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On the Efficient Allocation of Resources for 
esis Evaluation: A Statistical Approach 

Steve Chien, Jonathan Gratch, and Michael Burl 
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I. INTRODUCTION 

N machine learning and basic decision-making in AB, a I system must reson about alternative course$ of 
the absence of perfect infbnnation; frequently, the 
utility of the information to be acquired must be 
against the cost of acquiring the information. When one wishes 
some sort of statistical guarantees on the (local) optinlality of 
the choice andor the guarantee of rationality, a statistical de- 
cision theoretic framework is useful. This problem of decision- 
making with incomplete information and information ceslts can 
be analyzed in two paris: 

How much information is enough? At what point do we 
have adequate infdmwtion to select one of the altmlatives? 

0 If one wishes to acquire more information, whiah infor- 
mation will allow us to make the best possible de$ision at 
hand while minimizing information costs? 

Possible solutions to thio decision-making quandary depend 
on the context in which &le decision is being made. This paper 
focuses on an abstract class of decision problems callqd hy- 
pothesis selection probleme that arise in many contexts in ma- 
chine learning. These problems arise when m e  must select the 
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best hypothesis (such as hypothesized concept description, or a 
hypothesized problem-solving heuristic) fkom a set, given its 
performance over sane  traidng data. For example, in adaptive 
problem-solving a leaming algorithm must mlwt, fiofil a set of 
possible wntml stategies, one that most Mlhranccts problem- 
solving perfomancc [l], [2]. In inductive learning there are 
two issues which are naturally seen as hypothesis selection 
problems: the attribute selection problem consists of selecting 
one of a set of at&ibutes based on information gain [3], [4]; 
and the model selection problem consists of selectirq one of a 
set of learned models (e.g., pruned decision trees) based on 
their classification accuracy [SI. Although hypothesis selection 
problems occur in m y  contexts, in this article we will use the 
tefmit~~logy appropriate for adaptive problan-solving-so that 
acquiring additi~nal information corresponds to solving prob- 
l m  with a particular problem-solving strategy and selecting a 
problemsolving smtegy with high eqeckd utility is the goal. 

Solving hypothesis selection problems may involve signifi- 
cant investmeat of resources. There may be monetary cost in 
obtaining training data and computational cost in processing it. 
Usually this cost is addressed by hfinnal or intuitive judg- 
ments rather than a rational analysis of the costs and benefits 
involved. This paper introduces two general methods for 
solving hypothesis selection algorithms efficiently and each 
method can be augmented with rational analysis to minimize 
the total cost of selecting a hypothesis. The fwst method, called 
interval-based selection, involves quadfiring the uncertainty 
in competing hypotheses by using the skatisSical confidence 
that one hypothesis is better than another hypothesis. In this 
approach & system allocates examples fa show that one hy- 
pothetsis dominates all the other hylwtheses with the specified 
confidence. These methods also rely upon an indifference pa- 
rameter-if two hypotheses differ in perfmance by less than 
this amount, either is acceptable.‘ 

The second method uses the decision theomtic concept of ex- 
pected loss [7], [8], which meesures the probability of making a 
less preferable decision weighted by the lost utility with respect 
to the alternative cbice. In the expected loss approach, the sys- 
tem acquires infornpation until the expected lws is reduced be- 
low some spckrcifid threshold. This a p p w h  has the added 
benefit of not a-pting to disthguhh among two hypotheses 
with similar mans and low variances (i.e., it recognizes indiffer- 
ence without a separate indiflerence p m ” r ) .  

For both the interval-based and expected loss approaches, 
when comparing among more than two alternatives, one is 

1. This formalirm is analogous to the PAC [6] fiamework-“probably” 
“approximately” “correct” maps onto “probably” “close to” “hi&est expected 
utility.” 
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comparing the utility of the “best” hypothesis to the other pos- 
sible hypotheses. Since there are multiple comparisons, the 
estimate for the overall error in the final conclusion (selection 
of a best hypothesis) is based upon the errors associated with 
multiple smaller conclusions. In both the interval-based and 
expected loss approaches, it is possible to improve perform- 
ance by rationally allocating varying amounts of error to each 
of the smaller conclusions. Hence, there are four algorithms 
we consider: interval-based with equal error allocation, inter- 
val-based with unequal (rational) error allocation, expected 
loss with equal error allocation, and expected loss with 
unequal (rational) allocation. 

The rest of this paper is organized as follows. Section I1 de- 
scribes the general hypothesis evaluation problem and frames 
the problem as statistical parameter estimation. Section I11 
describes the confidence interval approach. Section IV de- 
scribes the expected loss approach and Section V describes an 
empirical evaluation of these techniques using synthetic and 
real-world scheduling data. Section VI summarizes the princi- 
pal points of this paper. 

11. THE HYPOTHESIS EVALUATION PROBLEM 

Hypothesis evaluation is the problem of selecting one of a 
set of hypotheses which, with high probability, is close to the 
best. We adopt a parametric statistical approach to this prob- 
lem. Typically we have a set of problems D (planning prob- 
lems, exemplars to classify, etc.). Any particular problem d is 
selected from this set with probability Pn(d). We also have 
available a set of k potential altemative strategies H I ,  .. ., Hk, 
for solving problems. Each hypothesized strategy H, has asso- 
ciated with it an unknown utility distribution U, describing its 
quality and an unknown cost distribution C‘, describing the cost 
to process examples. Both of these are are induced by the 
probability distribution over D.* The desired outcome of the 
hypothesis evaluation problem is to select a hypothesis Ifhc,, 
which has the highest (or close to highest) expected utility.3 

Although the distributions U, and C, are unknown, the deci- 
sion-making system can infer information about these distri- 
butions by observing the behavior of strategy H, on problems 
drawn from D. Thus, the system can choose between acquiring 
more information-acquiring another sample from U, with 
cost drawn from C‘, or adopting a hypothesis strategy H,  (the 
same question as in the introduction). 

Our general approach to this problem consists of two parts. 
parameter estimation and hypothesis evaluation. In parameter 
estimation the underlying distributions of expected utility and 
expected cost are assumed I O  be of a particular form (e.g.. 
normal, student T, etc.) reducing the problem to one of esti- 
mating parameters such as mean and variance from behavior 
on sample problems. In hypothesis evaluation, decision rules 
to decide how much information is enough, and how to acquire 

2 (’onsiderable work has been devoted to speedup learning, in which 0, 
and C often are inversely related For example, in speedup learning one might 
use U = -C In other work the utility of a solution might relate to the quality 
of the overall plan or schedule produced [9],  11 01 [l 1 ] 

3 Alternative castings of the problem might also impose requirements on 
the varidnce of the selected distribution (e g [12\) 

information are formulated based upon estimated parameters. 
As the result of applying these decision rules, the system may 
decide to gather additional information (samples), in which 
case it faces the decision between acquiring information or 
stopping again. This process continues until the system de- 
termines it has acquired enough information. 

For purposes of estimating the expected value of these dis- 
tributions we assume that U, and 12, are jointly normally dis- 
tributed (sometimes called Gaussian) random variables with 
unknown means and unknown general covariance. The as- 
sumption of normality is quite reasonable as the estimated ex- 
pected value of an arbitrary distribution is approximately nor- 
mally distributed (a consequence of the Central Limit Theorem 
[13]). Confidence intervals regarding the true mean can be 
computed from the sample mean, sample variance, and number 
of samples. More concretely, one can show that the difference 
between the observed sample mean and true mean is normally 
distributed with 0 mean and $ times the variance of the initial 
distribution, e.g., f i  - p  - N(0, $-) [ 141. 

Given the assumption of normality we can also conclude 
that the differential distribution (the distribution of the differ- 
ence in utility between any two strategies) is normally distrib- 
uted. This property is important in that it allows us to deter- 
mine that one strategy is better than (or roughly equivalent to) 
another strategy in expected utility by only maintaining infor- 
mation about the differential distributions. This simplifies 
some of the mathematics. For example, in many applications 
the performance of different strategies may be highly corre- 
lated (e.g., when strategies are small modifications of some 
common ancestor). Using the differential distributions encodes 
this correlational information without the need for explicitly 
computing covariance estimates4 

A. Other Approaches 
Our approach to hypothesis evaluation is related to several 

other methods in the machine learning and statistics literature. 
Standard machine learning approaches do not provide bounds 
on the quality of the selected hypothesis and thus do not fit 
into our conception of hypothesis evaluation. However, hy- 
pothesis evaluation proper has been studied extensively in 
computational learning theory. The thrust of that community 
has focused on the question of whether hypothesis selection is 
possible in the worst possible circumstances (and thus avoids 
parametric approaches); however, we are concemed with al- 
gorithms that are highly efficient in practice. The closest ap- 
proaches to ours from the computational learning theory com- 
munity are [2], [ 171. 

In the statistics literature, hypothesis evaluation problems 
are referred to as ranking and selection problems [ 181. In their 
terminology we are studying sequential elimination selection 
procedures [19]. Our work differs from this literature in that 
our approach is more general. Standard selection techniques 
make restrictive assumptions about the variances of the utility 

4. This technique is known as blocking in the statistical literature, see 
pp. 299-300 of [15], and the method of common random variables in the 
simulation literature [16]. 
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distributions. We allow the utility distributions to be correlated 
and have uncqual (finite) variances. However, we give up the 
stroieg correctnass proofs pmvided by these statistical tech- 
niqws. Our tedmiques gtr: buristic and we provide only 
n " t i c a l l y  plausible and empirical arguments for their 
correstness. The ajqmwh closest EO ours in genmlitqr is a 
mar;hiae learning technique proposed by Moore and Lee [5] .  
W appro& extends both leanring theory and statistical 

appro" h that we moun t  for the cost of obtaining data. 
Typically hypathesis sel~lcltloa approaches only attmpt to 
minimize the wedl  number of examples. We extend these 
approaches to account for siturrtions where the cost of evalwt- 
i w  different hypotheses SubsWally differs. 

B. Notation 
Throughout this paper we use the following notation: 
0 U, is the utility distribution for the hypothesis strategy HI 
0 C, is the colst distrib 

pl is the true mean for the variable U, 
0 q is the sample meam for the variable VI 
0 q is the true standard deviation for the variable Vi 
e S, is the sarmple standwd deviation for Ui 

is the simple mean for the variable C, 
0 U,, is the variable for the distribution computed by tak- 

ing the utility of HI minus the utility of W, bath solving 
the sane prolblem. Mote that this distribution is Gaussian 
(normal) if U, and are jointly Gaussian even if U, and 
U, are not independent. 1.1 ,-,, q-,, U,-,, and S,-, are 
analogously defhed. 

We also deflne iimctions to allow computation of prob- 
abilities of normally distributed variables. The probability that 
a random variable y has a value in the interval (a, b) given that 
the variable is normally distributed with mean p and standard 
deviation U is 

for the hypothesis strategy HI 

For the standard normal distribution with mean p=O and stan- 
dard deviation ~ 1 ,  we us@ the specialized notation: 

III. THE INTERVAL-BASED APPROACH 

The confidence interval-based approach depends on a con- 
fidence parameter yand an indifference parameter E. This ap- 
proach attempts to show that with confidence ythere is a hy- 
pothesis strategy H, such that for every other hypothesis strat- 
egy H,, either: a) E[U,,]  > 0 or b) IE[UI,]l E. Intuitively, if 
such an H, can be found it should be adopted because for every 
other hypothesis strategy H,, with cionfidence 'y, either HI is 
better than H, (dominance) or HI and H, are close enough so 
that we do not care (indifference). This intuitive description 
will be further elaborated in the following paragraphs. 

Consider two of the hypothesis strategies being evaluated H, 

and H,. Under the assumption that Vi and V, are jointly nor- 
mally distributed, the difference U,, is normally distributed. 
Hence, analyziag the difference U,, and computiRg the d- 
dence that p,-, >. 0 gives the confidence that H, dominates H/. 
To represent the confidence in this p a M e  OOmpIvison of U, 
and V, we use the variable j .  

> 0 we adapt a method 
for computing confidence intervals for the mean of a normal 
distribution with unknown variance fiom [ I I ] .  However, our 
application differs Eram the s m d d  Confidence interval calcu- 
lation as fdows. In the standard problem, one is given a con- 
fidence level ?) and the task is to compute sln interval such 
that the true mean lies in the interval with confidence ;. In our 
case, we are given ?he interval, and we w i d  to compute the 
confidence that the mean lies within tbe intwvd. Thus, since 

To compute the confidence that 

for this difference distribution, and the confidence that p - U 
is in some interval is simply the integral of the normal curve 
for that interval, these assumptions result in the following for- 
mula (shown graphically in Fig. 1): 

Fig. 1, Dominance and indifference calculations. 

To handle the case of indifference pruning, the confidence that 
-E < pl-, < E can be computed similarly to the method de- 
scribed above yielding the following formula (shown graphi- 
cally in Fig. 1): 

This can be interpreted using the confidence interval stop- 
ping criterion as follows. In the first case ; indicates our con- 
fidence in the hypothesis that the mean of the distribution VI is 
greater than the mean of the distribution V, thus we prefer Hi 
over H, (dominance). In the second case the difference be- 
tween the means of U, and V, is less than E with confidence ;, 
thus HI and H, are not worth distinguishing (indifference). If 

< 0, then H, appears to be superior to Hi so we should be 
focusing on H, and not H,. 
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One complication is that in a general hypothesis evaluation 
problem, one is selecting from k > 2 hypotheses. Thus, for the 
interval-based approaches, one is comparing one hypothesis 
Hhlgh (believed to be the best) against the other k - 1 hypothe- 
ses. Thus the confideye y of the overall decision depends 
upon the confidences y in the individual k - 1 comparisons. If 
we presume a pessimistic accumulation of error, we might 
project that the errors would add-requiring that the sum of 
the k "- 1 errors add to less than y 

Evenly distributing the error indicates that the individual 
confidences must be: y*  = 1-2 (confidence equation 1). 
Unfortunately, in the worst case, for k strategies, the choice of 
the linal selection may depend upon more than k - 1 pairwise 
comparisons. Consider the case where the focus strategy Hhlgh 

changes frequently while attempting to find a best strategy. 
Indeed, in the worst case, the final selection would depend 
upon all of the pairwise combinations of selections of two of 
the k strategies (due to shifting of the focus hypothesis strat- 
egy). This is simply k choose 2 or k(k - 1)/2. Thus, in the 
worst case, for the equal distribution of errors premise, the 
individual confidences must be: y*  = I-- (confidence 
equation 2). 

However, typically one samples evenly from all of the dis- 
tributions no samples before one chooses a focus strategy. If no 
is large enough such that the focus strategy HHlgh changes 
rarely, the overall confidence will more closely resemble the 
linear relationship described in confidence equation 1. Indeed, 
if the errors tend to cancel each other, even this linear summa- 
tion of errors will be an overestimate of the actual error.' 

However, equal error allocation does not take advantage of 
the fkct that reducing the error in some of the terms may be 
easier than in others. Pertaining to this issue we first outline an 
algorithm called STOP 1 which distributes the error evenly, 
then show a variation on this basic algorithm STOP2 which 
accounts for the varying difficulty in reducing the error in each 
of the terms and takes into account the varying cost of sam- 
pling from each of the distributions. 

A. The STOP1 Algorithm 
7 he STOP1 algorithm can be described as follows. Let T be 

the set of hypothesis strategies H,,  . . ., tik. Sample from each 
of the utility distributions C',, .., U, some default number of 
samples no. Let HI be the strategy in 'r which has the highest 
sample mean for U, so far (hereafter called the focus strategy 
Hhlph). For each strategy f?, in T, if U, is in the interval -E, F, 
attempt to show indifference. If not, attempt to show that HI 
dominates H,. 

Indifference is shown as follows. Compute the confidence 
that the true mean ,U,, of U,+ lies within the interval -E, E. If 
this confidence is greater than f then indifference has been 
shown. Else, sample from (1, and U, as necessary until either: 
1 )  the confidence that ,U/-, is within the interval -E, E is greater 
than f or 2) U,., goes above E or below -E. If '/I I goes 

5 For a further discussion otthis  issue see [20] pp 18-19 

above E, U, now has a higher sample mean than U, by a signifi- 
cant amount so that we should make Hi the target hypothesis 
and proceed. If q-l <--E, Hj looks significantly worse than 
11, so that we should attempt to show that Hi dominates Hj. 

Dominance is shown similarly. Compute the confidence that 
U-, > 0. If this confidence is greater than f we have shown 
dominance; otherwise sample from U; and Uj as necessary 
until either the confidence becomes greater than or V,, goes 
below E. In this case, we might attempt to show indifference 
among HI and 4. It is worth noting that sometimes when qJ 
is in the interval {-E, E } ,  there is more confidence in the claim 
that Hi dominates Hi than in the claim that Hi and Hj are indif- 
ferent. It is unclear whether a closed form exists that can be 
used to determine whether dominance or indifference has 
higher confidence. We avoid this problem by computing both 
the dominance and indifference and using the higher of the two 
confidences. 

STOPl ALGORITHM: 
let T = { H I , . . . , & )  
let f = 1 - (1 - y ) / ( k  -1) 
solve no problems with each strategy in T and 

compute U statistics 
let H ~ i ~ h  be the strategy in T with highest U 
LOOP1 

let HHigh be the strategy in T with the high- 
est sample mean for U h i g h  

if for every H j  in T one of the following 
holds 

Hhlgh dominates H ,  with confidence f 
Hhigh  and H, are ambivalent with Confidence f 

then return H ~ l g h  

else select a strategy H ,  such that neither 

Uhigh dominates Uj with confidence f 
nor U h l g h  and Uj are ambivalent with confi- 

dence f 
generate data for the distribution &ig&j  

recompute U statistics 
CONTINUE WITH LOOP1 

Note that the algorithm has been simplified for purposes of 
clarity. A realistic implementation would temporarily classify 
the strategies into indifference and dominance classes when 
confidence has been shown. When Hhlgh changes, these strate- 
gies must be returned to the unknown pool because they must 
be compared to the new Hhjgh. 

B. The STOP2 Algorithm 
The STOP2 algorithm differs from the STOPl algorithm in 

that it accounts for two factors ignored in the STOPl ap- 
proach. First, depending upon the sample variances and sam- 
ple means of the individual U/-, distributions, examples allo- 
cated to the distributions will have different effects on improv- 
ing the confidence in a painvise dominance or indifference 
relation. Second, the cost of acquiring information (examples) 
may vary across hypotheses. Because of these varying benefits 
and costs sometimes significant benefits can be derived from 
not bounding the statistical error equally across each of the 
pairwise comparisons. The STOPl algorithm, which does not 
iiccount for these varying benefits and costs, uses equal bounds 
across the painvise comparisons. The STOP2 algorithm esti- 
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m a s  the likely cost and benefit for each new example and 
allocates exampies to the wrymison with the highest esti- 
maaiGd h e f i t  dividd by cost. This can result in B eilauation 
where each cCnnp8tjscm is estimated to a different level of sta- 
tistical error, although the wm of tbw errors still mu&t remain 
below the ovwall bound of 1 - 7 As the individual pairwise 
coa$idencei may vary, we intm~w the new notatian yi to 
signify the coRf&ncB that strategy HI ddnates or is hdiffer- 
ent with strategy Hk 

For example, as shown in Fig. 2, if the uncertainty in de- 
tennining the dominance of Hi over & b s  already been re- 
duwd significantly, a d  the uncertainty in showing dna domi- 
nance of Ht over 4 has not, additionti1 examples ta HI vs. I?,, 
are likely to have p a t o r  eflect on rwducing the overall mror 
than examplas from Ht YS. Hk. Thus one can estimate the mar- 
giml ben@ of gullocling additional $ample$, the reduction in 
swistlical mor rwulting fitom an additiional exampb, by as- 
suming that the mean and variance of V,, will change little and 
computing the increase in certainty. This ?.est& in the follow- 
ing formula. 

AyJl  for U/-, = CP [ -U,-, - - y , w ) - o l d Y ; l  

Fig. 2. Varying effects of sampling. 

Similarly, we estimate the marginal increase in indBkrence 
confidence from acquiring an additional example of V,, as 
follows : 

The second factor considered by STOP2 and not by STOP1 
is the varying cost of acquiring a sample. If acquiring an addi- 
tional sample has an extremely high cost, it may not be worth 
the effort, even if the expected information gain is large. 
Likewise, a low information cost may make a lesser infoma- 
tion gain look more attractive. To decide how best to allocate 
learning resources, STOP2 estimates mfuginal cost. “his is the 
cost of acquiring another samplec for a qiven pairwise compari- 
son and it consists of the cost of determiining a utility value for 
each member of the pair. As each comparison shares the same 
hypothesis H H , ~ , ,  at least part of this cost may almdy have 
been incurred. Thus estimating the marginal cost invnlves two 
parts. First, determine which utility valves must be determined 
(U,, U,, or both). Secomd, use the estimated means for 67, and C, 
to estimate the cost of acquiring another sample V, and U, as 
appropriate. 

Ths estimated marginal cost of determining another point 
fiom Ubi is c m m d  as follows. Let Nd indicate the number 
of samples ti” &m the strategy HI so far. When we draw a 
p r o b b  &om &el dhltribution, we store it so that if we wish to 
sample p t i m e  from the di&ribution U,, and p titnes &om dis- 
PibuF;lon V,, we kvle the game p problems from tfu! problem 
disbtiution. Fmth@rmore, when we compute difkmces in 
u t i l e  thra d e b u t i o n  q-, these arc computed by using 
the competing strategies on the same prablem. Thus if we wish 
to gGvt the pth ample &cm the distribution U’ (assuming 
p - 1 samples have already been computed), Nd and Nd must 
each be at leaap - 1. The cost can be expressed as follows: 

f both N,, and NUJ are p or greater: the cost of computing 

0 If No, = p - E and Ne, = p then the expected cost is c . 
If Nq = p - 1 and Nu, = p then the expected cost is q. 

0 ~ ~ ~ = p - ~ ~ N , = p - ~ ~ ~ e e x p e c t e d c o s t i s ~ + ~ .  

Given the mqinal  benefit and marginal cost, STOP2 uses 
y approach of selecting the course of action 
at ratio of marginal return to marginal cost. 
mes until a strategy emerges which can be 

shown with overall confidence y to be dominant or indifferent 
with respect to all other stmegieso6 

the@ sample is 0. 

STOP2 ALGQRITHM: 
let T = {HI, ,.., Hk} 
solve no problems with each strategy in T 
compute utility comparison statistics for no 

LOOP1 
samples 

let HHi# be the strategy in T with the high- 
est sample mean 17 
if for atvery Xj in T one of the following con- 
ditions holds 

WHlgh d d n a t e s  CIJ with confidence f 
&I#, and UJ are ambivalent with confidence f 
such that f S y 

then return HHigh 
else for each strategy H i  in T 

Compute the marginal benefit ME, and mar- 
ginal cost M c l  of acquiring another sample 
from UHlgh-l 

for the Hi with the highest MBi / MCi 
generate data for the distribution VHigh-i 
recompute utility comparison statistics, re- 
selecting if necessary 

CONTINUE WITH LOOP1 

b e n  simplified to ease understand- 
utility of acquiring another 
relevant samples are taken. 

a sample for Hxgh to acquire a sample 
for UH~,-, may allow another U,,,, to be computed at zero 

in HH,&) and hence should be included in 

6. Note that in general, the system will be attempting to show that a specific 
stratcigy HI dominates qr is wbivdent with all the others. This means that Nal 
will be consistent!y gnaater than or equal to all other N? Anytime Nd incre- 
mcn&d to find aut mod information regarding H,, this immediately reduces 
the cost of acquiring i ” t i o n  for other Hfi, as they no longer need to pay 
the  COS^ of sampling Ht. This will tend to mitigate the effects of different 
means and variances fur Q-t distributions. However, in cases where the focus 
stratcgy Ht changes, othtr mort complex phenomena wit1 occur. 
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Iv. THE EXPECTED LOSS APPROACH 

A commonly used measure in valuing information in game 
theory applications is the concept of expected loss. Put simply, 
expected loss is the chance that one makes the wrong decision, 
weighted by how wrong the decision turns out to be. The ex- 
pected loss measure can be computed for any pair of altema- 
tives. These computed values can then be used to answer both 
the question of “is the current information enough” and if ad- 
ditional information is needed “which information at which 
cost should we get.” The former question can be answered by 
putting a bound on the expected loss that one is willing to tol- 
eratc, and making a decision when an alternative is found to 
have an expected loss of less than the bound. In our case of 
hypothesis evaluation, one can select a hypothesis strategy HI 
when. 

More rigorously, we define the expected loss of utility from 
adopting HI rather than H/ to be the integral of the joint utility 
of H, and HI over the regions where HI has lower utility 
weighted by the difference in utility: 

However, because U, and U, are jointly Gaussian, and a linear 
combination of two jointly Gaussian random variables is 
Gaussian, we can use the differential distribution U,, to com- 
pute the expected loss directly. 

Thus we simply estimate the mean and variance for our best 
guess at the true mean of the differential distribution 

We compute the integral over the region where U,, > 0 of the 
term U Pr(Ul, = U). To do this, we first compute the sample 
mean and variance for the differential distribution, and then ap- 
ply a formula analogous to that used in the dominance confi- 
dence interval calculation (for derivation, see Appendix A 1. 

*(Expected Loss Equation) 

7. Enforcing that E(L(H, H)) = 0 
8. An alternative approach would he to estimate the parameters for each of 

the individual utility distributions, then use these parameters to compute the 
mean and variances for the estimates of the differential distributions. This 
would result in the same parameters as our approach of computing the pa- 
rameters of the differential distributions directly from the data. 

A. The EL1 Algorithm 

analogs of STOP1 and STOP2, called EL1 and EL2. 
Given this definition of expected loss, we can define the 

EL1 ALGORITHM: 
let T = [ f h 1 . . . , H k }  and L be the expected loss 

threshold. 
let L* = L / k  
solve no problems with each strategy in T 
let &ish be the strategy in T with the highest 

sample V 
‘d j = 1, ..., k Compute E(L(Hhighr  
LOOP1 

H j ) )  

select a strategy H, such that the 
expected utility loss from selecting 
HHigh over Hi is greater than L* 

if there is no such strategy, 
then return Htllgh 

else generate sample from Hi and H ~ i ~ ~ h  
recompute expected utility losses 

CONTINUE LOOP1 

R. The EL2 Algorithm 
EL2 extends EL1 in exactly the same way that STOP2 ex- 

tends STOP1, by accounting for variable gains and costs 
across the hypotheses. 

The marginal decrease in expected utility loss (MDEUL) is 
computed by recomputing the integral for expected loss, as- 
suming that the variances and means will remain the same but 
iricrementing n by 1 and subtracting the current expected util- 
ity loss. The resulting formula is shown below. 

The expected marginal cost of sampling is computed as in 
STOP2. The EL2 algorithm is shown below. 

EL2 ALGORITHM 
let T = {HI,  ..., Hkl and L be the expected loss 

solve no problems with each strategy in T 
let H ~ i ~ h  be the strategy in T with the highest 

V i = 1, ..., k compute E [ L ( H H ~ ~ ~ ,  H,I I 

threshold. 

sample mean c? 

and let this be 1, (enforce that E(L(H, ,  H i ) )  = 0 

if C I’ 5 L 
then return HHiigh 

else compute the marginal decrease JLn 
expected loss (MDEUL) by sampling from each 
of the H1s (including Hxigh) 

l o o p l  

compute the marginal cost of sampling each 
strategy using the C distributions 
sample from the distribution with the 
highest MDEUL/expected marginal sampling 
cost 

recompute L: s as necessary 
continue loopl 
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V. EMPIRICAL PERFORMANCE EVALUATION 
We now turn to an empirical evaluation of the hypothesis 

selection techniques. This evaluation lends support to the 
techniques by addressing three key issues. First, it demonstrates 
that the techniques perEorm as predicted. Second, the evaluation 
demonstrates the benefits of rational example allocation (as per- 
formed by STOP2 and EL2). Finally, it ilbtrates the applica- 
bility of the approach to a red-world hypothesis selection prob- 
lem. Where possible, we contrast performance with that of other 
relevant approaches in the statistical literature. 

A. Other Relevant Approaches 
There exists a body of standard approaches for the interval- 

based formulation of the hypothesis evaluation problem. To 
demonstrate the power of our interval-bae# approaches we 
contrast them with two existing approaches. The first is a sta- 
tistical approach proposed by Turnbull and Weiss [21]. The 
second is the COMPOSER machine learning teahniqulle pro- 
posed by Gratch and DeJong [ 11. 

The Turnbull and Weiss approach comes closest among 
statistical ranking and selection procedures to the genenality of 
the STOPl and STOP2 approaches. Most standard statistical 
approaches make strong assumptions ablout the form of the 
hypothesis evaluation probliem (e.g., the variances asslociated 
with hypotheses are known or equal). As in our intervdl-based 
approaches, Turnbull and Weiss treat hypotheses as ndrmal 
variables with unknown mean, and umknown and unequal vwi- 
ance, however they make the additional assumption that hy- 
potheses are independent. It can still be reasonable to use this 
approach when the hypotheses are not independent, but this 
can lead to excessive statistical error or unnecessarily large 
training set sizes under certain circumstances. However, in the 
case where hypotheses are truly independent, this technique 
can exploit this knowledge and likely outperform our methods 
which do not adopt this assumption. The Turnbull and Weiss 
technique is described in Appendix B. 

The COMPOSER technique (described in Appendix C) was 
proposed to solve hypothesis evaluation problems as they arise 
in the context of adaptive problem-solving. COMPOSER 
treats hypotheses as dependent normal variibles with unknown 
mean, and unknown and unequal variance. COMPOSER, 
however, does not implement the notion of an indiEerence 
interval. Rather it is trying to adopt the first hypothesis that can 
be demonstrated to be significantly better than a defbult hy- 
pothesis. When the best hypotheses are all close to 
in utility, COMPOSER will require an excessive 
training examples. 

B. Methodology 
First we discuss some methodological issues. The interval- 

based and expected loss approaches embody different criteria 
for selecting hypotheses and therefore are difficult to compare 
directly. Thus we frst test the interval-Med and expected loss 
approaches separately. Interval-based approaches have been 
investigated extensively in the statistical ranking and selection 
literature (see [22] for a review of the recent literature). This 
affords us the opportunity to compare STOPl and STOP2 
against a standard statistical approach. 

Techniques are evaluated on synthetic and real-world data 
sets. Synthetic data allow a systematic test of the formal prop- 
erties of each technique while real data sets test the appropriate- 
ness of statistiGal assunptim-such as the n o d  approxima- 
tion-and mess the practicality of each appaoaoh an red-world 
pblems. Finally, in a comprehensive real-wosld test on 
scheduling data, we compere the intervd-basad and expected 
llass approaches, using a wide range of para” settings. This 
test reports on the battom-line effbctiveness of the competing 
techniques in a pragmatic pblem.solvin~ setting. 

An experimental trial consists of solvmg a hypothesis 
evdwtion problem with a given technique. The performance 
on any single trial provides little informtion given the random 
nature of the task. To assess the average characteristics of the 
technique a trial is repeated multiple times and the results are 
averaged across trials. All experimental trials are repeated 
5,000 times. 

An interval-based technique processes examples until it has 
identified a hypothesis that with probability f is within E of 
optimal. STOPl attempts to ensure this property with the 
minimnun number of training examples possible. STOP2 at- 
tempts to ensure this property with the minimum cost possible. 
To assess the competence of these techniques we track three 
quantities: the number of examples required to choose a hy- 
pothesis, the cost of the examples required to choose a hy- 
pothesis, and the observed probability that the expected utility 
of the chosen hypothesis is in fact within E of the utility of the 
optimil hypothesis. For the expected loss techniques we track 
the analogous three quantities: the number of examples to 
choose a hypothesis, the cost of the examples, and the average 
loss (the average loss in utility when the technique chooses the 
nonoptimal hypothesis weighted by the probability of choosing 
the nonoptimal hypothesis). 

B. I .  Synthetic Data 
Synthetic data are used to show that: 1) the techniques per- 

form as expected when the underlying assumptions are valid 
and 2) the use of rational example allocation exhibits substan- 
tial improvement when there is unequal cost or variance 
among the distributions. For interval-based approaches we 
show that the technique will choose the best hypotheses, or 
one &-close to the best, with the requested probability. When 
all hypotheses are within E of each other, the indifference- 
based technique should quickly terminate, returning any hy- 
potheses. For the expected loss approaches the claim is that the 
technique will exhibit no more that the requested level of ex- 
pected loss. One set of evaluations is devised to test this claim. 

The second claim is that the techniques that use rational ex- 
ample allocation ,will exhibit substantial performance im- 
provement when there is unequal cost or variance among the 
hypotheses. A second set of evaluations is devised to test this 
claim. 

For the synthetic data problems, hypotheses are modeled as 
random variables with parameterized properties. A specific 
hypothesis evaluation problem is constructed by fixing the 
values of each of these parameters. In trhe c o m e  of solving a 
specific problem, values for the utility and cost of each hy- 
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pothesis on each example are assigned randomly according to 
the parameterized distribution functions. For a given problem 
let k define the number of hypotheses. For all synthetic 
evaluations, the hypothesis utilities and costs are treated as 
independent normal random variables with some parameter- 
ized mean and variance. Each hypothesis is described by four 
parameters-xpected utility, utility variance, expected cost, 
and cost variance. Thus a hypothesis evaluation problem is 
specified by 4k parameters. 

The hypothesis evaluation techniques have additional pa- 
rameters that govern how they attack the problem. To distin- 
guish these we refer to problem parameters and control pa- 
rameters. The interval-based techniques have three control 
parameters: an initial sample size no, a confidence setting y? 
and an indifference setting E. The expected loss techniques 
have two control parameters: an initial sample size no and a 
loss threshold H*. 

tlnless otherwise stated, each training example on any hy- 
pothesis is given equal cost. This means that the overall cost of 
a technique is directly proportional to the expected nuniber of 
examples required to select a hypothesis. Thus, when each 
training example is given equal cost only the number of ex- 
amples will be reported. One set of synthetic evaluations high- 
lights the benefits of rational example allocation. In these 
evaluations we create a significant discrepancy in the cost of 
evaluating alternative hypotheses. 

B 2. Scheduling Data 
The test of real-world applicability is based on data drawn 

from an actual NASA scheduling application [23]. These data 
provides a strong test of the applicability of the techniques. All 
of the statistical techniques make some form of normality as- 
sumption. However the data in this application are highly non- 
normal-in fact most of the distributions are bimodal. This 
characteristic provides a rather severe test of the robustness of 
the approaches. 

In this application a heuristic system was developed to 
schedule communication events between earth-orbiting satel- 
lites and ground-based radio antennas. In the course of devel- 
opment, extensive evaluations were performed with various 
scheduling heuristics. The goal of these evaluations was to 
choose a heuristic search strategy that solved scheduling 
problems quickly on average. This is easily seen as a hypothe- 
sis evaluation problem. Each of the heuristics corresponds to a 
hypothesis. The cost of evaluating a hypothesis over a training 
example is the cost of solving the scheduling problem with the 
given heuristic. The utility of the trainrng example is simply 
the negation of its cost. In that way. choosing a hypothesis 
with maximal expected utility corresponds to choosing a 
scheduling heuristic with minimal average cost. 

Using the data from the heuristic evaluations we derived 
four data sets. Each data set corresponds to a comparison of 
some set of scheduling heuristics, and contains data on the 
heuristics’ performance over about 1.000 scheduling problems. 
An experimental trial consists of executing a technique over 
one of these data sets. Each time a training example is to be 
processed, some problem i.; drawn randomly from the data set 

with replacement. The actual utility and cost values associated 
with this scheduling problem are then used. As in the synthetic 
data, each experimental trial is repeated 5000 times and all 
reported results are the average of these trials. 

C. The Interval-Based Approach 
The interval-based approaches, STOPl and STOP2, are 

evaluated on both synthetic and scheduling data sets. Synthetic 
problems were constructed to answer the following three 
questions: 1) do the techniques select &-close hypotheses with 
the specified probability, 2) do the techniques terminate 
quickly when all hypotheses are E -close, and 3 )  does STOP2 
outperform STOPl when there is significant cost or variance 
differences between hypotheses. We also contrast the perform- 
ance of our techniques with COMPOSER and the technique of 
‘Turnbull and Weiss. 

C. I .  Confidence Test 
The statistical ranking and selection literature uses a stan- 

dard methodology for evaluating the statistical error of hy- 
pothesis evaluation techniques. We adopt this methodology 
here. Robert Bechhofer introduced the concept of the least 
favorable configuration of the population means [ 181. This is a 
parameter configuration that is most likely to cause a tech- 
nique to choose a wrong hypothesis (one that is not &-close) 
and thus provides the most severe test of the technique’s abili- 
ties. Under this configuration, k - 1 of the hypotheses have 
identical expected utilities, ,U, and the remaining hypothesis 
has expected utility p + E. The last hypothesis has the highest 
expected utility and should be chosen by the technique. All 
hypotheses are independent and the costs and variances of all 
hypotheses are equal.9 

The least favorable configuration becomes more difficult 
{requires more examples) as the confidence y?, the number of 
hypotheses k ,  or the common utility variance c? increases. It 
becomes easier as the indifference interval E increases. In the 
standard methodology a technique is evaluated using several 
settings for k, f, and :. The last term combines the variance 
and indifference interval size into a single quantity which, as it 
increases, makes the problem more difficult. For our experi- 
ments, no = 7, m = 50, 0 = 64, and all other parameters are 
varied as indicated in the results. The sample size results and 
observed confidence levels are summarized in rable I.  
The results indicate that all systems are roughly comparable in 
the number of examples required to choose a hypothesis. As 
expected, the number of examples increases with k, f, and :. 
The technique of Tumbull and Weiss tended to be the most 
efficient; however this algorithm was essentially told that the 
hypotheses are independent, information that was withheld 
from the other algorithms. COMPOSER performed the worst 
of the algorithms. In terms of statistical error. all of the algo- 
rithms except Tumbull and Weiss’ were correct at least as 
often as requested. The technique of Turnbull and Weiss often 

9. Note that in this evaluation E acts as a problem parameter in addition to 
its role as a control parameter. 
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k 7' $ STOP1 STOP2 
3 0.75 3 38 (0.85) 34 ( O M )  
3 0.78 3 58 (0.08) 52 (0.78) 
3 0.90 2 64 (0.9q 65 (032) 

provided less than the requested confidence. However, since 
their technique only guarantees that the confidence will ap- 
proach f as $ tends to m a ,  these results are consistent with 
their claim. 

TURNBULL COMPOSER 
27 (0.75) 61 (0.98) 
So (0.73) 103 (0.90) 
54 (0.86) 91 (0.96) 

TABLE I 
EST~MATED EXPECTED TOTAL NUMBER OF oBS@RVATTONS IN THE LEAST 

ACHIEVED ~OBABIUTY OF CORRECT SELECTION IS S H O W  IN PARENTHESES 
FAVOIWBLE CONFIGURATION. 

3 
5 
6 
6 

0.95 3 183 (0.94) 193 (0.95) 192 (0.93) 238 (0.97) 
0.75 2 98 (0.86) 94 (o.sa) 63 (0.71) 138 (0.98) 

0.76 3 177 (0.89) 179 (0.81) 141 (0.71) 250 (0.89) 
O.@O 2 189 (D.98) 570 (0.94) 123 (0.84) 196 10.97) 

I 3 I 0.W I 3 I 121 lO.91) I 123 (0.91) I 127 (0.87) I 170 (0.95) I 

3 
3 
5 
5 

I '  . . ,  . . ,  . .  

*** 
*** 
*** 
*** 

0.95 2 142 151 $1 
0.95 8 291 312 182 
0.75 2 134 148 63 
0.75 8 249 1wB 141 

I '  . . ,  . . ,  . .  

io 
io 

*** 
+** 

0.e5 I 2 635 WEI I 444 
o m  3 1776 a m  1037 

I '  . . ,  . . ,  . .  
. , ,  . , ,  . . ,  . .  

p T z 8  1 3 1 1,136 (O.S&) I 1,435 (0.97) I 1,087 (0.94) I 1,175 (0.95) I 

C. 2. Indference Test 
The indifference interval approaches should terminate 

quickly when all hypotheses are indifferent to each other. To 
test this ~ l a im we repeated the least favorable configuration 
evaluations except that all hypotheses were assigned the same 
expected utility p. Results are summarized in Table 11. Error 
rate results are not shown since any hypothesis is a correct 
selection in this configuration. 

The key result to notice is that COMPOSER failed to &mi- 
nate on any of the trials. This highlights the potential difficul- 
ties with CoMPOSElR that STOPl and STOP2 were designed 
to correct. Again, the technique of Tumbull and Weiss could 
exploit the independence information and slightly outperforms 
the other approaches. 

C. 3. Rational Allocation Test 
STOP:! is designed to perform well when the cost of proc- 

essing examples or the utility variance differs widely across 
hypotheses. The preceding evaluations did not Gontrast the two 
approaches under these conditions as both the cost and vari- 
ances were equal. Consequtsfltly STOPl and STOP2 were ap- 
proximately equally efficient in these tests. This evaluation 
contrasts the approaches by providing problem configurations 
with highly mcequal costs. 
Problem cohfigurations are defined as follows. One hypothesis 
(the correct selection) is assigned a high mean pbe,.,. A second 
hypothesis i s  assigtled a mean slightly below E of the best, 
p.1~,,,-~. All remaining hypotheses are assigned a low mean, 

l l~0)9, .  The second hypothesis is given a high cost CM@ and all 
othw hypotheses are given low cost crmU. All hypotheses are as- 
signed a common varimce of 50, pke, = 74, 

tings were evaluated. The results am summarized in Table III. 
r~6e;&1= 72, &mt = 5, E = 1, and = 7. Various ConfidenaCe Se2- 

TABLE I1 
ESTIMATED EXPECTED TOTAL NUMBER OF OBSERVATIONS IN THE 

NOTE THAT COMPOSER FAILED TO TERMINATE ON ANY OF THE TRlALS 
INDIFFERENCE CONFIGURATKIN. 

*** I 782 io I o.eo I 8 I 1348 I 1867 I 

I 3 I 0.75 I 12.034 I 5.241 I 2.3 I 
3 1 0.80 1 14,890 I 6,790 I 2.2 
3 I 0.85 [ 20,119 I l(l,030 I 2.0 

0.85 47 1157 10086 
0.90 516 183 15,004 3.8 

The results illustrate the clear dominance of STOP2 under 
thii configuration-up to seven tiones more efficient on one of 
the trials. An interesting question is whether there is a limit to 
how much better STOP2 can be, In fact there is an upper bound 
on this difference [24]. This upper bound increases as the num- 
ber of hypotheses increases or as the confidence level decreases. 
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C. 4. Scheduiing Test 
We ran all four algorithms over the four scheduling data 

sets. In each case the y =  9S%, no = IS, and E = 4.0. Table IV 
summarizes the results along with the number of hypotheses 
and the relative difficulty (%) of each data set. 

TABLE IV 
ESl IMATED EXPECTED ‘TO TAL NUMBER O t  OBSERVATIONS 

FOR SCHLDULMG DAI A 
ACHIEVED I’ROBABILITY OF 4 CORRECT STLECTION IS S H O W  It4 

PARENTHESES 

0.96 

’The principle result is that STOPl and STOP2 substantially 
exceeded the performance of the other dgorithms except on 
one case. The one exception is an artifact of COMPOSER 
solving a slightly different task. Rather than choosing the hy- 
pothesis that is &-close to optimal, COMPOSER chooses the 
first hypothesis to dominate a default hypothesis (the first hy- 
pothesis was arbitrarily defined to be the default in these tri- 
als). In data set D1 the default is significantly worse than the 
other two hypotheses, which in turn are indifferent to each 
other. STOPl and STOP2 take longer because they must ver- 
ify this indifference. 

Note that unlike the synthetic data where STOPl was 
slightly more efficient than STOP2, in the scheduling data 
STOP2 was slightly more efficient. In fact, in the scheduling 
data there is some disparity between hypotheses in their utility 
variance. STOP2 is able to account for these factors when al- 
locating examples, and thus exhibits greater efficiency. 

Turnbull and Weiss’ technique performed substantially 
worse on the real-world data. Its poor performance is due to 
two factors. First, the technique is unable to quickly discard 
hypotheses that are clearly dominated by other hypotheses. 
Second, the technique’s independence assumption was inap- 
propriate for these data, which are strongly positively corre- 
lated. In this situation assuming independences leads to over- 
estimates of the true variance, which in turn leads to higher 
sample sizes. 

D. Discussion of Interval-Based Evaluation 
Taken together, the evaluation provides clear evidence for 

the effectiveness of STOPl and STOP2 and demonstrates their 
superiority to alternative techniques. The techniques per- 
formed as predicted, guaranteeing the requested confidence 
level under a variety of configurations. In comparison to other 
approaches, they did not perform the best on every configura- 
tion, however when they were outperformed it was not by 
much and they often substantially outperformed the alternative 
techniques. For example, COMPOSER fails to terminate when 
multiple hypotheses are close to optimal. The technique of 
Turnbull and Weiss performed poorly on the real-world data 
sets. The scheduling evaluation demonstrates that STOP 1 and 
STOP2’s normal approximation allows effective performance 

on real-world hypotheses selection problems, even when the 
underlying distributions are not normal. 

The rational allocation test illustrates that STOP2 can sub- 
stantially outperform STOPl when there are marked differ- 
ences across heuristics in the cost of processing examples or in 
the variance of expected utility values. STOP2 should be used 
if the hypothesis evaluation problem has this characteristic. It 
appears that STOPl is slightly more efficient when the cost 
and utilities are close to equal. Under these circumstances we 
recommend the use of STOP 1. 

E. The Expected Loss Approach 
The expected loss approaches, ELI and EL2, are evaluated 

on both synthetic and scheduling data sets. Synthetic problems 
are constructed to answer the following two questions: 

1) Do the techniques properly bound the expected loss, and 
2) Does EL2 outperform ELI when there is significant cost 

or variance differences between hypotheses? 

E. I .  Expected Loss Test 
The techniques are tested on a least favorable configuration 

with k hypotheses. The means of k - 1 hypotheses are assigned 
the value m and the remaining hypothesis is assigned mean 
m + E. Each technique is then tested on various loss thresholds 
I{* over this problem. For this evaluation, m = SO, all hypothe- 
ses share a common utility variance d = 64, and E = 2. All 
other parameters are varied as indicated in the results. The 
sample size results and observed loss values are summarized in 
Table V. The results illustrate that the techniques perform as 
predicted. As the loss threshold is lowered the techniques take 
more training examples to ensure the expected loss remains 
below the threshold. 

TABLE V 
ESTIMATED EXPECTED TOTAL NUMBER OF OBSERVATlOhS AND EXPECTED 

LOSS OF AN INCORRECT SELECTION FOR THE LEAST FAVORABLE 
CONFIGLIRATION 

~~ ~~ ~ ~~ 

Parameters EL1 EL2 

1 k I 6 I H’ I Samples 1 Loss I Samples I Loss I 

0.4 0.9 

1 5 I 2 1 0.25 I 127 I 0.1 I 114 1 0.2 I 
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10 I 0.50 
10 1 0.25 

E.2. Rational Allocation Test 
EL2 is designed to perform well when the cost of process- 

ing examples or the utility variance differs widely a m s s  hy- 
potheses. The precedjng eduations did not contrast the two 
techniques as the cost and variances were equal across hy- 
potheses. This evaluation contrasts the approaches using 
unequal costs across the hypotheses. The configuration used is 
identical to the one described in Section (2.3. The difference in 
expected costs between solving problems with EL1 and EL2 is 
summarized in Table VI. The results indicate that EL2 sub- 
stantially outperformed EL1-in one trial solving the configu- 
ration four times more efficiently. EL2 achieves greater effi- 
ciency as the number af hypdtheses increases. As with $TOP2 
we smpect that the potential for greater efficiency is not un- 
bounded, but we have not a$ yet obtained an upper bound on 
the ralative efficiency ofEL2. 

TABLE VI 
ESTIMATED EXPECTED TOTAL COST FOR THE 

RATIONAL ALLOCATION CONFIGURATION. 

19,144 I 4,718 I 4.1 
24,901 I 6,861 I 3.9 

E. 3. Scheduling Test 
We ran the two expected-loss based techniques over the 

four scheduling data sets. In each case the L = 3 and no = 15. 
The results are shown in Table VII. The main result is that the 
algorithms correctly bounded the expected loss with one ex- 
ception-EL2 gave greater than expected loss on data set D3. 
It appears that this exception arose from a significant departure 
from normality in the distributions comprising the data set. 
Additional trials demonstrated this discrepancy goes away if 
the initial sample size is increased, thereby improving the 
normal approximation. 

F. Discussion of Expected Loss Evaluation 
The three evaluations of EL 1 and EL2 give clear support for 

the effectiveness of these algorithms. The techniques per- 
formed as predicted, properly bounding the expected loss un- 
der a variety of parameter mnfigurations. We did observe that 
under some of the configurations, EL2 gave slightly larger 
than requested loss. More generally, it appears that the ex- 
pected loss approach will be more susceptible to departures 
from normality in the utility distributions when compared with 
the interval-based approach. Both approaches use a normal 

distribution to approximate the distribution of a sample mean. 
However the interval-based approach is only sensitive to the 
m a  under parts of the normal curve. The e-ed loss com- 
putation makes use of both the area and the shape of certain 
parts of the normal curve. Thus the expected loss approach 
demands more fidelity from its approximation, and this fidelity 
is degraded when the underlying distribution is not normal. 
This effect can be compensated by using a larger n,, for the 
expected loss technique. 

TABLE VI1 
ESTIMATED EXPECTED TOTAL NUMBER OF OBSERVATIONS AND EXPECTED 

LOSS O F  AN &CORRECT SELECnON FOR THE SCHEDULING DATA 

Parametem 

D2 2 3.0 1.8 

D3 7 3.0 335 3.0 177 3.9 

G. Comparing Interval-Based to Expected Loss Approaches 
One cannot state that interval-based techniques are better or 

worse than expected loss approaches-each is solving a 
slightly different problem. Interval-based approaches are at- 
tempting to identify a nearly optimal hypothesis with high 
confidence while expected loss approaches we mmpting to 
minimize the cost of a mistaken selection. If the goal of the 
task is to identify the best hypothesis then clearly an interval- 
based approach should be used. If the goal is to simply im- 
prove expected utility as much as possible, either could be 
used. It is unc1aa.r which is to be preferred. 

Ow original motivation in developing these approaches was 
to develop effective techniques for adaptive problem-solving. 
In this section we attempt to assess how the various ap- 
proaches perform on this task. In particular we consider how 
the approaches perform in the problem of learning a set of 
problem-solving heuristics for the NASA scheduling domain. 
In this test the algorithms were given the task of optimizing 
four control parameters of the adaptive scheduler, with the 
goal of speeding up the schedule generation process. The 
solution to this consists of identifying a good heuristic for each 
of the four control parameters, where the best choice for a par- 
ticular parameter depends on the heuristics chosen for the 
other control parameters. We implement a hill-climbing strat- 
egy for finding a good combination of heuristics. For more 
details on this application domain see [23). 

We run each algorithm under a variety of parameter settings 
and compare best performance of each algorithm (i.e., the 
lowest cost seaing that resulted in a high expected utility on 
average). In this test the interval-based algorithms are run with 
confidence levels = 0.75, 0.910, 0.95 and indifference levels 
E = 1.0, 4.0, 7.0. The expected loss algorithms are run with 
loss bound L = 5 ,  1, 0.5. For each setting 1000 runs are con- 
ducted, we then determined the best settings as the lowest cost 
solution within 1.0 utility of the average best solution found 
per algorithm (effectively enforcing a minimum utility of 
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Algorithm Coat (100s CPU 6ec) 

COMPOSER (0.90) 6128 

STOP1 (0.75,l.O) 4199 

STOP2 (0.75,l.O) 3140 

EL1 (1.0) 2347 

EL2 (0.5) 2211 

16.5). These best settings and the averaged results (from 1,000 
runs each) are shown in Table VIII. These results show that 
the algorithms produce roughly comparable utilities, the dif- 
ference in utilities is smaller than the smallest indifference 
interval specified to the interval-based algorithms. From this 
comparison we must conclude that, at least in the case of this 
NASA scheduling application, there is little difference be- 
tween the interval-based and expected loss approaches, neither 
in terms of expected improvement nor in terms of sample 
complexity. As expected, the unequal allocation approaches 
performed better in terms of learning cost. Finally, all of the 
improved algorithms outperformed the benchmark COM- 
POSER algorithm in terms of learning cost. 

TABLE VI11 
DIRECT COMPARISON OF ALL FOl‘K AIIiORITHMS 

Examples Utility 
4075 17.3 

27s 17.1 

1924 16.6 

1557 16.8 

1454 16.4 

VI. DISCUSSION AND CON( 1,IJSIONS 

There are many issues relevant to hypothesis evaluation 
which have not been addressed in this paper. One issue is 
modeling the computational cost of inferring and applying the 
statistical models. In some applications, one might imagine 
that these costs would play a significant role in determining the 
usefulness of our hypothesis evaluation mode. However, in our 
target application of learning for scheduling, the cost of gather- 
ing tiirther information heavily outweighs the cost of inferring 
and applying the statistical models. However, for other do- 
mains we concede that this may not be the case. A second re- 
lated issue is to estimate and trade off this cost of applying the 
statistics and decision theoq relative to the cost of additional 
examples. 

Another issue is to better understand the qualitative condi- 
tions under which the cost sensitive measures (STOP2 and 
EL2) will outperform the equal error distribution models 
(STOP1 and ELI). Generally speaking, if the means and vari- 
ances vary significantly, the cost sensitive measures should 
perform better. Additionally, if the marginal computations are 
reasonable projections, the cost sensitive measures should also 
outperform the other measures. 

An important issue is the use of the U(k) error function. 
Further empirical evaluation needs to be performed to better 
understand the relationship hetween n,, and the number of Hh@ 
switches during hypothesis evaluation, and exactly how this 
relates to the error models and to the required confidence pa- 
rameter y. As a further subtlety, one might consider removing 
strategies which become dominated at any point in the evalua- 
tion (in contrast with the current approach which requires all 
strategies to be compared against the final H&J. 

Another issue is determining the exal:t impact of the dual 

example phenomenon (where two examples are needed to 
compute each data point for the differential distribution). 
Additionally, if we had a method of estimating a utility differ- 
ence with unequal numbers of examples that would be very 
helpful, but since the utilities are covarying it seems unlikely 
that such a technique will be found. 

This paper has described techniques for choosing among a 
set of alternatives in the presence of incomplete information 
and varying costs of acquiring information. In our approach, 
the cost and utility of various altematives are represented using 
parameterized statistical models. Using techniques from an 
area of statistics called parameter estimation, models can be 
inferred from performance on sample problems. These statisti- 
cal models can then be used to estimate the utility and cost of 
acquiring additional information and the utility of selecting 
specific altematives from the possible choices at hand. These 
techniques have been applied to adaptive problem-solving, a 
technique in which a system automatically tunes various con- 
trol parameters on a performance element to improve perform- 
ance in a given domain. Empirical results were presented com- 
paring the effectiveness of these techniques on artificially gen- 
erated data and speedup learning from a real-world NASA 
scheduling domain. 

APPENDIX A: 
THE EXPECTED Loss CALCULATION 

We begin by noting that we want to integrate over the dif- 
ference between the two utilities, over the region in which the 
unselected hypothesis strategy has a higher utility. Consider 
the expected loss for the selection of hypothesis strategy H, 
over H,. In order to compute this, we need to examine the dif- 
ferential distribution UIY and integrate from zero to infinity. 

we then make the substitution of 

(1 - Q-/)& 
= -- 

SI-/ 

which results in the following implied substitutions: 

and to compute the limits of integration we note that when 
1 = 0  

U,-/  & 
SI -, = -___ 

and when I = 00 then 

resulting in: 
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we now note that the first integral has an analytic solution, that 
Je-0.52xm: = ,4 5x2 

leaving us with the following: 

(expected loss formula 1). 

APPENDIX B: 
THE TURNBULL AND WEISS ALGORITHM 

Turnbull and Weiss have proposed a sequential interval- 
based procedure for selecting the member of a population with 
largest mean. Members are considered n o d  variables with 
unla” mean and unknown variance. The procedure is as 
follows. For each hypothesis take an initial sample of no ob- 
servations, then take obsarvations sequentially. Stop smpling 
from a hypothesis wheh: $ 5  5,  where qz is the sample vari- 
ance and n, ,is the number of examples taken for hypothesis i. 
The value n will be defined momentarily. When sampling has 
stopped on all hypotheses, select the hypothesis with the high- 
est sample mean. The value n* is defined as $ where d is cho- 
sen to satisfy: 

where F(y) and m) are the cumulative distribution function 
and probability density h c t i o n  of the s t m p d  normal distri- 
bution, E is the indifference interval, and y is the confidence 
level. Bechhoffer provides extensive tables to- determine d 
[ 181. Turnbull and Weiss provide a proof that their algorithm 
asymptotically exhibits the requested confidence as the aver- 
age variance of the hypotheses divided by the indifference 
interval converges to zero. 

APPENDIX C: 
THE COMPOSER SYSTEM 

The COMPOSER system 1201 uses a statistical approach 
very similar to STOPI. Because COMPOSER performs hill 
cIimbing, it is always working firom a current strategy Ho and a 
candidate set of alternative strategies HI, . . ., Hk. COMPOSER 

computes the incremtal utilities of adopting each ofthe al- 
ternative strategies over HO (i.e., COMPOSER tracks 
UU,-,, ”... VUk-@, , computing confidence intenrals for each of 
these distributions). COMPOSER selects no samples from each 
distribution, then at each iteratian it samples equally fiom each 
distribution. If any hypothesis H, E HI,  ..., Hk is shown to 
have > 0 with confidence {, it is selected (ties are bro- 
ken by the highest vu,-,,). At any iteration, any hypothesis 

shown to have &,-,,, < 0 with confidence { is removed from 
the candidate set. Thq process terminates when a candidate 
strategy is selected or there are no more candida@ hypotheses. 

There are two major differences between COMPOSER and 
STOP1. First, because each strategy is compared to the de- 
fault, the presence of an extremely good hypothesis strategy 
cannot be used to prune other hypothesis strategies. This is 
unfortunate because a good hypothesis strategy (e.g., better 
than the current strategy) can be shown to dominate a poor 
hypothesis more easily (Easter) than the p00r hypothesis can be 
shown to be dominatgld by the current strategy. The second 
difference is that STOlPl incorporates an indiEience interval. 
In some cases, one or more hypotheses will have approxi- 
mately the same utility as the current strategy. Thus it may take 
many samples to determine which strategy is better, but the 
overall gBm or loss is insignificant. This is a poor expenditure 
of sampling resources. 

- - 
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