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Abstract
Accurately estimating the person’s head position and ori-
entation is an important task for a wide range of applica-
tions such as driver awareness and human-robot interac-
tion. Over the past two decades, many approaches have
been suggested to solve this problem, each with its own
advantages and disadvantages. In this paper, we present
a probabilistic framework called Monocular Adaptive
View-based Appearance Model (MAVAM) which inte-
grates the advantages from two of these approaches: (1)
the relative precision and user-independence of differen-
tial registration, and (2) the robustness and bounded drift
of keyframe tracking. In our experiments, we show how
the MAVAM model can be used to estimate head posi-
tion and orientation in real-time using a simple monocu-
lar camera. Our experiments on two previously published
datasets show that the MAVAM framework can accurately
track for a long period of time (>2 minutes) with an aver-
age accuracy of 3.9◦ and 1.2in with an inertial sensor and
a 3D magnetic sensor.

1 Introduction
Real-time, robust head pose estimation algorithms have
the potential to greatly advance the fields of human-
computer and human-robot interaction. Possible appli-
cations include novel computer input devices (Fu and
Huang, 2007), head gesture recognition, driver fatigue
recognition systems (Baker et al., 2004), attention aware-
ness for intelligent tutoring systems, and social interac-

tion analysis. Pose estimation may also benefit secondary
face analysis, such as facial expression recognition and
eye gaze estimation, by allowing the 3D face to be warped
to a canonical frontal view prior to further processing.

Two main paradigms exist for automatically estimat-
ing head pose. Dynamic approaches, also called differen-
tial or motion-based approaches, track the position and
orientation of the head through video sequences using
pair-wise registration (i.e., transformation between two
frames). Their strength is user-independence and higher
precision for relative pose in short time scales, but they
are typically susceptible to long time scale accuracy drift
due to accumulated uncertainty over time. They also
usually require the initial position and pose of the head
to be set either manually or using a supplemental au-
tomatic pose detector. keyframe-based approaches, also
called template-based approaches, use information previ-
ously acquired about the user (automatically or manually)
to estimate the head position and orientation. These ap-
proaches are more accurate and suffer only bounded drift
over time, but they lack the relative precision of dynamic
approaches.

In this paper we present a Monocular Adaptive View-
based Appearance Model (MAVAM) which integrates
these two estimation paradigms described above in one
probabilistic framework. The proposed approach has the
high precision of a motion-based tracker and does not drift
over time. MAVAM was specifically designed to estimate
6 degrees-of-freedom (DOF) of head pose in real-time
from a single monocular camera with known internal cal-
ibration parameters (i.e., focal length and image center).

The following section describes previous work in head

1



pose estimation and explains the difference between
MAVAM and other integration frameworks. Section 3
describes formally our view-based appearance model
(MAVAM) and how it is adapted automatically over time.
Section 4 explains the details of the estimation algorithms
used to apply MAVAM to head pose tracking. Section 5
describes our experimental methodology and show our
comparative results.

2 Previous Work
Over the past two decades, many techniques have been
developed for estimating head pose. Very accurate shape
models are possible using the Active Appearance Model
(AAM) methodology (Cootes et al., 2001), such as was
applied to 3D head data in (Blanz and Vetter, 1999). How-
ever, tracking 3D AAMs with monocular intensity images
is currently a time-consuming process, and requires that
the trained model be general enough to include the class
of the user being tracked.

Early work in the dynamic paradigm assumed sim-
ple shape models (e.g., planar(Black and Yacoob, 1995),
cylindrical(La Cascia et al., 2000), or ellipsoidal(Basu
et al., 1996)). Tracking can also be performed with a 3D
face texture mesh (Schodl et al., 1998) or 3D face feature
mesh (Wiskott et al., 1997). Some recent work looked
morphable models rather than rigid models (Brand, 2001;
Bregler et al., 2000; Torresani and Hertzmann, 2004).
Differential registration algorithms are known for user-
independence and high precision for short time scale es-
timates of pose change, but they are typically susceptible
to long time scale accuracy drift due to accumulated un-
certainty over time.

Some earlier work in keyframe-based paradigm include
nearest-neighbors prototype methods (Wu and Trivedi,
2005; Fu and Huang, 2006) and template-based ap-
proaches (Kjeldsen, 2001). Vacchetti et al. suggested a
method to merge online and offline keyframes for stable
3D tracking (Vacchetti et al., 2003). These approaches are
more accurate and suffer only bounded drift over time, but
they lack the relative precision of dynamic approaches.

Morency et al. (Morency et al., 2003) presented the
Adaptive View-based Appearance Model (AVAM) for
head tracking from stereo images. MAVAM general-
izes the AVAM approach by operating on intensity im-
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Figure 1: Monocular Adaptive View-based Appear-
ance Model (MAVAM). The pose of the current frame
xt is estimated using the pose-change measurements from
two paradigms: differential tracking yt

t−1, and keyframe
tracking yt

k2
. During the same pose update process (de-

scribed in Section 3.3), the poses {xk1 , xk2 , ...} from
keyframes acquired online will be automatically adapted.

ages from a single monocular camera. This generalization
faced two difficult challenges:

• Segmenting the face and selecting base frame set
without any depth information by using a multiple
face hypotheses approach (described in Section 3.1).

• Computing accurate pose-change estimation be-
tween two frames with only intensity images using
iterative Normal Flow Constraint (described in Sec-
tion 4.1);

MAVAM also includes some new functionality such as the
keyframe management and a 4D pose tessellation space
for the keyframe acquisition (see Section 3.4 for details).
The following two sections formally describe this gener-
alization.
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3 Monocular Adaptive View-based
Appearance Model

The two main components of the Monocular Adap-
tive View-based Appearance Model (MAVAM) are the
view-based appearance model M which is acquired and
adapted over time, and the series of change-pose measure-
ments Y estimated every time a new frame is grabbed.
Figure 1 shows an overview our MAVAM framework. Al-
gorithm 1 presents a high-level overview of the main steps
for head pose estimation using MAVAM.

A conventional view-based appearance model (Cootes
et al., 2002) consists of different views of the same object
of interest (e.g., images representing the head at differ-
ent orientations). MAVAM extends the concept of view-
based appearance model by associating a pose and covari-
ance with each view. Our view-based model M is for-
mally defined as

M = {{Ii, xi},ΛX }

where each view i is represented by Ii and xi which
are respectively the intensity image and its associated
pose modeled with a Gaussian distribution, and ΛX
is the covariance matrix over all random variables xi.
For each pose xi, there exist a sub-matrix Λxi in the
diagonal of ΛX that represents the covariance of the
pose xi. The poses are 6 dimensional vector con-
sisting of the translation and the three Euler angles
[ T x T y T z Ωx Ωy Ωz ]. The pose estimates in
our view-based model will be adapted using the Kalman
filter update with pose change measurements Y as ob-
servations and the concatenated poses as the state vector.
Section 3.3 describes this adaptation process in detail.

The views (Ii, xi) represent the object of interest (i.e.,
the head) as it appears from different angles and depths.
Different pose estimation paradigms will use different
type of views:

• A differential tracker will use only two views:
the current frame (It, xt) and the previous
frame (It−1, xt−1).

• In a keyframe-based (or template-based) approach
there will be 1 + n views: the current frame (It, xt)
and the j = 1...n keyframes {IKj , xKj}. Note that

Algorithm 1 Tracking with a Monocular Adaptive View-
based Appearance Model (MAVAM).

for each new frame (It) do
Base Frame Set Selection: Select the nb most sim-
ilar keyframes to the current current frame and add
them to the base frame set. Always include the pre-
vious frame (It−1, xt−1) in the base frame set (see
Section 3.1);
Pose-change measurements: For each base frame,
compute the relative transformation yt

s, and its co-
variance Λyt

s
, between the current frame and the base

frame (see Sections 3.2 and 4 for details);
Model adaptation and pose estimation: Simulta-
neously update the pose of all keyframes and com-
pute the current pose xt by solving Equations 1 and 2
given the pose-change measurements {yt

s,Λyt
s
} (see

Section 3.3);
Online keyframe acquisition and management:
Ensure a constant tessellation of the pose space in the
view-based model by adding new frames (It, xt) as
keyframe if different from any other view in M, and
by removing redundant keyframes after the model
adaptation (see Section 3.4).

end for

MAVAM acquires keyframes online and MAVAM
adapts the poses of these keyframes during tracking
so n, {xKj} and ΛX change over time.

Since MAVAM integrates two estimation paradigms, its
view-based model M consists of 2 + n views: the cur-
rent frame (It, xt), the previous frame (It−1, xt−1), and
n keyframe views {IKj , xKj}, where j = 1...n. The
keyframes are selected online to best represent the head
under different orientation and position. Section 3.4 will
describe the details of this tessellation.

3.1 Base Frame Set Selection
The goal of the base frame set into selection process is to
find a subset of views (base frames) in the current view-
based appearance modelM that are similar in appearance
(and implicitly in pose) to the current frame It. This step
reduces the computation time since pose-change measure-
ments will be computed only on this subset.
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To perform good base frame set selection (and pose-
change measurements) we need to segment the face in the
current frame. In the original AVAM algorithm (Morency
et al., 2003), face segmentation was simplified by using
the depth images from the stereo camera; with only an
approximate estimate of the 2D position of the face and
a simple 3D model of the head (i.e., a 3D box), AVAM
was able to segment the face. Since MAVAM uses only
a monocular camera model, its base frame set selection
algorithm is necessarily more sophisticated. Algorithm 2
summarizes the base frame set selection process.

Algorithm 2 Base Frame Set Selection Given the cur-
rent frame It and view-based model M, returns a set of
selected base frames {Is, xs}.

Create face hypotheses for current frame Based on
the previous frame pose xt−1 and its associated co-
variance Λxt−1 , create a set of face hypotheses for the
current frame (see Section 3.1 for details). Each face
hypothesis is composed of a 2D coordinate and and a
scale factor representing the face center and its approx-
imate depth.
for each keyframe (IKj , xKj ) do

Compute face segmentation in keyframe Position
the ellipsoid head model (see Section 4.1) at pose
xKj , back-project in image plane IKj and compute
valid face pixels
for each current frames face hypothesis do

Align current frame Based on the face hypoth-
esis, scale and translate the current image to be
aligned with center of the keyframe face segmen-
tation.
Compute distance Compute the L2-norm dis-
tance between keyframe and the aligned current
frame for all valid pixel from the keyframe face
segmentation.

end for
Select face hypothesis The face hypothesis with
the smallest distance is selected to represent this
keyframe.

end for
Base frame set selection Based on their correlation
scores, add the nb best keyframes in the base frame
set. Note that the previous frame (It−1, xt−1) is always
added to the base frame set.

The ellipsoid head model used to create the face mask
for each keyframe is a half ellipsoid with the dimensions
of an average head (see Section 4.1 for more details). The
ellipsoid is rotated and translated based on the keyframe
pose xKj and then projected in the image plane using the
camera’s internal calibration parameters (focal length and
image center).

The face hypotheses set represents different positions
and scales of where the face could be in the current frame.
The first hypothesis is created by projecting pose xt−1

from the previous frame in the image plane of the cur-
rent frame. Face hypotheses are created around this first
hypothesis based on the trace of the previous pose co-
variance tr(Λxt−1). If tr(Λxt−1) is larger than a preset
threshold, face hypotheses are created around the first hy-
pothesis with increments of one pixel along both image
plane axes and of 0.2 meters along the Z axis. Thresholds
were set based on preliminary experiments and the same
values used for all experiments. For each face hypothesis
and each keyframe, a L2-norm distance is computed and
the nb best keyframes are then selected to be added in the
base frame set. The previous frame (It−1, xt−1) is always
added to the base frame set.

3.2 Pose-Change Measurements

Pose-change measurements are relative pose differences
between the current frame and one of the other views in
our model M. We presume that each pose-change mea-
surement is probabilistically drawn from a Gaussian dis-
tribution N (yt

s|xt − xs,Λyt
s
). By definition pose incre-

ments have to be additive, thus pose-changes are assumed
to be Gaussian. Formally, the set of pose-change mea-
surements Y is defined as:

Y =
�
yt

s,Λyt
s

�

Different pose estimation paradigms will return differ-
ent pose-change measurements:

• The differential tracker compute the relative pose be-
tween the current frame and the previous frame, and
returns the pose change-measurements yt

t−1 with co-
variance Λt

t−1. Section 4.1 describes the view regis-
tration algorithm.
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• The keyframe tracker uses the same view registration
algorithm described in Section 4.1 to compute the
pose-change measurements {yt

Ks
,Λyt

Ks
} between

the current frame and the selected keyframes frames.

MAVAM integrates two estimation paradigms. Sec-
tion 4 describes how the pose-change measurements are
computed for head pose estimation.

3.3 Model Adaptation and Pose Estimation
To estimate the pose xt of the new frame based on the
pose-change measurements, we use the Kalman filter
formulation described in (Morency et al., 2003). The
state vector X is the concatenation of the view poses
{xt, xt−1xK0 , xK1 , xK2 , . . .} as described in Section 3
and the observation vector Y is the concatenation of
the pose measurement {yt

t−1, y
t
K0

, yt
K1

, yt
K2

, . . .} as de-
scribed in the previous section. The covariance between
the components of X is denoted by ΛX .

The Kalman filter update computes a prior for
p(Xt|Y1..t−1) by propagating p(Xt−1|Y1..t−1) one step
forward using a dynamic model. Each pose-change mea-
surement yt

s ∈ Y between the current frame and a base
frame of X is modeled as having come from:

yt
s = Ct

sX + ω,

Ct
s =

�
I 0 · · · −I · · · 0

�
,

where ω is Gaussian and Ct
s is equal to I at the view t,

equal to −I for the view s and is zero everywhere else.
Each pose-change measurement (yt

s,Λyt
s
) is used to up-

date all poses using the Kalman Filter state update:

[ΛXt ]
−1 =

�
ΛXt−1

�−1 + Ct
s
�Λ−1

yt
s

Ct
s (1)

Xt = ΛXt

��
ΛXt−1

�−1Xt−1 + Ct
s
�Λ−1

yt
s

yt
s

�
(2)

After individually incorporating the pose-changes
(yt

s,Λyt
s
) using this update, Xt is the mean of the

posterior distribution p(M|Y).

3.4 Online Keyframe Acquisition and Man-
agement

An important advantage of MAVAM is the fact that
keyframes are acquired online during tracking. MAVAM

generalized the previous AVAM (Morency et al., 2003)
by (1) extending the tesselation space from 3D to 4D by
including the depth of the object as the forth dimension
and (2) adding an extra step of keyframe management to
ensure a constant tesselation of the pose space.

After estimating the current frame pose xt, MAVAM
must decide whether the frame should be inserted into the
view-based model as a keyframe or not. The goal of the
keyframes is to represent all different views of the head
while keeping the number of keyframes low. In MAVAM,
we use 4 dimensions to model the wide range of appear-
ance. The first three dimensions are the three rotational
axis (i.e., yaw, pitch and roll) and the last dimension is
the depth of the head. This fourth dimension was added
to the view-based model since the image resolution of the
face changes when the user moves forward or backward
and maintaining keyframes at different depths improves
the base frame set selection.

In our experiments, the pose space is tessellated in bins
of equal size: 10 degrees for the rotational axis and 100
millimeters for the depth dimension. These bin sizes were
set to the pose differences that our pose-change measure-
ment algorithm (described in Section 4.1) can accurately
estimate.

The current frame (It, xt) is added as a keyframe if ei-
ther (1) no keyframe exists already around the pose xt and
its variance is smaller than a threshold, or (2) the keyframe
closest to the current frame pose has a larger variance than
the current frame. The variance of xi is defined as the
trace of its associated covariance matrix Λxi .

The keyframe management step ensures that the orig-
inal pose tessellation stays constant and no more than
one keyframe represents the same space bin. During
the keyframe adaptation step described in Section 3.3,
keyframe poses are updated and some keyframes may
have shifted from their original poses. The keyframe
management goes through each tesselation bin from our
view-based model and check if more than one keyframe
pose is the region of that bin. If this is the case, then
the keyframe with the lowest variance is kept while all
the other keyframes are removed from the model. This
process improves the performance of our MAVAM frame-
work by compacting the view-based model.
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4 Monocular Head Pose Estimation
In this subsection we describe in detail how the pose-
change measurements yt

s are computed for the different
paradigms. For the differential and keyframe tracking,
yt

t−1 and yt
Kj

are computed using Iterative Normal Flow
Constraint described in the next section.

4.1 Monocular Iterative Normal Flow Con-
straint

Our goal is to estimate the 6-DOF transformation between
a frame with known pose (Is, xs) and a new frame with
unknown pose It. Our approach is to use a simple 3D
model of the head (half of an ellipsoid) and an iterative
version of the Normal Flow Constraint (NFC) (Vedula
et al., 1999). Since pose is known for the base frame
(Is, xs), we can position the ellipsoid based on its pose
xs and use it to solve the NFC linear system. The Algo-
rithm 3 shows the details of our iterative NFC.

5 Experiments
The goal is to evaluate the accuracy and robustness of
the MAVAM tracking framework on previously published
datasets. The following section describes these datasets
while Section 5.2 presents the details of the models com-
pared in our experiments. Our results are shown in Sec-
tions 5.3 and 5.4. Our C++ implementation of MAVAM
runs at 12Hz on one core of an Intel X535 Quad-core pro-
cessor. The system was automatically initialized using the
static pose estimator described in the previous section.

5.1 Datasets
We evaluated the performance of our approach on two
different datasets: the BU dataset from La Cascia et

al (La Cascia et al., 2000) and the MIT dataset from
Morency et al. (Morency et al., 2003).

BU dataset consists of 45 sequences (nine sequences
for each of five subjects) taken under uniform illumination
where the subjects perform free head motion including
translations and both in-plane and out-of-plane rotations.
All the sequences are 200 frames long (approximatively
seven seconds) and contain free head motion of several

Algorithm 3 Iterative Normal Flow Constraint Given
the current frame It, a base frame (Is, xs) and the inter-
nal camera calibration for both images, returns the pose-
change measurement yt

s between both frames and its as-
sociated covariance Λyt

s
.

Compute initial transformation Set initial value for
yt

s as the 2D translation between the face hypotheses for
the current frame and the base frame (see Section 3.1
Texture the ellipsoid model Position the ellipsoid head
model at xs + yt

s. Map the texture from Is on the ellip-
soid model by using the calibration information
repeat

Project ellipsoid model Back-project the textured
ellipsoid in the current frame using the calibration
information.
Normal Flow Constraint Create a linear system by
applying the normal flow constraint (Vedula et al.,
1999) to each valid pixel in the current frame.
Solve linear system Estimate ∆yt

s
by solving the

NFC linear system using linear least square. Update
the pose-change measurement yt

s
(new) = yt

s
(old) +

∆yt
s

and estimate the covariance matrix Λyt
s

(Law-
son and Hanson, 1974).
Warp ellipsoid model Apply the transformation
∆yt

s
to the ellipsoid head model

until Maximum number of iterations reached or con-
vergence: trace(Λyt

s
) < TΛ

subjects. Ground truth for these sequences was simul-
taneously collected via a “Flock of Birds” 3D magnetic
tracker (??, flock). The video signal was digitized at 30
frames per second at a resolution of 320x240. Since the
focal length of the camera is unknown, we approximated
it to 500 (in pixel) by using the size of the faces and know-
ing that they should be sitting approximately one meter
from the camera. This approximate focal length add chal-
lenges to this dataset. MIT dataset contains 4 video se-
quences with ground truth poses obtained from an Iner-

tia Cube
2 sensor. The sequences were recorded at 6 Hz

and the average length is 801 frames (∼133sec). Dur-
ing recording, subjects underwent rotations of about 125
degrees and translations of about 90cm, including trans-
lation along the Z axis. The sequences were originally
recorded using a stereo camera from Videre Design (De-
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Technique Tx Ty Tz
MAVAM 1.00in 0.88in 1.82in
Technique Pitch Yaw Roll
MAVAM 3.73◦ 5.44◦ 2.79◦

Table 1: Average accuracies on BU dataset (La Cascia
et al., 2000). MAVAM successfully tracked all 45 se-
quences while La Cascia et al. (La Cascia et al., 2000)
reported an average percentage of tracked frame of only
∼75%.

sign, 2000). For our experiments, we used only the left
images. The exact focal length was known. By sensing
gravity and earth magnetic field, Inertia Cube

2 estimates
for the axis X and Z axis (where Z points outside the cam-
era and Y points up) are mostly driftless but the Y axis can
suffer from drift. InterSense reports a absolute pose accu-
racy of 3◦RMS when the sensor is moving. This dataset
is particularly challenging since the recorded frame rate
was low and so the pose differences between frames will
be larger.

5.2 Models
We compared two models for head pose estimation: our
approach MAVAM as described in this paper, and the
original stereo-based AVAM (Morency et al., 2003).

MAVAM The Monocular Adaptive View-based Ap-
pearance Model (MAVAM) is the complete model as de-
scribed in Section 3. This model integrates two pose es-
timation paradigms: differential tracking and keyframe
tracking. It is applied on monocular intensity images.

3D AVAM The stereo-based AVAM is the original
model suggested by Morency et al. (Morency et al.,
2003). The results for this model are taken directly from
their research paper. Since this model uses intensity im-
ages as well as depth images, we should expect better ac-
curacy for this 3D AVAM.

5.3 Results with BU dataset
The BU dataset presented in (La Cascia et al., 2000) con-
tains 45 video sequences from 5 different people. The
results published by La Cascia et al. are based on three
error criteria: the average % of frames tracked, the po-

Technique Pitch Yaw Roll
MAVAM 5.3◦ ± 15.3◦ 4.9◦ ± 9.6◦ 3.6◦ ± 6.3 ◦

3D AVAM 2.4◦ 3.5◦ 2.6◦

Table 2: Average rotational accuracies on MIT
dataset (Morency et al., 2003). MAVAM performs al-
most as well as the 3D AVAM which was using stereo
calibrated images while our MAVAM works with monoc-
ular intensity images.

sition error and the orientation error. The position and
orientation errors includes only the tracked frames and
ignores all frames with very large error. In our results,
the MAVAM successfully tracked all 45 video sequences
without losing track at any point. The Table 1 shows the
accuracy of our MAVAM pose estimator. The average ro-
tational accuracy is 3.9◦ while the average position error
is 1.2inches( 3.1cm). These results show that MAVAM is
accurate and robust even when the focal length can only
be approximated.

5.4 Results with MIT dataset
The MIT dataset presented in (Morency et al., 2003) con-
tains four long video sequences (∼2mins) with a large
range of rotation and translation. Since the ground truth
head positions were not available for this dataset, we
present results for pose angle estimates only. Table 2
shows the averaged angular error the different models.
The results for 3D AVAM were taken for the original pub-
lication (Morency et al., 2003). We can see that MAVAM
performs almost as well as the 3D AVAM which was using
stereo calibrated images while our MAVAM works with
monocular intensity images.

6 Conclusion
In this paper, we presented a probabilistic frame-
work called Monocular Adaptive View-based Appearance
Model (MAVAM) which integrates the advantages from
three of these approaches: (1) the relative precision and
user-independence of differential registration, and (2) the
robustness and bounded drift of keyframe tracking. On
two challenging 3-D head pose datasets, we demonstrated
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that MAVAM can reliably and accurately estimate head
pose and position using a simple monocular camera.
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