, the Rochester sys-
tem will keep sending Metroliner (or whichever engine its separate reference
resolution component selects) to Montreal. It never realizes that there is a
miscommunication and therefore can’t correct it, seeing each cancellation
and action directive as sequential changes of the user’s plan, regardless of the
lack of overall coherence. ACDM, on the other hand. as described above,
will recognize the contradiction and use this information to act differently
on subsequent intepretation: clarifying if necessary, or simply performing a
revised resolution if possible. This difference is a result of the deliberation
ACDM does about its own reasoning and in particular about its previous
conclusions regarding the user’s intentions, which are understood to be rel-
evant to understanding the user’s current requests.

6 Related work and Discussion

There have been a number of multi-level approaches to dialogue. Grosz
and Sidner presented a three-level structure composed of Linguistic Struc-
ture, in which utterances are conjoined into segments, Intentional Struc-
ture, in which the dominance and satisfaction-precedence relations of dis-
course segment purposes are related, and attentional state, in which fo-
cus spaces were stacked, for use in reference resolution [Grosz and Sid-
ner, 1986]. Litman and Allen looked at discourse-level and domain-level
plans, seeing the former as a class of meta-plans [Litman and Allen, 1987,
Litman and Allen, 1990]. Lambert and Carberry generalized this to also
include a layer of problem solving plans [Lambert and Carberry, 1991]. Lu-
perfoy looked at three types of structure relevant for reference: linguistic
structure (the words mentioned), discourse pegs (the entities of the con-
versation, independent of the words used to refer to them, or the “real”
objects they refer to), and belief (the actual entities) [LuperFoy, 1991], with
different rates of decay for the ability to refer to previous entities in these
structures.
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While these works were influential, they do not directly address the issues
we have been concerned with here, of reasoning about the internal aspects of
sub-dialogues, and in particular, supporting reasoning about contradictions.

Other systems have computed something like the six levels presented
here, as part of their process of engaging in dialogue (e.g., the Underspeci-
fied Logical form and CRT representations in the TRAINS-93 system cor-
respond to some degree to I-req and D-req [Poesio, 1994, Traum et al.,
1996]). Where we are different from most researchers is in claiming the
utility of keeping these levels as distinct representations for use as context
in processing further utterances. Something like this is clearly necessary
to deal appropriately with the examples we presented in Section 3. The
Rochester system would do the same thing in each case: undo the previous
action and interpret the second request in the restored context before the
original request was fulfilled, with whatever train it decided upon for “the
Boston Train” in (12). The ability to use the incoherence as a resource for
recomputing a referential anchor or repairing is not available, nor is there
an option of complaining about the seeming incoherence itself.

Keeping the I-level and D-level distinct is also important for sending
appropriate messages back to the user. The I-level should be close to the
linguistic structure of the user interaction, while the D-level should be close
to what domain reasoners actually use. Conflating the two can lead to
an inability to provide comprehensible feedback to the user. For example,
the MIT Galaxy system [Seneff et al., 1996] has several domain special-
ists, each used for a different kind of task. These domain reasoners use
different ontologies, and thus, in their discourse representation (essentially
the D-level), “Boston” is ambiguous between a TOWN in the CityGuide do-
main and a CITY in the AirTravel domain. The system may not be able
to resolve which ontology object is being referred to, but surely a user not
intimately familiar with the system internals would be very confused by a
disambiguating query such as; “Do you mean Boston the city, or Boston
the town”. Fleshing this out with descriptions of the ontology types, such
as “Boston the geographical area or Boston the point location” is not likely
to help. Here, at the ontology of natural conversation (I-level), “Boston” is
unambiguously the kind of entity that one could fly to or from, and which
can contain restaurants, so any query would have to attack a different av-
enue for disambiguation, relating to the activities such as restaurant finding
or flight booking, rather than to the kind of entity.

The approach that we are closest to, is perhaps [McRoy et al., 1997],
who also exploit the utility of maintaining multiple levels of representation
as context. While there are some differences in the particular levels and
type of structure assumed, a larger difference in approach is the uniformity
of the representation language. McRoy, Haller, and Ali use a uniform ap-
proach, representing all aspects of processing in the same representation
language, SNePS [Shapiro, 1979]. This does allow uniform reasoning and
very powerful access to all parts of the representation, but also places limits
on the kinds of language and domain subsystems that can be easily added
to the system. Our approach is rather to treat the internals of the other
subsystems more or less as black-boxes, interpreting only the final products
within the logic.
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