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Figure 1: Layers of skin reflectance which are modeled by our technique and used to render faces for novel viewpoints and lighting.

Abstract

We present a practical method for modeling layered facial re-
flectance consisting of specular reflectance, single scattering, and
shallow and deep subsurface scattering. We estimate parameters
of appropriate reflectance models for each of these layers from
just 20 photographs recorded in a few seconds from a single view-
point. We extract spatially-varying specular reflectance and single-
scattering parameters from polarization-difference images under
spherical and point source illumination. Next, we employ direct-
indirect separation to decompose the remaining multiple scattering
observed under cross-polarization into shallow and deep scattering
components to model the light transport through multiple layers of
skin. Finally, we match appropriate diffusion models to the ex-
tracted shallow and deep scattering components for different re-
gions on the face. We validate our technique by comparing ren-
derings of subjects to reference photographs recorded from novel
viewpoints and under novel illumination conditions.

1 Introduction

Realistically reproducing the appearance of the human face from
novel viewpoints and under novel complex illumination remains a
challenging problem in computer graphics due the complexity of
human facial reflectance and our keen eye for its subtleties. The
appearance of the face under given lighting conditions is the re-
sult of complex light interactions with a complex, inhomogeneous
material [Igarashi et al. 2007; Tuchin 2007]. Realistic facial re-
flectance requires a model consisting of spatially-varying specular
and diffuse reflectance which reproduces the effects of light scatter-
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ing through multiple layers of translucent tissue [Donner and Jensen
2005; Donner and Jensen 2006].

Advances in the field of 3D scanning and reflectance measurement
have enabled significant strides in the rendering of realistic faces.
However, while existing methods for accurately modeling the ap-
pearance of human skin are able to achieve impressive results, it
is not clear how to practically acquire the necessary parameters for
these models to accurately reproduce the facial appearance of live
subjects. Existing acquisition techniques are either very data in-
tensive, or they extrapolate parameters from a small exemplar skin
patch to cover the whole face, or they make simplifications to the
skin reflectance model.

This paper aims to develop a practical appearance model which is
in addition easy to incorporate in existing rendering systems. The
detail in the facial appearance model should be such that full-screen
close-ups can be faithfully reproduced. Additionally, working with
live subjects requires fast acquisition to avoid registration problems,
temporal changes in the appearance (e.g., due to sweat or blood
flow), and to enable capture of facial appearance of natural expres-
sions which are difficult to hold for more than a few seconds.

To achieve these goals, we model facial skin reflectance as a com-
bination of different layers: specular reflectance, single scattering,
and shallow and deep multiple scattering (Fig. 1). A suitable re-
flectance or scattering model is selected for each layer, and pa-
rameters are obtained using a single high-resolution still camera
to capture a small set of 20 photographs under environmental and
projected lighting conditions. For each reflectance component, we
estimate or infer high-frequency details such as albedo and normals
per pixel based on the environmental illumination patterns, while
modeling lower-frequency BRDF and scattering behavior per re-
gion based on the projected patterns. This allows for fast acquisition
and straightforward processing, while achieving a high level of re-
alism in the resulting models. Although previous research has cap-
tured and modeled some of these individual components, no exist-
ing system has acquired and modeled all of these reflectance com-
ponents together of a live subject. We demonstrate the effectiveness
of our technique with both qualitative visual comparisons as well as
quantitative validation of extracted model parameters against those
available in the literature.

In summary, the principal contributions of this work are:



1. A practical method for estimating specular reflectance and ex-
plicit modeling of single scattering of a subject from a few light-
ing conditions.

2. A practical method for estimating scattering parameters for a
data-driven multi-layer diffusion model of a subject from a
small set of photographs.

3. An integrated system for capturing detailed facial reflectance at
high resolution in just 20 photographs, recorded in a few sec-
onds.

2 Related Work

Our work builds on a range of related work in acquiring and model-
ing the shape and reflectance of complex objects including human
faces. While a wide body of work has measured and modeled dif-
fuse and specular reflectance properties of objects, we focus our
discussion on measuring and modeling the reflectance properties
of human faces due to their particular combination of specular and
multi-layer subsurface reflectance and the special requirements of
measuring these characteristics for real faces.

Modeling Skin with BRDFs Marschner et al. [1999] use an
image-based technique to obtain the aggregate BRDF of a human
forehead from photographs taken under multiple lighting direc-
tions. Marschner at al. [2000] create facial renderings by modulat-
ing the diffuse component of such a BRDF with the diffuse albedo
map estimated from multiple cross-polarized photographs of the
face. Georghiades et al. [1999] built models of facial shape and
reflectance from a small number of unknown point-source lighting
directions using an enhanced version of photometric stereo [Wood-
ham 1978]. These works assume a Lambertian reflection model,
and ignore specular reflection. To account for specular reflections,
Georghiades [2003] extend [Georghiades et al. 1999] to estimate a
single Torrance-Sparrow specular lobe across the entire face. How-
ever, they note that the lack of spatially-varying specular behavior
limits the technique’s ability to model the observed data, which lim-
its the realism of the renderings. Reflectance Sharing [Zickler et al.
2006] trades spatial resolution for angular reflectance information
to estimate spatially-varying BRDFs from a small number of pho-
tographs of a face. All of these methods model skin reflectance
solely using BRDF models, omitting the subsurface scattering be-
havior of skin. As in [Zickler et al. 2006], we estimate spatially-
varying specular reflectance parameters, but augment this with high
fidelity normal estimates and also include single scattering and sub-
surface scattering models.

Modeling Subsurface Scattering Modeling subsurface scatter-
ing behavior is important to create the soft, semi-translucent appear-
ance of skin. Without subsurface scattering, renderings of skin look
too harsh. Hanrahan and Krueger [1993] use a Monte-Carlo simu-
lation to develop local reflectance models for the single and multi-
ple scattering components of human skin and other layered tissues.
Jensen et al. [2001] introduced a practical dipole model to simu-
late scattering behavior, and show how to infer parameters from the
observation of the spread of a small white beam of light incident
on a patch of skin. Donner and Jensen [2005] extend the dipole
model to simulate transmission through and reflection from multi-
ple layers, yielding a more accurate skin rendering model. More
recently, Donner and Jensen [2006] presented an easily parameter-
ized, spectrally-accurate version of the multi-layer model. These
works mostly focus on practically modeling subsurface scattering
for rendering. However, they do not deal with obtaining spatially-
varying parameters for the dipole model or the multi-layer models.
Specialized techniques, such as [Goesele et al. 2004; Tong et al.
2005; Peers et al. 2006; Wang et al. 2008], can acquire and model a

wide variety of subsurface scattering materials, including skin, but
are limited to planar samples only, or have acquisition times that
are impractically long for human subjects. The presented method is
specifically designed to minimize the number of photographs (and
thus acquisition time) from which multi-layer scattering parameters
can be estimated. In concurrent work, Donner et al. [2008] estimate
multi-layer scattering parameters driven by chromophore concen-
trations. These concentrations are measured using photographs of
a small patch of skin at nine different wavelengths.

Realistic Face Scanning Debevec et al. [2000] use a dense
sphere of incident lighting directions to record specular and sub-
surface reflectance functions of a face at relatively high angular res-
olution. However, the model is data-intensive in both acquisition
and storage. Additionally, inclusion in existing rendering systems
requires significant effort. Fuchs et al. [2005] use a smaller num-
ber of photographs and lighting directions, at the cost of sacrificing
continuously-varying specular reflectance. Tariq et al. [2006] use
a set of approximately forty phase-shifted video projector lines to
estimate per-pixel scattering parameters for faces. However, their
acquisition times were as long as a minute, and they did not model
the specular reflectance of skin. Weyrich et al. [2006] use a dense
sphere of lighting directions and sixteen cameras to model the per-
pixel specular BRDF and diffuse albedo of faces. In addition,
they use a custom subsurface scattering measurement probe to ob-
tain scattering parameters for skin. While the obtained appearance
model yields impressive results, it still requires a minute to com-
plete a full capture consisting of thousands of images. In contrast,
our method estimates a more expressive facial reflectance model
from just 20 photographs captured from a single viewpoint. As a
result our method is less data intensive, can be implemented in high
resolution at a relatively low cost, and avoids the task of building
reflectance datasets from images from multiple viewpoints.

3 Acquisition

Before discussing our skin reflectance model in Sec. 4, we will first
overview our measurement setup, calibration process, and 3D scan-
ning system.

Setup Our setup consists of an LED sphere with approximately
150 individually controllable lights. Each light is covered with a
linear polarizer in the pattern of [Ma et al. 2007]. Additionally, a
vertically polarized LCD video projector is aimed towards the cen-
ter of the sphere. A stereo pair of radiometrically calibrated 10-
Megapixel Canon 1D Mark III digital SLR cameras are placed on
opposite sides of the projector. The right camera, used only for ge-
ometry measurement, is horizontally polarized while the left cam-
era switches between horizontal and vertical polarization through a
mechanical actuator.

Calibration The purpose of using polarized illumination is to
tune out specular reflections on the subject. For this we need to
align the linear polarizers on the sphere such that specular high-
lights are invisible through a horizontally polarized camera. This
can be easily achieved by placing a dielectric spherical reflector
(i.e., plastic ball) in the middle of the LED sphere, and rotating
each polarizer until no highlight is visible through the left camera.

A challenge for reflectance measurement is that we have two dif-
ferent illuminants in our setup: the LCD projector, and the white
LEDs. To compensate for the differences in emitted spectra, we
measure the responses of 24 ColorChecker squares and 10 corre-
sponding skin patches on different subjects. Using SVD, we com-
pute a 3×3 color matrix that transforms the observed photographs
to a common illuminant color space. The skin colors did not match
well when using only the ColorChecker samples. Including the skin



Figure 2: Modeled skin reflectance components.

samples provides a much closer match between the different color
spaces. A similar color calibration is performed for additional illu-
minants used to generate the reference images in the results in this
paper.

In addition, we subtract a reference black level photograph of the
subject from every recorded photograph under projected illumina-
tion to compensate for the black level illumination from the projec-
tor.

Geometry Acquisition Accurate 3D geometry of a subject is re-
quired to faithfully model the subject’s skin reflectance. In this pa-
per we use the method of Ma et al. [2007] to obtain geometry from
stereo correspondence and specular normals. For this we capture
four projected color fringe patterns for 3D stereo reconstruction,
and eight photographs of the subject under four different gradient
illumination conditions and two polarization directions. However,
alternative methods that can measure detailed facial geometry with
accurate surface normals could also be used for this purpose.

In addition to these twelve photographs, eight more photographs are
recorded to infer the appropriate reflectance and scattering models
(Sec. 4). These eight photographs are:

• A black level reference for the video projector (1 image).

• A cross-polarized grid of black dots projected from the front to
measure subsurface scattering parameters (1 image).

• A pair of cross- and parallel-polarized front-lit (i.e., full-on pro-
jector pattern) images to model specular and diffuse reflectance
(2 images).

• Four phase-shifted stripe patterns to separate shallow and deep
scattering (4 images).

Recording these 20 photographs takes just 5 seconds with our cur-
rent setup, with the major limiting factor being the frame rate of the
digital SLR cameras. Using faster high resolution cameras could
reduce acquisition times to under a second.

4 Skin Reflectance Model

We approximate skin reflectance as a combination of four phenom-
ena: specular reflection, single scattering, shallow multiple scatter-
ing, and deep multiple scattering (Fig. 2). We design illumination
conditions to measure each of these components as directly and in-
dependently as possible. We fit our image-based measurements to
different reflectance models, each of which is chosen according to
the type of phenomena being modeled. We later create renderings
by summing the contributions of these four components, modulat-
ing the light received by the scattering components by appropri-
ate transmittance terms. In order to model these reflectance effects
from a limited set of photographs, we model some aspects of re-
flectance per pixel (e.g., albedos and surface normals), some aspects
per region (e.g., specular roughness and scattering parameters), and
some aspects for the entire face (e.g., the angular dependence of the
scattering components).
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Figure 3: Measured Reflectance Components (a) Polarization differ-
ence image under spherical illumination, used for estimating specular
albedo. (b) Cross-polarized image under spherical illumination, used to
measure total scattered albedo. (c) Polarization difference image under di-
rectional illumination, used for estimating the specular lobe shape per re-
gion. The image also includes some polarization preserving non-specular
backscattering (which we model as mostly single-scattering), which can be
seen to pick up color from the melanin in the epidermis. (d) Cross-polarized
image under directional illumination, showing multiple scattering. (e) ”di-
rect” component of (d), showing shallow scattering. (f) ”indirect” compo-
nent of (d), showing deeply scattered light. Note that (d) = (e) + (f) and that
(c) + (d) produces a typical front-lit photograph.

The remainder of this section is organized as follows. Sec. 4.1 in-
troduces the specular and single scattering model. We show how
polarization can be used to isolate these phenomena from multiple
subsurface scattering, and detail which data is required to fit appro-
priate reflectance models. Sec. 4.2 further separates the multiple
subsurface scattering into deep, and shallow scattering.

4.1 Specular Reflection and Single Scattering

We leverage the polarization properties of skin to extract specular
reflectance and single scattering. Both phenomena generally main-
tain the polarization of light [Morgan and Ridgway 2000]. Mul-
tiple scattering phenomena, on the other hand, generally depolar-
izes light [Tuchin 2007]. We therefore acquire data under polarized
spherical and front-lit illumination, and record parallel- and cross-
polarized images of each lighting condition. The cross-polarized
images only include depolarized reflected light (i.e., due to multiple
scattering events), whereas the parallel-polarized images contain
both polarized as well as depolarized reflected light. Computing the
difference between the corresponding parallel- and cross-polarized
images yields an image exhibiting only polarized reflected light,
i.e., specular reflected and some non-specular reflected light which
maintains polarization. The latter component is dominated by sin-
gle scattering, because the probability of de-polarization of light
increases exponentially with each additional scattering event [Mor-
gan and Ridgway 2000]. We therefore treat any observed polariza-
tion preserving non-specular reflection as the result of single scat-
tering events. The polarization-difference images in Figs. 3 (a) and
(c) show specular reflections and single scattering on a face under
spherical and directional illumination respectively. Figs. 3 (b) and
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Figure 4: Estimating Per-region Specular BRDFs (a) Face segmenta-
tion into regions. (b) A front-lit rendering of the spatially-varying specular
reflectance. (c) A front-lit rendering with both the spatially-varying spec-
ular reflectance and modeled single scattering. (d) Front-lit polarization
difference image with specular reflection and single scattering. Graph: Ex-
tracted specular distributions per region.

(d) show the effects of multiple scattered illumination under the
same lighting conditions.

We will now discuss the appropriate reflectance models, and fitting
procedures we use for specular reflectance and single scattering.

Specular Reflection As noted in [Debevec et al. 2000; Georghi-
ades 2003], the spatially varying specular behavior of skin is impor-
tant for reproducing facial appearance realistically. In order to min-
imize the number of measurements, a per-pixel estimation of the
specular lobe and albedo is not practical. Therefore, we will esti-
mate specular albedo per-pixel and (as in [Weyrich et al. 2006]) ex-
tract separate specular roughness distributions for different regions
of the face corresponding to the forehead, eyelids, nose, cheekbone,
lips, and lower cheek regions (Fig. 4(a)).

We model the specular roughness distributions over a region using
a microfacet BRDF model. In previous work, dense measurements
have been fitted to analytic BRDF models such as the Torrance-
Sparrow or Blinn-Phong model [Debevec et al. 2000; Fuchs et al.
2005; Weyrich et al. 2006]. However, to keep the number of mea-
surement small, we only use backscattering measurements from
a single photograph under point source illumination (i.e., a full-
on projector pattern) to estimate per-region microfacet distributions
for the Torrence-Sparrow [1967] model:

ρ(k̂1, k̂2) =
c · p(ĥ)F(ro, k̂2 · ĥ)G

(k̂1 · n̂)(k̂2 · n̂)
, (1)

where k̂1 is the incident light direction, k̂2 is the viewing direction,
c is a normalization constant (corresponding to specular intensity
in our case), p(ĥ) is the normalized distribution, F(r0, k̂ · ĥ) is the
Fresnel reflectance term based on Snell’s laws of reflection, and G
is the geometric shadowing and masking term based on V-shaped
grooves.

Similar to [Debevec et al. 2000], we replace the Gaussian distri-
bution in the original Torrance-Sparrow model with a data-driven
distribution term derived directly from the observed backscattering
data. We extract this data-driven distribution in a manner similar to
the procedure discussed in [Ashikhmin 2006], where the effects of
the Fresnel term and the geometric term are assumed to be minimal
in the backscattering direction, and the distribution-based BRDF
model simplifies to a function that is proportional to the distribu-
tion p(ĥ):

ρ(k̂, k̂) =
c · ro · p(ĥ)

2(k̂ · n̂)− (k̂ · n̂)2
. (2)

This distribution can then be directly tabulated, without requiring
any numerical optimizations, from the observed data using Equa-
tion 2.

We use the polarization-difference image of the face lit from the
front to observe the backscattered specular reflection (in addition
to single scattering) (Fig. 4(d)). We trade spatial resolution across
the face for angular resolution in order to densely sample a dis-
tribution p(ĥ) per region from a single photograph. To eliminate
the effects of single scattering, we isolate the regions where specu-
lar reflection dominates by considering only pixels above a certain
brightness threshold and whose surface normals lie within a cone of
45◦ from the viewing direction for constructing the specular distri-
butions. The argument for a 45◦ threshold is that the specular lobes
we have observed for faces are much sharper than 45◦, and single
scattering is predominately directed forward in skin. The observed
single scattering is therefore dominated by the specular reflection,
and hence can be directly used to estimate the specular lobes. Simi-
lar angular and intensity separation methods are commonly used in
the tissue optics literature [Morgan and Ridgway 2000].

The specular intensity c is unknown at this point, and is required to
extract the specular distributions. We therefore bootstrap the esti-
mation process by (initially) assuming a per-region constant spec-
ular intensity. Next, we tabulate the observed reflectance values
against the halfway vectors corresponding to the normal direction.
The graph in Fig. 4 plots distributions obtained for different facial
regions. As expected, the measured specular lobe shape differs for
the different regions.

Finally, we need to infer a per-pixel specular intensity c. We ob-
serve that the polarization-difference image under constant spheri-
cal illumination (e.g., Fig. 3(a)) is dominated by the specular reflec-
tion for all pixels, unlike front-lit illuminated pixels where single
scattering can dominate for pixels facing away from the view (and
light) direction. This polarization-difference image under spheri-
cal illumination is taken to encode the specular intensity at each
pixel modulated by view-dependent Fresnel reflectance. Note that
this illumination condition is also one of the gradient patterns used
for computing the surface normals [Ma et al. 2007], and thus no
additional photograph needs to be recorded. From this we can es-
timate the specular intensity using the previously extracted distri-
butions, and factor out Fresnel reflectance effects, assuming a con-
stant index of refraction of 1.38 for skin as in [Donner and Jensen
2005]. Formally, let the observed intensity in the polarization-
difference image under constant hemispherical illumination for a
given pixel be c�, for a fixed viewing direction k̂2, then the follow-
ing holds: c� =

�
ρ(k̂1, k̂2)(k̂1 · n̂)dω. By dividing c� by the (numer-

ically) hemispherically integrated BRDF (assuming c = 1.0, and
including Fresnel reflectance) the best-fit specular intensity c is ob-
tained. To further refine the estimation of the specular distribution
p(ĥ) and specular intensity c, we could iteratively alternate between
estimating p(ĥ) and c. However, we found that a single pass yields
accurate results.



A rendering of the obtained specular component under directional
illumination from the front can be seen in Fig. 4(b). This rendering
closely follows the observed specular reflectance in Fig. 4(d). Note
that the differences between both are due to the single scattering
included in the polarization-difference photograph.

Single Scattering We model the remaining single scattering com-
ponent with the 1st order single scattering BRDF model of Hanra-
han and Krueger [1993]:

ρsinglescatter(k̂�1, k̂
�
2) = α · Tdt · p(cosθ)

1
n̂ · k̂�1 + n̂ · k̂�2

, (3)

where α is the scattering albedo, Tdt is the transmittance term,
and p is the Henyey-Greenstein scattering phase function given as
p(cosθ) = 1−g2

4π(1−g+2gcosθ)3/2 , with θ being the angle between in-

cident k̂�1 and scattered k̂�2 directions, and g the mean cosine of the
scattering angle.

Similar to the specular lobe fits, the Henyey-Greenstein function
is fitted to match the observed backscattering in the polarization-
difference image under directional illumination. We assume that
the observed single scattering is mainly due to the top layer of skin,
and set the index of refraction of this layer to 1.38 as in [Donner
and Jensen 2005]. Furthermore, we use the observed polarization-
difference image under uniform spherical illumination minus the
specular intensity c as the albedo α for the single scattering fit.
Our choice of employing the polarization-difference image as a ba-
sis for the single scattering albedo is more data-driven than strictly
physically-based, given that we model any polarization preserving
non-specular backscatter as single scattering and we do not observe
any texture variation in the observed single scattering.

Given that the Torrance-Sparrow BRDF models a rough specu-
lar surface, we replace the Fresnel equations for transmission in
a smooth surface with diffuse transmission Tdt due to the rough
specular surface [Ashikhmin et al. 2000; Donner and Jensen 2005]:
Tdt = ρdt(x,ωi)ρdt(x,ωo), where:

ρdt(x,ωo) = 1.0−
�

ρspecular(x, k̂1, k̂2)(n̂s · k̂1)dω. (4)

As with the specular reflectance, we leverage the polarization-
difference image under constant hemispherical illumination which
encodes this per-pixel integral. To facilitate computations, we build
a look-up table for average diffuse transmittance values across the
face. This reduces fitting the observed single scattering to the above
BRDF model to a simple search for the best channel-wise g values
that minimize the RMS error of the fit to the observed data. Given
the slowly varying nature of the data, we found that using a single
set of channel-wise g values across the entire face is sufficient. A
front-lit rendering of the combined single scattering and specular
component is shown in 4(c), which closely matches the reference
photograph in Fig. 4(d).

4.2 Modeling Multiple Scattering Components

Multiple subsurface scattering of light in skin is an important phe-
nomena that contributes significantly to its soft appearance [Jensen
et al. 2001]. Without subsurface scattering, renderings of skin look
too harsh. However, modeling skin as a single homogeneous scat-
tering media results in a too soft or “waxy” appearance. Modeling
skin as a multi-layer subsurface scattering medium [Hanrahan and
Krueger 1993; Donner and Jensen 2005] represents the structure of
skin much better, and yields more realistic results.

(a) (b)

Figure 5: Separated Multiple Scattering Layers (a) Separated shallow
scattering (direct) component. (b) Separated deep scattering (indirect) com-
ponent. Deep scattering exhibits more saturated coloring and a greater
amount of light diffusion than the shallow scattering component.

A possible physically-based model for the appearance of skin is to
represent it as a two layer subsurface scattering medium (Fig. 2). In
such a case, the top layer corresponds to the epidermal layer, which
is a scattering layer with a thickness of approximately 0.5mm, with
a color that is mostly determined by the melanin content. In con-
trast, the bottom layer corresponds to the dermis, which is a (rel-
atively) thick layer with a reddish hue due to blood. However,
measuring the scattering properties of these two layers exactly is
a difficult problem. We will therefore use an approximate data-
driven two-layer model, where the interface between both layers
corresponds only approximately to the interface between the dif-
ferent skin layers. We denote the two scattering layers as shallow
and deep to emphasize that we do not precisely associate them with
specific anatomical skin layers.

To measure the per-pixel ratio between both layers, we observe that
the shallow layer scatters light much less than the deep layer. Re-
cently, Nayar et al. [2006] presented a method to separate a photo-
graph into direct and indirect components using high frequency illu-
mination patterns. In scattering materials, the frequency of the illu-
mination patterns determines which part of scattered light is classi-
fied as direct, and which part as indirect. We make the observation
that selecting the frequency of the patterns to be on the order of
the thickness of the epidermis, separates the reflectance into an im-
age containing deep scattering only, and an image containing only
shallow scattering. We use four phase-shifted high-frequency pat-
terns of 1.2mm-wide stripes from a video projector. Computing
a per-pixel max and min over the four images yields the the di-
rect/shallow scattering image (max−min), and indirect/deep scat-
tering image (2×min). Furthermore, we employ cross-polarization
to eliminate specular reflections and single scattering. Separated
components are shown in Figs. 3 (e) and (f), and Fig. 5. The shal-
low scattering shows relatively little color saturation relative to the
deep scattering, and the deep scattering exhibits less distinct tex-
ture detail. This corresponds to the thesis that the direct component
approximately corresponds to the shallow scattering of light in the
epidermis while the indirect component approximately corresponds
to light which has scattered more deeply within the dermis.

The proposed two layer subsurface scattering model sums the con-
tributions of the shallow and deep scattering layers, due to the way
the deep and shallow scattering layers are separated. This differs
from [Donner and Jensen 2005] in which the individual layers’ con-
tributions are convolved according to the Kubelka-Munk theory. In
this respect, our two-layer model is more data-driven in nature than
physically-based.

Formally, the multiple subsurface scattering of light in skin can be



(a) Dot pattern (b) Full illumination (c) Zero-crossings

(d) Scattering profiles within dots (e) Fitted deep scattering

Figure 6: Measurement of Per-region Scattering Parameters (a) Dot pat-
tern used to observe the scattering profiles (depicted in(d)). (b) Subject un-
der full illumination. (c) Zero-crossings computed from subtracting (a) from
(b). (e) Fitted deep scattering model versus the observed scattering profile
for two different regions. Note that the poor fit close to the peak is because
the observed scattering profile also contain shallow scattering effects. How-
ever, further from the peak, where deep scattering dominates, a good fit is
obtained.

represented as:

Lmultiple(xo,ωo) =
�

A

�

Ω
TdtRd(||xo− xi||)cosθidωidA(xi), (5)

where ωi is the direction of incident illumination at point xi, and ωo
is the observed direction of emitted radiance at point xo. Rd(||xo−
xi||) describes the diffusion of light entering at a point xi and exiting
at point xo, and Tdt is given according to Equation 4. Our separation
technique then further yields:

Rd(||xo− xi||) = Rdeep(||xo− xi||)+Rshallow(||xo− xi||). (6)

We employ the dipole diffusion model to approximate the deep
scattering component Rdeep(||xo − xi||) from measured scattering
profiles, assuming an infinitely deep dermis. Subsequently, we
remove the effects of deep scattering from the measured scatter-
ing profiles using the dipole fit, and estimate scattering parameters
for the shallow scattering Rshallow(||xo − xi||) using the multipole
model. We will discuss the modeling of both layers in detail in the
remainder of this subsection.

Deep Scattering We model the deep scattering component using
the dipole diffusion model [Jensen et al. 2001]:

Rdeep(||xo− xi||) =
α �

4π

�
zr(σtr +

1
dr

)
e−σtrdr

d2
r

+ zv(σtr +
1
dv

)
e−σtrdv

d2
v

�
, (7)

where zr (dr) is the distance of the real source to the surface (xo),
and zv (dv) is the distance of the virtual source to the surface (xo).
This requires estimating two model parameters: the reduced albedo
α � for xo, and translucency (diffuse mean free path) ld = 1/σtr. For
optically dense materials, the following relation holds for α �:

Rdeep =
α �

2

�
1+ e−

4
3 A
√

3(1−α �)
�

e−
√

3(1−α �), (8)

where Rdeep is the diffuse albedo, and A is the internal reflection pa-
rameter that we compute as 1+ρd

1−ρd
with ρd the reflectance of a rough

specular surface due to hemispherical illumination. We employ the
per-pixel Rdeep values obtained from the separated indirect com-
ponent (Fig. 5(b)), after factoring in the cosine falloff, to compute
per-pixel α � values.

We estimate a per-region (Fig. 4(a)) translucency value ld across
the face from the scattering profiles observed by projecting a (po-
larized) solid white pattern with black dots on the face (Fig. 6(a)).
The projected dots are 6mm in diameter and with 1cm spacing be-
tween them, which exceeds the typical scattering distance of light
through skin. As in [Tariq et al. 2006], we pre-compute a lookup
table of effective diffusion profiles due to such an illumination pat-
tern in order to obtain estimates for ld in various regions of the face.
We prefer to use spatially-varying diffusion parameters instead of a
using a modulation texture in our model as it results in a finer-scale
control of the subsurface scattering. While this does not achieve
the same accuracy to model a heterogeneous medium (i.e., skin)
as with fully data-driven methods [Peers et al. 2006], the spatially
varying parameters provide a flexible, yet compact, approximation
for modeling the observed variation in different regions of the face.

The observed scattering profiles are the combined result of deep
and shallow scattering. However, the extent of shallow scattering is
much less than that of deep scattering. Therefore, by only consid-
ering the inner two-thirds of the projected black dots, the effects of
shallow scattering are minimized, and a dipole fit can be computed.

Accurately localizing the dot boundaries is important for model fit-
ting and is complicated by the blurring of the dot edges by the scat-
tering. To localize the dot boundaries, we subtract the dot image
from the fully-lit projector image Fig. 6(b), obtaining an image of
illuminated blurry dots on a dark background. The zero-crossings
of the difference between these negative and positive dot images re-
liably indicate sharp estimates of the dot boundaries as in Fig. 6(c).
To use all of the information within each dot, we perform a radial
average of the diffusion profile from the center going outwards to
the dot periphery and use data up to two-thirds of the way (a 30
pixel radius) for the fitting process. Results of this fitting process
are depicted in Fig. 6(e). As can be seen, the fitted dipole matches
the observations closely in the last two-thirds (the fitted region),
while exhibiting a larger error on the first third of the scattering
profiles (extrapolated region). Finally, we average the translucency
estimate from the dots in each region and blur the estimates across
region boundaries.

Shallow Scattering Most of the first third of the scattering pro-
files observed under the black dot pattern is the result of both shal-
low and deep scattering. The deep scattering is estimated from the
inner two-thirds, which we presume to be negligibly influenced by
the shallow scattering. Fig. 6(e) illustrates this effect clearly. Us-
ing the estimated deep scattering dipole model, we can remove the
effects of deep scattering from the observed scattering profiles, and
fit an appropriate scattering model to the residual. We model shal-
low scattering in the top epidermal layer of skin with the multipole
diffusion model [Donner and Jensen 2005]:

Rshallow(||xo− xi||) =
α �

4π

n

∑
i=−n

�
zr,i(1+σtrdr,i)e−σtrdr,i

d3
r,i

−
zv,i(1+σtrdv,i)e−σtrdv,i

d3
v,i

�
.



We employ a similar fitting process to the deep scattering fit where
an additional lookup table is employed for the residual profile using
the shallow scattering albedo observed from the separated direct
component (Fig. 5(a)). In our implementation, we use the multipole
model with five dipoles and assume a layer depth of 0.5mm, which
is roughly half the width of the projected separation patterns, for
obtaining such a fit. We also assume an index of refraction of 1.38
for the top layer of skin. To further simplify the multipole fitting,
we assume that there is no change in the index of refraction between
the shallow and deep scattering layers.

5 Results

In this section, we present results rendered with our layered fa-
cial reflectance model and the corresponding fits obtained from the
acquired data. To visualize the results, we modified the popular
PBRT ray tracer [Pharr and Humphreys 2004] to support our fa-
cial reflectance model. To render subsurface scattering, we em-
ploy photon mapping [Jensen 2001], and added the dipole [Jensen
et al. 2001] and multipole diffusion [Donner and Jensen 2005] mod-
els as a shader in PBRT. We modify the photon deposition phase
to include the cosine of the incident photons and modulate by the
transmittance at incidence. During the rendering phase, we switch
off one-bounce gathering and use the spatially-varying dipole and
multipole kernels respectively for density estimation with further
modulation by the transmittance at exitance. We believe our fa-
cial reflectance model can also be easily incorporated in production
rendering pipelines [Hery 2003].

Fig. 1 shows the layers of facial reflectance which comprise our
renderings. The image second from the right shows an offline ren-
dering of the face under novel illumination and viewpoint which
is the composition of the layers modulated by the corresponding
transmittance terms. At the right is a validation photograph from
the side which was not used for reflectance modeling. Despite the
significant change in viewpoint and relative lighting direction, the
rendering closely resembles the photograph, including the spatially-
varying specular and subsurface reflectance. Because our setup uses
a single camera for reflectance modeling, some texture stretching
can be observed at the sides of the nose. Without correction, the
lips and parts of the eyelids will appear darker in the diffuse albedo
than in the reference photograph, because the albedo is computed
from images under full-on spherical illumination which includes
partial occlusion from the lips and nose respectively. We correct
the estimate of the diffuse albedo using an inverse simulation.

Fig. 7 illustrates the benefit of our layered model for acquired re-
flectance data with offline renderings of a female subject. Here,
we qualitatively compare the layered rendering with a traditional
rendering with acquired data including spatially-varying specular
reflectance + single layer subsurface scattering. For the single layer
rendering, we extract dipole diffusion parameters from the pro-
jected dot patterns similar to the fitting process for the deep scat-
tering layer. Despite both methods using measured data from the
same setup, the rendering with our layered reflectance model with
additional single scattering and shallow and deep multiple scatter-
ing (e) looks much more skin-like compared to rendering with the
traditional model for measured data (c), and is a closer match to
the validation photograph (b). The deep multiple scattering is fit
from observations that modulate incident irradiance by the absorp-
tion and transmittance of the shallow scattering layer. Hence, first
order effects of interactions (reflectance and transmittance) between
the shallow and deep scattering layers are automatically included
in the estimated parameters of deep multiple scattering. While the
employed dipole model may not fit the resultant scattering profiles
perfectly, it better models the combined properties of the shallow
and deep scattering layers, and reproduces the subtleties of skin ap-

Technique Region Translucency (ld)
R G B

Deep Scattering forehead 2.0293 0.9592 0.7179
cheek 2.8926 0.9683 0.7607

Single Layer forehead 1.8701 0.8793 0.6479
cheek 2.3528 0.8788 0.6664

Weyrich et al. [2006] cheek 1.8155 1.0213 0.6453
Jensen et al. [2001] forearm 3.6733 1.3665 0.6827

Table 1: Measured Dipole Diffusion Translucency Parameters Our
measurements are consistent with measurements previously reported in the
literature for faces.

pearance better than a single layer model. The individual layers are
shown in (a-b), and (f-i). Fig. 7(c) is the result of combining the
single layer subsurface scattering component (a) and the specular
layer (b) (+2 f-stops). Fig. 7(e) is the result of combining the four
layers in our model: deep multiple scattering (f), shallow multiple
scattering (g) (+2 f-stops), single scattering (h) (+5 f-stops), and
the specular reflectance (i) (+2 f-stops). Note how the deep mul-
tiple scattering (f) contains less texture detail than the single layer
approximation (a), which in turn contains less detail than the shal-
low multiple scattering layer (g).

Table 1 lists some of the dipole diffusion parameter fits we obtained
from our measurements for the female subject and corresponding
values reported in the literature as a means of quantitative vali-
dation of our technique. As can be seen, our estimated diffusion
parameters are closer to those reported by Weyrich et al. [2006]
for faces than those reported by Jensen et al. [2001] who mea-
sured the scattering on a skin patch on the forearm which is most
likely more translucent than facial skin. In order to compare our
extracted specular distributions for the Torrance-Sparrow model to
those reported in the literature, we fit the raw data to a Gaussian
distribution with roughness parameter m. The obtained region-wise
fits of m for the female subject (nose = 0.2, eyes = 0.25, fore-
head = 0.3, cheeks = 0.325) are very similar to those reported
by Weyrich et al. [2006]. We also estimated the per-channel sin-
gle scattering Henyey-Greenstein phase function parameter g to be
between 0.63− 0.7 compared to 0.75 reported in [Hanrahan and
Krueger 1993]. Our slightly lower values for g can be potentially
attributed to the approximation of some amount of polarization pre-
serving multiple scattering as single scattering in our model.

Fig. 8 shows rendering results from five acquired face models. The
top row of Fig. 8 shows the ability of our model to reproduce the
original front-lit illumination condition used for reflectance model-
ing for two subjects. A greenish tint near the top of the photographs
results from uneven color in the cross-polarized video projector
used as the illuminant. The corresponding renderings do not ex-
hibit this effect since their albedo texture is derived from the spher-
ical LED illumination. The middle row of Fig. 8 shows two side-
by-side renderings of a male subject with light skin. The left pair
shows the subject from the original left camera viewpoint but under
novel illumination from an additional point light source. The right
camera shows the subject from a novel viewpoint, illuminated from
the frontal video projector. Both renderings substantially reproduce
the subject’s appearance.

We have also implemented a real-time rendering approach with our
acquired reflectance data which leverages hybrid normal maps [Ma
et al. 2007] together with a local shading model that includes the in-
ferred specular reflectance and single scattering, and which approx-
imates subsurface scattering by a diffuse BRDF model. Results of
this real-time rendering can be seen in the final row of Fig. 8(i),
where a male subject with dark skin is rendered with from novel
viewpoint together with a validation photograph. While the real-
time renderings with this technique lack some of the subtle subsur-
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Figure 7: Comparison Renderings with Measured Data (a) The single layer subsurface scattering component which together with the specular layer (b)
(+2 f-stops) comprises rendering result with existing techniques (c). (d) Validation photograph. (e) Rendering with the modeled layered reflectance as described
in this paper. (f-i) The four layers in our model that form (e): deep multiple scattering, shallow multiple scattering (+2 f-stops), single scattering (+5 f-stops),
and specular reflectance (+2 f-stops). The layered rendering with measured data (e) yields a more realistic skin appearance compared to the rendering with
specular + single layer subsurface scattering (c).

face scattering effects, we believe that such a rendering technique
with hybrid normal maps could be useful for interactive applica-
tions. The technique of d’Eon et al. [2007] could potentially also
be used with our data, albeit at a higher computation cost, to simu-
late a fuller range of subsurface scattering effects in real-time.

Finally, the female subject is rendered in a smiling pose with
makeup from novel viewpoint in Fig. 8(k) together with a valida-
tion photograph. The female subject could be captured in a smiling
pose due to the short five-second capture process. It would be dif-
ficult to keep a steady expression for longer acquisition times. Our
data-driven facial reflectance model is also flexible enough to model
such altered skin reflectance.

Limitations: In general, our renderings bear a close resemblance
to the original photographs, successfully reproducing the appear-
ance of a wide variety of skin tones and textures. However, due
the simplicity of our model, not all effects are modeled with equal
accuracy. Subtle differences can arise due to differences in the spec-
ular roughness and diffuse reflectance within facial regions. Back-
lighting effects are potentially not reproduced correctly with our
model because the dipole diffusion model used for deep scatter-
ing is known to underestimate layered transmittance [Donner and
Jensen 2005].

While the simplicity of our model introduces some limitations, it is
also makes it a practical method that can be easily implemented in
existing rendering systems. Additionally, because our model can be
inferred from a few photographs and requires no physical contact
device to measure scattering properties, it is more robust to changes
due to subject motion or blood flow, and is able to capture the facial
appearance of people in natural facial expressions that are hard to
maintain for more than a few seconds.

6 Conclusion and Future Work

We have presented a practical method for measuring and model-
ing the appearance of a face from just twenty photographs captured
from a single viewpoint under environmental and projected illu-
mination. Key to the technique is the separation of facial appear-
ance into different layers representing specular reflectance, single

scattering, and shallow and deep multiple scattering. Each layer is
modeled by an appropriate model that can easily be incorporated
in an existing rendering system. Our method is the first practical
system that measures single scattering and spatially-varying multi-
layer scattering parameters from a live subject. We have shown that
the obtained parameters are quantitatively similar to those reported
in the literature, and that resulting renderings are qualitatively a
close match to reference photographs.

The presented system, due to its short acquisition times, enables
new possibilities for analyzing time-varying effects of facial re-
flectance. For example one could monitor the change in skin re-
flectance due to blood flow or sweat, or examine the effects of facial
animation on the appearance of skin.

For future work, we would like to investigate other methods
than [Nayar et al. 2006] for separating the subsurface scattering
layers of skin such as color space separation from the different
color channels of our images. Furthermore, relating these sepa-
rated layers more precisely to the multi-layer model of Donner and
Jensen [2005] is another interesting avenue for future work. Fi-
nally, our model is currently missing a model for asperity scatter-
ing [Koenderink and Pont 2003], which is the result of scattering in
a thin layer of facial hair and can play a significant role in reproduc-
ing the ‘velvety’ or ‘peachy’ facial appearance of many subjects.
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(e) Rendering (f) Photograph (g) Rendering (h) Photograph
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Figure 8: Rendering Results and Validation Photographs (a,c) Offline renderings of two subjects under frontal point-source illumination, showing our
technique’s ability to replicate the appearance shown in the reference photographs in (b,d). (e,g) Offline renderings of a male subject in novel lighting and
viewpoint conditions and corresponding validation photographs (f,h). (i) Real-time rendering using hybrid normal maps of a male subject with dark skin
rendered from a novel viewpoint and validation photograph (j). (k) Offline rendering of a female subject in a dynamic pose wearing makeup and a validation
photograph (l).


