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On the Efficient Allocation of Resources for

Hypothesis Evaluation:

A Statistical Approach

Steve Chien, Jonathan Gratch, and Michael Burl

Abstract—This paper considers the decision-making problem
of selecting a strategy from a set of alternatives on the basis of
incomplete information (e.g., a finite nwmber of observations). At
any time the system can adojit a particular strategy or decide to
gather additional information at some cost. Balancing the ex-
pected utility of the new information against the cost of acquiring
the information is the central problem we address. In our ap-
proach, the cost and utility of applying a particular strqtmy toa
given problem are r ented s random variables from a
parametric distribution. By observing the performance of each
strategy on a randomly selected sample of problems, we can use
parameter estimation techniques to infer statistical medels of
performance on the general popwlation of problems. These m“
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can then be used to estimate; 1) the wtility and cost of a¢
additional information and 2) the desirability of selecting'a/ pa
ticular stratégy from a set of chicices. Empirical results are pre-
sented that demomstrate the effectiveness dof the hypothesis
evalustion technigues for tuning system parameters in a NASA
antenna scheduling application.

Index Terms—Machine learning, the utility problem, pla ning
and scheduling, parameter estimation, adaptive problem-solving.

I. INTRODUCTION

I N machine learning and basic decision-making in Al,
system must reason about alternative courses of action i
the absence of perfect information; frequently, the qxpec
utility of the information to be acquired must be balanced
against the cost of acquiring the information. When one wishes
some sort of statistical guarantees on the (local) optimality of
the choice and/or the guarantee of rationality, a statistical de-
cision theoretic framework is useful. This problem of decision-
making with incomplete information and information costs can
be analyzed in two parts:

e How much information is enough? At what point do we
have adequate information to select one of the alternatives?

o If one wishes to acquire more information, which infor-
mation will allow, us to make the best possible decision at
hand while minimizing information costs?

Possible solutions to this decision-making quandary depend
on the context in which the decision is being made. This paper
focuses on an abstract class of decision problems called hy-
pothesis selection problems that arise in many contexts in ma-
chine learning. These problems arise when one must select the
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best hypothesis (such as hypothesized concept description, or a
hypothesized problem-solving heuristic) from a set, given its
performance over same training data. For example, in adaptive
problem-solving a learning algorithm must select, from a set of
possible control strategies, one that most enhances problem-
solving performance [1], [2]. In inductive leamning there are
two issues which are naturally seen as hypothesis selection
problems: the attribute selection problem consists of selecting
one of a set of attributes based on information gain (3], [4];
and the model selection problem consists of selecting one of a
set of learned models (e.g., pruned decision trees) based on
their classification accuracy [5]. Although hypothesis selection
problems occur in many contexts, in this article we will use the
terminology approptiate for adaptive problem-solving—so that
acquiring additional information corresponds to solving prob-
lems with a particular problem-solving strategy and selecting a
problem-solving strategy with high expected utility is the goal.

Solving hypothesis selection problems may involve signifi-
cant investment of resources. There may be monetary cost in
obtaining training data and computational cost in processing it.
Usually this cost is addressed by informal or intuitive judg-
ments rather than a rational analysis of the costs and benefits
involved. This paper introduces two general methods for
solving hypothesis ‘selection algorithms efficiently and each
method can be augmented with rational amalysis to minimize
the total cost of selecting a hypothesis. The first method, called
interval-based selection, involves quantifying the uncertainty
in competing hypotheses by using the statistical confidence
that one hypothesis is better than another hypothesis. In this
approach the system allocates examples to show that one hy-
pothesis dominates all the other hypotheses with the specified
confidence. These methods also rely upon an indifference pa-
rameter—if two hypotheses differ in performance by less than
this amount, either is acceptable.!

The second method uses the decision theoretic concept of ex-
pected loss [7], [8], which measures the probability of making a
less preferable decision weighted by the lost utility with respect
to the alternative choice. In the expected loss approach, the sys-
tem acquires information until the expected loss is reduced be-
low some specified threshold. This approach has the added
benefit of not attempting to distinguish among two hypotheses
with similar means and low variances (i.e., it recognizes indiffer-
ence without a separate indifference parameter).

For both the interval-based and expected loss approaches,
when comparing among more than two alternatives, one is

1. This formalism is analogous to the PAC [6] framework—*“probably”
“approximately” “correct” maps onto “probably” “close to” “highest expected
utility.”
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comparing the utility of the “best” hypothesis to the other pos-
sible hypotheses. Since there are multiple comparisons, the
estimate for the overall error in the final conclusion (selection
of a best hypothesis) is based upon the errors associated with
multiple smaller conclusions. In both the interval-based and
expected loss approaches, it is possible to improve perform-
ance by rationally allocating varying amounts of error to each
of the smaller conclusions. Hence, there are four algorithms
we consider: interval-based with equal error allocation, inter-
val-based with unequal (rational) error allocation, expected
loss with equal error allocation, and expected loss with
unequal (rational) allocation.

The rest of this paper is organized as follows. Section 1I de-
scribes the general hypothesis evaluation problem and frames
the problem as statistical parameter estimation. Section III
describes the confidence interval approach. Section IV de-
scribes the expected loss approach and Section V describes an
empirical evaluation of these techniques using synthetic and
real-world scheduling data. Section VI summarizes the princi-
pal points of this paper.

[I. THE HYPOTHESIS EVALUATION PROBLEM

Hypothesis evaluation is the problem of selecting one of a
set of hypotheses which, with high probability, is close to the
best. We adopt a parametric statistical approach to this prob-
lem. Typically we have a set of problems D (planning prob-
lems, exemplars to classify, etc.). Any particular problem d is
selected from this set with probability Pp(d). We also have
available a set of & potential alternative strategies ), ..., H,,
for solving problems. Each hypothesized strategy H; has asso-
ciated with it an unknown utility distribution U; describing its
quality and an unknown cost distribution C; describing the cost
to process examples. Both of these are are induced by the
probability distribution over D.2 The desired outcome of the
hypothesis evaluation problem is to select a hypothesis Hy,,
which has the highest (or close to highest) expected utility.

Although the distributions U; and C; are unknown, the deci-
sion-making system can infer information about these distri-
butions by observing the behavior of strategy H; on problems
drawn from D. Thus, the system can choose between acquiring
more information—acquiring another sample from U; with
cost drawn from C; or adopting a hypothesis strategy H; (the
same question as in the introduction).

Our general approach to this problem consists of two parts:
parameter estimation and hypothesis evaluation. In parameter
estimation the underlying distributions of expected utility and
expected cost are assumed 10 be of a particular form (e.g.,
normal, student T, etc.) reducing the problem to one of esti-
mating parameters such as mean and variance from behavior
on sample problems. In hypothesis evaluation, decision rules
to decide how much information is enough, and how to acquire

2. Considerable work has been devoted to speedup learning, in which U;
and C. often are inversely related. For example, in speedup learning one might
use U = —C. In other work the utility of a solution might relate to the quality
of the overall plan or schedule produced [9), [10], [11).

3. Alternative castings of the problem might also impose requirements on
the variance of the selected distribution (e.g., [121).

information are formulated based upon estimated parameters.
As the result of applying these decision rules, the system may
decide to gather additional information (samples), in which
case it faces the decision between acquiring information or
stopping again. This process continues until the system de-
termines it has acquired enough information.

For purposes of estimating the expected value of these dis-
tributions we assume that U; and C; are jointly normally dis-
tributed (sometimes called Gaussian) random variables with
unknown means and unknown general covariance. The as-
sumption of normality is quite reasonable as the estimated ex-
pected value of an arbitrary distribution is approximately nor-
mally distributed (a consequence of the Central Limit Theorem
[13]). Confidence intervals regarding the true mean can be
computed from the sample mean, sample variance, and nuinber
of samples. More concretely, one can show that the difference
between the observed sample mean and true mean is normally
distributed with 0 mean and % times the variance of the initial
distribution, e.g., L~ ~ N(0, <-) [14].

Given the assumption of normality we can also conclude
that the differential distribution (the distribution of the differ-
ence in utility between any two strategies) is normally distrib-
uted. This property is important in that it allows us to deter-
mine that one strategy is better than (or roughly equivalent to)
another strategy in expected utility by only maintaining infor-
mation about the differential distributions. This simplifies
some of the mathematics. For example, in many applications
the performance of different strategies may be highly corre-
lated (e.g., when strategies are small modifications of some
common ancestor). Using the differential distributions encodes
this correlational information without the need for explicitly
computing covariance estimates.

A. Other Approaches

Our approach to hypothesis evaluation is related to several
other methods in the machine learning and statistics literature.
Standard machine learning approaches do not provide bounds
on the quality of the selected hypothesis and thus do not fit
into our conception of hypothesis evaluation. However, hy-
pothesis evaluation proper has been studied extensively in
computational learning theory. The thrust of that community
has focused on the question of whether hypothesis selection is
possible in the worst possible circumstances (and thus avoids
parametric approaches); however, we are concerned with al-
gorithms that are highly efficient in practice. The closest ap-
proaches to ours from the computational learning theory com-
munity are {2], [17].

In the statistics literature, hypothesis evaluation problems
are referred to as ranking and selection problems [18]. In their
terminology we are studying sequential elimination selection
procedures [19]. Our work differs from this literature in that
our approach is more general. Standard selection techniques
make restrictive assumptions about the variances of the utility

4. This technique is known as blocking in the statistical literature, see
pp. 299-300 of [15], and the method of common random variables in the
simulation literature [16].
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distributions. We allow the utility distributions to be correlated
and have unequal (finite) variances. However, we give up the
strong correctness proofs provided by these statistical tech-
nigues. Our techniques are heuristic and we provide only
mathematically plausible and empirical arguments for their
correctness. The approach closest to ours in generality is a
machine learning technique proposed by Moore and Lee [5].

Our approach extends both learning theory and statistical
approaches in that we account for the cost of obtaining data.
Typically hypothesis selection approaches only attempt to
minimize the overall number: of examples. We extend these
approaches to account for situations where the cost of evaluat-
ing different hypotheses substantially differs.

B. Notation

Throughout this paper we use the following notation:
U, is the utility distribution for the hypothesis strategy H;
C; is the cost distribution for the hypothesis strategy H,
iy is the true mean for the variable U;
U, is the sample mean for the variable U,
0, is the true standard deviation for the variable U;
S; is the sample standard deviation for U,
C, is the sample mean for the variable C;
Uy, is the variable for the distribution computed by tak-
ing the utility of H; minus the utility of H; both solving
the same problem. Mote that this distribution is Gaussian
(normal) if U, and U, are jointly Gaussian even if U; and
U, are not independent. , ;, U_,, 0, ;, and S,_; are
analogously defined.

2 e & &

We also define functions to allow computation of prob-
abilities of normally distributed variables. The probability that
a random variable y has a value in the interval (a, b) given that
the variable is normally distributed with mean u and standard
deviation o is

2
1 b —o.s(ﬂj
a by o)= e o
(b( #0) J2ro L 4
For the standard normal distribution with mean y=0 and stan-
dard deviation 0=1, we use the specialized notation:

D(a, b) = T;,_;I:e—o.Syzdy

III. THE INTERVAL-BASED APPROACH

The confidence interval-based approach depends on a con-
fidence parameter ¥ and an indifference parameter €. This ap-
proach attempts to show that with confidence ¥ there is a hy-
pothesis strategy H, such that for every other hypothesis strat-
egy H, either: a) E[U_j] > 0 or b) |[E[U, ]| < e. Intuitively, if
such an H; can be found it should be adopted because for every
other hypothesis strategy H,, with confidence ¥, either H, is
better than A, (dominance) or H; and H; are close enough so
that we do not care (indifference). This intuitive description
will be further elaborated in the following paragraphs.

Consider two of the hypothesis strategies being evaluated H;
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and H,. Under the assumption that U, and U, are jointly nor-
mally distributed, the difference U,; is normally distributed.
Hence, analyzing the difference U, and computing the confi-
dence that g, > 0 gives the confidence that H; dominates H,.
To represent the confidence in this pairwise comparison of U,
and U, we use the variable 7.

To compute the confidence that 4, ; > 0 we adapt a method
for computing confidence intervals for the mean of a normal
distribution with unknown variance from [14]. However, our
application differs from the standard confidence interval calcu-
lation as follows. In the standard problem, one is given a con-
fidence level f , and the task is to compute an interval such
that the true mean lies in the interval with confidence 'f .Inour
case, we are given the interval, and we wish to compute the
confidence that the mean lies within the interval. Thus, since

for this difference distribution, and the confidence that p~U
is in some interval is simply the integral of the normal curve
for that interval, these assumptions result in the following for-
mula (shown graphically in Fig. 1):

Fig. 1. Dominance and indifference calculations.

To handle the case of indifference pruning, the confidence that

—€ < p; < € can be computed similarly to the method de-
scribed above yielding the following formula (shown graphi-
cally in Fig. 1):

7 =of-en0, %) - @[(a" e} (Ot epln

S5 Sy

This can be interpreted using the confidence interval stop-
ping criterion as follows. In the first case ¥ indicates our con-
fidence in the hypothesis that the mean of the distribution U, is

greater than the mean of the distribution U}, thus we prefer H,
over H; (dominance). In the second case the difference be-

tween the means of U, and U is less than & with confidence 'y' ,
thus H; and H; are not worth distinguishing (indifference). If
U, <0, then H; appears to be superior to H, so we should be
focusing on H; and not H,.
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One complication is that in a general hypothesis evaluation
problem, one is selecting from & > 2 hypotheses. Thus, for the
interval-based approaches, one is comparing one hypothesis
Hygn (believed to be the best) against the other £ — 1 hypothe-
ses. Thus the confidence y of the overall decision depends
upon the confidences 7 in the individual k — 1 comparisons. If
we presume a pessimistic accumulation of error, we might
project that the errors would add—requiring that the sum of
the k ~ 1 errors add to less than .

Evenly distributing the error indicates that the individual
confidences must be: ¢ = l—% (confidence equation 1).

Unfortunately, in the worst case, for  strategies, the choice of
the final selection may depend upon more than & — 1 pairwise
comparisons. Consider the case where the focus strategy Higs
changes frequently while attempting to find a best strategy.
Indeed, in the worst case, the final selection would depend
upon all of the pairwise combinations of selections of two of
the k strategies (due to shifting of the focus hypothesis strat-
egy). This is simply & choose 2 or k(k — 1)/2. Thus, in the
worst case, for the equal distribution of errors premise, the

individual confidences must be: y* = l—,zrﬁ;k‘_% (confidence

equation 2).

However, typically one samples evenly from all of the dis-
tributions r, samples before one chooses a focus strategy. If no
is large enough such that the focus strategy Hyu,, changes
rarely, the overall confidence will more closely resemble the
linear relationship described in confidence equation 1. Indeed,
if the errors tend to cancel each other, even this linear summa-
tion of errors will be an overestimate of the actual error.*

However, equal error allocation does not take advantage of
the fact that reducing the error in some of the terms may be
easier than in others. Pertaining to this issue we first outline an
algorithm called STOP1 which distributes the error evenly,
then show a variation on this basic algorithm STOP2 which
accounts for the varying difficulty in reducing the error in each
of the terms and takes into account the varying cost of sam-
pling from each of the distributions.

A. The STOP1 Algorithm

The STOP1 algorithm can be described as follows. Let T be
the set of hypothesis strategies H|, ..., H,. Sample from each
of the utility distributions U, ..., U, some default number of
samples no. Let M, be the strategy in T which has the highest
sample mean for U, so far (hereafter called the focus strategy
Hyign). For each strategy H, in T, if U is in the interval —¢, &,
attempt to show indifference. If not, attempt to show that H,
dominates ).

Indifference is shown as follows. Compute the confidence

that the true mean y,; of U, lies within the interval —¢, & If

this confidence is greater than 7 then indifference has been
shown. Else, sample from U, and U; as necessary until either:

1) the confidence that g, is within the interval —, £ is greater
than ¥ or 2) U,_, goes above ¢ or below —&. If U, goes

5. For a further discussion of this issue see [20] pp. 18-19.
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above ¢, U; now has a higher sample mean than U, by a signifi-
cant amount so that we should make H; the target hypothesis
and proceed. If U,_, <—&, H; looks significantly worse than
H; so that we should attempt to show that /; dominates Hj.
Dominance is shown similarly. Compute the confidence that

tiy > 0. If this confidence is greater than ¥ we have shown
dominance; otherwise sample from U; and U, as necessary

until either the confidence becomes greater than ¥ or Uy, goes

below €. In this case, we might attempt to show indifference
among H; and #,. It is worth noting that sometimes when U, ;

is in the interval {—¢, €}, there is more confidence in the claim
that H; dominates H; than in the claim that 4, and H; are indif-
ferent. It is unclear whether a closed form exists that can be
used to determine whether dominance or indifference has
higher confidence. We avoid this problem by computing both
the dominance and indifference and using the higher of the two
confidences.

STOP1 ALGORITHM:

let T = {Hi, ..., Hx}

let ¥ =1 -(1 -n/(k -1)

solve ng problems with each strategy in T and

compute U statistics

let Hyjgn be the strategy in T with highest U
LOOP1
let Hyign be the strategy in T with the high-
est sample mean for Unign
if for every H; in T one of the following
holds

Hpign dominates H; with confidence 7

Hpign and H; are ambivalent with confidence 'a
then return Huign
else select a strategy Hj such that neither

Unign dominates U; with confidence ¥
nor Unign and U; are ambivalent with confi-

dence 7‘
generate data for the distribution Unign-j
recompute U statistics
CONTINUE WITH LOOP1

Note that the algorithm has been simplified for purposes of
clarity. A realistic implementation would temporarily classify
the strategies into indifference and dominance classes when
confidence has been shown. When H,,,, changes, these strate-
gies must be returned to the unknown pool because they must
be compared to the new Hgp.

B. The STOP2 Algorithm

The STOP2 algorithm differs from the STOP1 algorithm in
that it accounts for two factors ignored in the STOP1 ap-
proach. First, depending upon the sample variances and sam-
ple means of the individual U, distributions, examples allo-
cated to the distributions will have different effects on improv-
ing the confidence in a pairwise dominance or indifference
relation. Second, the cost of acquiring information (examples)
may vary across hypotheses. Because of these varying benefits
and costs sometimes significant benefits can be derived from
not bounding the statistical error equally across each of the
pairwise comparisons. The STOP1 algorithm, which does not
account for these varying benefits and costs, uses equal bounds
across the pairwise comparisons. The STOP2 algorithm esti-
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mates the likely cost and benefit for each new example and
allocates examples to the comparison with the highest esti-
mated benefit divided by cost. This can result in a situation
where each comparison is estimated to a different level of sta-
tistical error, although the sum of these errors still must remain
below the overall bound of 1 — ¥. As the individual pairwise
confidences may vary, we introduce the new notation 7y to
signify the confidence that strategy H, dominates or is indiffer-
ent with strategy H,.

For example, as shown in Fig. 2, if the uncertainty in de-
termining the dominance of H, over H; has already been re-
duced significantly, and the uncertainty in showing the domi-
nance of H; over H; has not, additional examples to H, vs. H;
are likely to have greater effect on reducing the overall error
than examples from H; vs. H;. Thus one can estimate the mar-
ginal benefit of allocating additional samples, the reduction in
statistical error resulting from an additional example, by as-
suming that the mean and variance of Uy, will change little and
computing the increase in certainty. This results in the follow-
ing formula.

Jn+i

i

Ay, for U, = d{—(—f,_ ; , mJ—old i

po(uij)

1
'
'

i
' )
'

O.b'ij Ui

Fig. 2. Varying effects of sampling.

Similarly, we estimate the marginal increase in indifference
confidence from acquiring an additional example of Uy, as
follows:

(U, -eWn+1 (U, +eWn+1
Ay, for U, =P - , :
’ S J Si—}

~oldy};

The second factor considered by STOP2 and not by STOP1
is the varying cost of acquiring a sample. If acquiring an addi-
tional sample has an extremely high cost, it may not be worth
the effort, even if the expected information gain is large.
Likewise, a low information cost may make a lesser informa-
tion gain look more attractive. To decide how best to allocate
learning resources, STOP2 estimates marginal cost. This is the
cost of acquiring another sample for a given pairwise. compari-
son and it consists of the cost of determining a utility value for
each member of the pair. As each comparison shares the same
hypothesis Hyg, at least part of this cost may already have
been incurred. Thus estimating the marginal cost involves two
parts, First, determine which utility values must be determined
(U, U, or both). Second, use the estimated means for: C; and C;
to estimate the cost of acquiring another sample U; and U, as
appropriate.
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The estimated marginal cost of determining another point
from U, is computed as follows. Let N,; indicate the number
of samples drawn from the strategy H,; so far. When we draw a
problem from the distribution, we store it so that if we wish to
sample p times from: the distribution U, and p times from dis-
tribution U, we have the same p problems from the probiem
distribution. Furthermore, when we compute differences in
utility from the distribution U, ; these are computed by using
the competing strategies on the same problem. Thus if we wish
to get the pth sample from the distribution U, (assuming
»p — 1 samples have already been computed), N, and N, must
each be at least p — 1. The cost can be expressed as follows:

¢ Ifboth N, and N, are p or greater: the cost of computing
the pth sampie is 0.

o If N, =p~- 1 and N, =p then the expected cost is C;.

* IfNy=p-1and N, = p then the expected cost is C;.

. Iqu‘=p"' 1 al’ldNa‘:p-' 1 m’lﬂ'lcexpwtcdmis a +€11.

Given the marginal benefit and marginal cost, STOP2 uses
the common greedy approach of selecting the course of action
which has the highest ratio of marginal return to marginal cost.
This process continues until a strategy emerges which can be
shown with overall confidence yto be dominant or indifferent
with respect to all other strategies.

STOP2 ALGORITHM:

let T="{H, ..., Hy}

solve no problems with each strategy in T

compute utility comparison statistics for no
samples

LOQP1

let Huign be the strategy in T with the high-
est sample mean U

if for every H; in T one of the following con-
ditions holds

Ukign dominates Uy with confidence ¥

Usign and U, are ambivalent with confidence 7'
such that L ¥ < ¥
then return Hyign
else for each strategy H; in T
Compute the marginal benefit MB:; and mar-
ginal cost Mc; of acquiring another sample
from Unighi
for the Hj; with the highest MB; / MCj
generate data for the distribution Unigni
recompute utility comparison statistics, re-
selecting Huign if necessary
CONTINUE WITH LOOP1

Again, the algorithm has been simplified to ease understand-
ing. In fact, the marginal cost and utility of acquiring another
sample need only be updated when relevant samples are taken.
Additionally, acquiring a sample for Hy;, to acquire a sample
for Upygn may allow another Ui, to be computed at zero
cost (due to changes in Hyg) and hence should be included in
the relevant marginal benefit calculation.

6. Note that in general, the system will be attempting to show that a specific
strategy H, dominates of is ambivalent with all the others. This means that N
will be consistently greater than or equal to all other Ny. Anytime N, incre-
mented to find out mose information regarding H,, this immediately reduces
the cost of acquiring information for other Hs, as they no longer need to pay
the cost of sampling H;. This will tend to mitigate the effects of different
means and variances for U, distributions. However, in cases where the focus
strategy H; changes, other more complex phenomena will occur.
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IV. THE EXPECTED LOSS APPROACH

A commonly used measure in valuing information in game
theory applications is the concept of expected loss. Put simply,
expected loss is the chance that one makes the wrong decision,
weighted by how wrong the decision turns out to be. The ex-
pected loss measure can be computed for any pair of alterna-
tives. These computed values can then be used to answer both
the question of “is the current information enough” and if ad-
ditional information is needed “which information at which
cost should we get.” The former question can be answered by
putting a bound on the expected loss that one is willing to tol-
erate, and making a decision when an alternative is found to
have an expected loss of less than the bound. In our case of
hypothesis evaluation, one can select a hypothesis strategy H;
when:

S Eu(H, H)| <L

J=1

More rigorously, we define the expected loss of utility from
adopting H; rather than Hj to be the integral of the joint utility
of H, and H; over the regions where H has lower utility
weighted by the difference in utility:

E[L(H,, H/)] = L‘u,‘ .’.PU:U/ (u,, u, )(u_, —u,»)du,-du}-

However, because U, and U, are jointly Gaussian, and a linear
combination of two jointly Gaussian random variables is
Gaussian, we can use the differential distribution U,; to com-
pute the expected loss directly.

Thus we simply estimate the mean and variance for our best
guess at the true mean of the differential distribution U8

We compute the integral over the region where U;> 0 of the
term u - PH(U; = u). To do this, we first compute the sample
mean and variance for the differential distribution, and then ap-
ply a formula analogous to that used in the dominance confi-
dence interval calculation (for derivation, see Appendix A).

—().5!1(%}2 .
S._e o .
el )=

*(Expected Loss Equation)

7. Enforcing that E(L{H, H)) =0

8. An alternative approach would be to estimate the parameters for each of
the individual utility distributions, then use these parameters to compute the
mean and variances for the estimates of the differential distributions. This
would result in the same parameters as our approach of computing the pa-
rameters of the differential distributions directly from the data.
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A. The EL1 Algorithm

Given this definition of expected loss, we can define the
analogs of STOP1 and STOP2, called EL1 and EL2.

EL1 ALGORITHM:

let T = {Hy,..,Hx} and L be the expected loss
threshold.
let L* = L/k

solve no problems with each strategy in T
let Hyign be the strategy in T with the highest

sample U
V j = 1,..,k compute E(L(Hnign, Hj))
LooP1

select a strategy H; such that the

expected utility loss from selecting
Huign Over H; is greater than L*
if there is no such strategy,
then return Hyign
else generate sample from H; and Huion
recompute expected utility losses
CONTINUE LOOP1

B. The EL2 Algorithm

EL2 extends EL1 in exactly the same way that STOP2 ex-
tends STOPI1, by accounting for variable gains and costs
across the hypotheses.

The marginal decrease in expected utility loss (MDEUL) is
computed by recomputing the integral for expected loss, as-
suming that the variances and means will remain the same but
incrementing n by 1 and subtracting the current expected util-
ity loss. The resulting formula is shown below.

— 2
»0.5:1[—"—1]
5, S-s

e
u—u;

N27(n+1)

st 1)

U, 7 s
+ L Fn_,-J;Zﬁ e % dz—old H{L(H,, H,)|

5.,
The expected marginal cost of sampling is computed as in
STOP2. The EL2 algorithm is shown below.

EL2 ALGORITHM
let T = {Hiy, ...,
threshold.

solve ng problems with each strategy in T
let Huign be the strategy in T with the highest

sample mean U

Hy} and L be the expected loss

V i=1,..,k compute E[L(Huign, Hi)]

and let this be /. (enforce that E(L(H;, H;)) = 0
loopl

it <

then return Hyign

else compute the marginal decrease in
expected loss (MDEUL) by sampling from each
of the H;s (including Hxign)
compute the marginal cost of sampling each
strategy using the C distributions
sample from the distribution with the
highest MDEUL/expected marginal sampling
cost

recompute L s as necessary
continue loopl
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V. EMPIRICAL PERFORMANCE EVALUATION

We now turn to an empirical evaluation of the hypothesis
selection techniques. This evaluation lends support to the
techniques by addressing three key issues. First, it demonstrates
that the techniques perform as predicted. Second, the evaluation
demonstrates the benefits of rational example allocation (as per-
formed by STOP2 and EL2). Finally, it illustrates the applica-
bility of the approach to a real-world hypothesis selection prob-
lem. Where possible, we contrast performance with that of other
relevant approaches in the statistical literature.

A. Other Relevant Approaches

There exists a body of standard approaches for the interval-
based formulation of the hypothesis evaluation problem. To
demonstrate the power of our interval-based approaches we
contrast them with two existing approaches. The first is a sta-
tistical approach proposed by Turnbull and Weiss [21]. The
second is the COMPOSER machine leaming technique pro-
posed by Gratch and DeJong [1].

The Turnbull and Weiss approach comes closest among
statistical ranking and selection procedures to the generality of
the STOP1 and STOP2 approaches. Most standard statistical
approaches make strong assumptions about the form of the
hypothesis evaluation problem (e.g., the variances associated
with hypotheses are known or equal). As in our interval-based
approaches, Turnbull and Weiss treat hypotheses as normal
variables with unknown mean, and unknown and unequal vari-
ance, however they make the additional assumption that hy-
potheses are independent. It can still be reasonable to use this
approach when the hypotheses are not independent, but this
can lead to excessive statistical error or unnecessarily large
training set sizes under certain circumstances. However, in the
case where hypotheses are truly independent, this technique
can exploit this knowledge and likely outperform our methods
which do not adopt this assumption. The Turnbull and Weiss
technique is described in Appendix B.

The COMPOSER technique (described in Appendix C) was
proposed to solve hypothesis evaluation problems as they arise
in the context of adaptive problem-solving. COMPOSER
treats hypotheses as dependent normal variables with unkhown
mean, and unknown and unequal variance. COMPOSER,
however, does not implement the notion of an indifference
interval. Rather it is trying to adopt the first hypothesis that can
be demonstrated to be significantly better than a default hy-
pothesis. When the best hypotheses are all close to each other
in utility, COMPOSER will require an excessive number of
training examples.

B. Methodology

First we discuss some methodological issues. The interval-
based and expected loss approaches embody different criteria
for selecting hypotheses and therefore are difficult to compare
directly. Thus we first test the interval-based and expected loss
approaches separately. Interval-based approaches have been
investigated extensively in the statistical ranking and selection
literature (see [22] for a review of the recent literature). This
affords us the opportunity to compare STOP1 and STOP2
against a standard statistical approach.
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Techniques are evaluated on synthetic and real-world data
sets. Synthetic data allow a systematic test of the formal prop-
erties of each technique while real data sets test the appropriate-
ness of statistical assumptions—such as the normal approxima-
tion—and assess the practicality of each approach on real-world
problems. Finally, in a 'comprehensive real-world test on
scheduling data, we compare the interval-based and expected
loss approaches, using a wide range of parameter settings. This
test reports on the bottom-line effectiveness of the competing
techniques in a pragmatic problem-solving setting.

An expérimental trial consists of solving a hypothesis
evaluation problem with a given technique. The performance
on any single trial provides little information given the random
nature of the task. To assess the average characteristics of the
technique a trial is repeatéd multiple times and the results are
averaged across trials. All experimental trials are repeated
5,000 times.

An interval-based technique processes examples until it has
identified a hypothesis that with probability ¥ is within € of
optimal. STOP1 attempts to ensure this property with the
minimum number of training examples possible. STOP2 at-
tempts to ensure this property with the minimum cost possible.
To assess the competence of these techniques we track three
quantities: the number of examples required to choose a hy-
pothesis, the cost of the examples required to choose a hy-
pothesis, and the observed probability that the expected utility
of the chosen hypothesis is in fact within € of the utility of the
optimal hypothesis. For the expected loss techniques we track
the analogous three quantities: the number of examples to
choose a hypothesis, the cost of the examples, and the average
loss (the average loss in utility when the technique chooses the
nonoptimal hypothesis weighted by the probability of choosing
the nonoptimal hypothesis).

B.1. Synthetic Data

Synthetic data are used to show that: 1) the techniques per-
form as expected when the underlying assumptions are valid
and 2) the use of rational example allocation exhibits substan-
tial improvement when there is unequal cost or variance
among the distributions. For interval-based approaches we
show that the technique will choose the best hypotheses, or
one e-close to the best, with the requested probability. When
all hypotheses are within € of each other, the indifference-
based technique should quickly terminate, returning any hy-
potheses. For the expected loss approaches the claim is that the
technique will exhibit no more that the requested level of ex-
pected loss. One set of evaluations is devised to test this claim.

The second claim is that the techniques that use rational ex-
ample allocation will exhibit substantial performance im-
provement when there is unequal cost or variance among the
hypotheses. A second set of evaluations is devised to test this
claim.

For the synthetic data problems, hypotheses are modeled as
random variables with parameterized properties. A specific
hypothesis evaluation problem is constructed by fixing the
values of each of these parameters. In the course of solving a
specific problem, values for the utility and cost of each hy-
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pothesis on each example are assigned randomly according to
the parameterized distribution functions. For a given problem
let k define the number of hypotheses. For all synthetic
evaluations, the hypothesis utilities and costs are treated as
independent normal random variables with some parameter-
ized mean and variance. Each hypothesis is described by four
parameters—expected utility, utility variance, expected cost,
and cost variance. Thus a hypothesis evaluation problem is
specified by 4k parameters.

The hypothesis evaluation techniques have additional pa-
rameters that govern how they attack the problem. To distin-
guish these we refer to problem parameters and control pa-
rameters. The interval-based techniques have three control
parameters: an initial sample size np, a confidence setting ¥
and an indifference setting £ The expected loss techniques
have two control parameters: an initial sample size n, and a
loss threshold H*.

Unless otherwise stated, each training example on any hy-
pothesis is given equal cost. This means that the overall cost of
a technique is directly proportional to the expected number of
examples required to select a hypothesis. Thus, when each
training example is given equal cost only the number of ex-
amples will be reported. One set of synthetic evaluations high-
lights the benefits of rational example allocation. In these
evaluations we create a significant discrepancy in the cost of
evaluating alternative hypotheses.

B.2. Scheduling Data

The test of real-world applicability is based on data drawn
from an actual NASA scheduling application [23]. These data
provides a strong test of the applicability of the techniques. All
of the statistical techniques make some form of normality as-
sumption. However the data in this application are highly non-
normal—in fact most of the distributions are bimodal. This
characteristic provides a rather severe test of the robustness of
the approaches.

In this application a heuristic system was developed to
schedule communication events between earth-orbiting satel-
lites and ground-based radio antennas. In the course of devel-
opment, extensive evaluations were performed with various
scheduling heuristics. The goal of these evaluations was to
choose a heuristic search strategy that solved scheduling
problems quickly on average. This is easily seen as a hypothe-
sis evaluation problem. Each of the heuristics corresponds to a
hypothesis. The cost of evaluating a hypothesis over a training
example is the cost of solving the scheduling problem with the
given heuristic. The utility of the training example is simply
the negation of its cost. In that way, choosing a hypothesis
with maximal expected utility corresponds to choosing a
scheduling heuristic with minimal average cost.

Using the data from the heuristic evaluations we derived
four data sets. Each data set corresponds to a comparison of
some set of scheduling heuristics, and contains data on the
heuristics’ performance over about 1,000 scheduling problems.
An experimental trial consists of executing a technique over
one of these data sets. Each time a training example is to be
processed, some problem is drawn randomly from the data set
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with replacement. The actual utility and cost values associated
with this scheduling problem are then used. As in the synthetic
data, each experimental trial is repeated 5000 times and all
reported results are the average of these trials.

C. The Interval-Based Approach

The interval-based approaches, STOP1 and STOP2, are
evaluated on both synthetic and scheduling data sets. Synthetic
problems were constructed to answer the following three
questions: 1) do the techniques select e-close hypotheses with
the specified probability, 2) do the techniques terminate
quickly when all hypotheses are € -close, and 3) does STOP2
outperform STOP1 when there is significant cost or variance
differences between hypotheses. We also contrast the perform-
ance of our techniques with COMPOSER and the technique of
Turnbull and Weiss.

C.1. Confidence Test

The statistical ranking and selection literature uses a stan-
dard methodology for evaluating the statistical error of hy-
pothesis evaluation techniques. We adopt this methodology
here. Robert Bechhofer introduced the concept of the least
favorable configuration of the population means [18). This is a
parameter configuration that is most likely to cause a tech-
nique to choose a wrong hypothesis (one that is not e-close)
and thus provides the most severe test of the technique’s abili-
ties. Under this configuration, k — 1 of the hypotheses have
identical expected utilities, #, and the remaining hypothesis
has expected utility i + €. The last hypothesis has the highest
expected utility and should be chosen by the technique. All
hypotheses are independent and the costs and variances of all
hypotheses are equal.®

The least favorable configuration becomes more difficuit

(requires more examples) as the confidence ¥, the number of
hypotheses £, or the common utility variance ¢® increases. It

becomes easier as the indifference interval € increases. In the
standard methodology a technique is evaluated using several

settings for &, ¥, and <. The last term combines the variance

and indifference interval size into a single quantity which, as it
increases, makes the problem more difficult. For our experi-

ments, 7y = 7, m = 50, o = 64, and all other parameters are
varied as indicated in the results. The sample size results and
observed confidence levels are summarized in Table 1.

The results indicate that all systems are roughly comparable in
the number of examples required to choose a hypothesis. As

expected, the number of examples increases with k, ¥, and z.

The technique of Turnbull and Weiss tended to be the most
efficient; however this algorithm was essentially told that the
hypotheses are independent, information that was withheld
from the other algorithms. COMPOSER performed the worst
of the algorithms. In terms of statistical error, all of the algo-
rithms except Turnbull and Weiss’ were correct at least as
often as requested. The technique of Turnbull and Weiss often

9. Note that in this evaluation £ acts as a problem parameter in addition to
its role as a control parameter.
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provided less than the requested confidence. However, since
their technique only guarantees. that the confidence will ap-

proach ¥ as £ tends to zero, these results are consistent with
their claim.

Hyors- The second hypothesis is given a high cost cyg and all
other hypotheses are given low cost ¢, All hypotheses are as-
signed a common variance of 50, [, = 74,
Hpese1 = 72, Uwore = 5, €= 1, and ny = 7. Various confidence set-
tings were evaluated. The results are summarized in Table I

TABLE [ : TABLE Il
ESTIMATED EXPECTED TOTAL NUMBER OF OBSERVATIONS IN THE LEAST ESTIMATED EXPECTED TOTAL NUMBER OF OBSERVATIONS IN THE
FAVORABLE CONFIGURATION. INDIFFERENCE CONFIGURATION.

ACHIEVED PROBABILITY OF CORRECT SELECTION IS SHOWN IN PARENTHESES NoTe THAT COMPOSER FAILED TO TERMINATE ON ANY OF THE TRIALS
k| r % STOP1 STOP2 | TURNBULL | COMPOSER Parameters  STOP1 | STOP2 | TURNBULL | COMPOSER
3o | 2] a8(0.88) | 34(0.83) 27.(0.75) 61 {0.96) x| » ¢

‘ A ‘
3{om| 3| ss(008)| 52 (u,m 50 (o.fm) 103 (ojgu) alom | 2 ® vy > e
3{oso| 2] 64(092)| -e5(0.92) 54 (0:86) 91 (0.98) STom 15 - o p s
sjoso| 3] 121(091) | 128(0.91) 127 (0:87) 170 (0.95) ; : —
3|08 | 2] 93(095) | 96(0.97) 81(092) | 115 (0.99) 31090 2 6] 100/ 54
3]o95 | 3| 183(0.94) | 193 (0.95) 192 (0.93) 238 (0.97) 3|09 | 3 181 194 127 ke
5|07 | 2 98 (0.86) 94 (0.86) 63 (0.71) 139 (0.96) 3]095] 2 142 151 81 ok
5| o075 | 3] 177(0.83) | 179 (0.81) 141 (0.71) 250 (0.89) 3fo95| 3 291 312 102 ok
5|09 | 2} 150 ®93) | 170(0.94) 128 (0.84) 195 (0.97) 51075 | 2 134 148 63 e
50903 310(092) | 3e9(098) | 204 (0.88) 389 (0.94) 5o | 3 249 216 | T oy
T Y T Y 2 Y —
) . . ) 8 . Y - ooy
10 | 075 | 2| 208 (089) | 930 (0.90) | 185 (0.88) | 353 (0.95) 5100 8| d4rd] se8 294
pe 5/095] 2 325 360 174 hiid
10075 ] 3| ssecor) | essfosr) | 438 (0.70) 677 (0.89) . :
10| 090 | 2| 430 (0:95) | 508{0.95) | 331(0:83) | 469 (0.97) 51085 3 672 768 411 e
10 | 090 | 3| 892 (0:98) | 1,006 (0.95) | 788 (0,89) | 956 (0.93) 1007 2 421 525 185 o
10 {008 21 545 (097 661 (0.97) 443 (0.91) 874 (0.98) 10|07 3 833 1104 438 L
10 | 085 3} 1,136 (0.95) | 1,435 (0.97) 1,087 (0.94) 1,175 (0.95) 10 0s0] 2 649 [ep) 331 o
10 | 0.80 |- 8 1348 1667 782 wxx
C.2. Indifference Test 10_ 095 | 2 $35 a5 | 444 e
T : i 10 {095 | 3 1776 2100 1037 bl
The indifference interval approaches should terminate
quickly when all hypotheses are indifferent to each other. To
test this claim we repeated the least favorable configuration TABLE Il

evaluations except that all hypotheses were assigned the same
expected utility u. Results are summarized in Table I. Error
rate results are not shown since any hypothesis is a correct
selection in this configuration.

The key result to notice is that COMPOSER failed to termi-
nate on any.of the trials. This highlights the potential difficul-
ties with COMPOSER that STOP1 and STOP2 were designed
to correct. Again, the technique of Turnbull and Weiss could
exploit the independence information and slightly outperforms
the other approaches.

C.3. Rational Allocation Test

STOP2 is designed to perform well when the cost of proc-
essing examples or the utility variance differs widely across
hypotheses. The preceding evaluations did not contrast the two
approaches under these conditions as both the cost and vari-
ances were equal. Consequently STOP1 and STOP2 were ap-
proximately equally efficient in these tests. This evaluation
contrasts the approaches by providing problem configurations
with highly unequal costs.

Problem configurations are defined as follows. One hypothesis
(the correct selection) is assigned a high mean y,,,,. A second
hypothesis is assigned a mean slightly below € of the best,
Upes-1- All remaining hypotheses are assigned a low mean,

ESTIMATED EXPECTED TOTAL COST
FOR THE RATIONAL ALLOCATION CONFIGURATION

k| 7 |[STOP1 |STOP2 | s
3] 075] 12,034 5241 ] 23
3] o080] 14,80 6,79 | 2.2
3| 085 20,119 | 10,030 | 2.0
3] 090 26,340 ] 15040] 1.8
st 0751 22,081 5216] 42
5| o80] 27375 6,947| 3.9
s| o85) 31,203 9817 [ 32
s| 090] 39,305] 14,859 2.7

10] 075] 36,768 | 5,154 | 7.1

10| 080] 42202 6,753 | 6.3

10| 085 47,167 | 10,086 [ 4.7

10] 090 | 56,183 | 15004 | 3.8

The results illustrate the clear dominance of STOP2 under
this configuration—up to seven times more efficient on one of
the trials. An interesting question is whether there is a limit to
how much better STOP2 can be. In fact there is an upper bound
on this difference [24]. This upper bound increases as the num-
ber of hypotheses increases or as the confidence level decreases.
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C. 4. Scheduling Test

We ran all four algorithms over the four scheduling data

sets. In each case the y= 95%, ny = 15, and € = 4.0. Table IV
summarizes the results along with the number of hypotheses
and the relative difficulty (<) of each data set.

TABLE IV
ESTIMATED EXPECTED TOTAL NUMBER OF OBSERVATIONS
FOR SCHEDULING DATA.
ACHIEVED PROBABILITY OF A CORRECT SELECTION IS SHOWN IN

PARENTHESES
met | k +* % STOP1 STOP2 TURNBULL | COMPOSER
D1 | 3| 095 | 34 908 (1.00) 648 (1.00) | 26,691 (1.00) 78 (1.00)
D2 | 2 | 0.95 | 34 74 (1.00) 76 (1.00) | 13,066 (1.00) 346 (1.00)
pa | 7 | 005 | 14 | 2,871 (0.94) | 2,153 (0.93) | 94,308 (1.00) | 2,436 (0.97)
D4 | 7 | 095 [ 11 | 7,972 (0.96) | 7.621 (0.94) | 87,357 (1.00) | 21,312 (0.89)

The principle result is that STOP1 and STOP2 substantially
exceeded the performance of the other algorithms except on
one case. The one exception is an artifact of COMPOSER
solving a slightly different task. Rather than choosing the hy-
pothesis that is e-close to optimal, COMPOSER chooses the
first hypothesis to dominate a default hypothesis (the first hy-
pothesis was arbitrarily defined to be the default in these tri-
als). In data set D1 the default is significantly worse than the
other two hypotheses, which in turn are indifferent to each
other. STOP1 and STOP?2 take longer because they must ver-
ify this indifference.

Note that unlike the synthetic data where STOP1 was
slightly more efficient than STOP2, in the scheduling data
STOP2 was slightly more efficient. In fact, in the scheduling
data there is some disparity between hypotheses in their utility
variance. STOP2 is able to account for these factors when al-
locating examples, and thus exhibits greater efficiency.

Turnbull and Weiss' technique performed substantially
worse on the real-world data. Its poor performance is due to
two factors. First, the technique is unable to quickly discard
hypotheses that are clearly dominated by other hypotheses.
Second, the technique’s independence assumption was inap-
propriate for these data, which are strongly positively corre-
lated. In this situation assuming independences leads to over-
estimates of the true variance, which in turn leads to higher
sample sizes.

D. Discussion of Interval-Based Evaluation

Taken together, the evaluation provides clear evidence for
the effectiveness of STOP1 and STOP2 and demonstrates their
superiority to alternative techniques. The techniques per-
formed as predicted, guaranteeing the requested confidence
level under a variety of configurations. In comparison to other
approaches, they did not perform the best on every configura-
tion, however when they were outperformed it was not by
much and they often substantially outperformed the alternative
techniques. For example, COMPOSER fails to terminate when
multiple hypotheses are close to optimal. The technique of
Turnbull and Weiss performed poorly on the real-world data
sets. The scheduling evaluation demonstrates that STOP1 and
STOP2’s normal approximation allows effective performance

on real-world hypotheses selection problems, even when the
underlying distributions are not normal.

The rational allocation test illustrates that STOP2 can sub-
stantially outperform STOP1 when there are marked differ-
ences across heuristics in the cost of processing examples or in
the variance of expected utility values. STOP2 should be used
if the hypothesis evaluation problem has this characteristic. It
appears that STOP1 is slightly more efficient when the cost
and utilities are close to equal. Under these circumstances we
recommend the use of STOP1.

E. The Expected Loss Approach

The expected loss approaches, EL1 and EL2, are evaluated
on both synthetic and scheduling data sets. Synthetic problems
are constructed to answer the following two questions:

1) Do the techniques properly bound the expected loss, and
2) Does EL2 outperform EL1 when there is significant cost
or variance differences between hypotheses?

E.1. Expected Loss Test

The techniques are tested on a least favorable configuration
with & hypotheses. The means of £ ~ 1 hypotheses are assigned
the value m and the remaining hypothesis is assigned mean
m + ¢. Each technique is then tested on various loss thresholds
H* over this problem. For this evaluation, m = 50, all hypothe-
ses share a common utility variance o = 64, and £ = 2. All
other parameters are varied as indicated in the results. The
sample size results and observed loss values are summarized in
Table V. The results illustrate that the techniques perform as
predicted. As the loss threshold is lowered the techniques take
more training examples to ensure the expected loss remains
below the threshold.

TABLE V
ESTIMATED EXPECTED TOTAL NUMBER OF OBSERVATIONS AND EXPECTED
LOSS OF AN INCORRECT SELECTION FOR THE LEAST FAVORABLE
CONFIGURATION

Parameters EL1 EL2
k| ¢ | H* | Samples | Loss | Samples | Loss
3|2 1.0 33 0.5 26 0.8
312075 38 0.4 29 0.7
3 (2 0.5 46 0.2 35 0.5
3121025 58 0.1 48 0.3
5|2 1.0 73 0.4 54 0.9
5207 83 0.3 62 0.7
5|2 0.5 98 0.2 78 0.5
512|025 127 0.1 114 0.2
10 | 2 1.0 201 0.2 157 0.8
102|075 221 0.2 182 0.6
10 | 2 0.5 255 0.1 220 0.4
10 [ 2 | 0.25 312 0.0 269 0.2
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E.2. Rational Allocation Test

EL2 is designed to perform well when the cost of process-
ing examples or the utility variance differs widely across hy-
potheses. The preceding evaluations did not contrast the two
techniques as the cost and variances were equal across hy-
potheses. This evaluation contrasts the approaches using
unequal costs across the hypatheses. The configuration used is
identical to the one described in Section C.3. The difference in
expected costs between solving problems with EL1 and EL2 is
summarized in Table VI. The results indicate that EL2 sub-
stantially outperformed EL1—in one trial solving the configu-
ration four times more efficiently. EL2 achieves greater effi-
ciency as the number of hypatheses increases. As with STOP2
we suspect that the potential for greater efficiency is not un-
bounded, but we have not as yet obtained an upper bound on
the relative efficiency of EL2.

TABLE VI
ESTIMATED EXPECTED TOTAL COST FOR THE
RATIONAL ALLOCATION CONFIGURATION.

k| H | ELl | EL2 | &
3| 100] 5757 3733] 15
3] 075] 6980 | 3992| 18
3] 0s50] 88990 4636| 19
3] 025] 14102| 6847] 2.1
s| 100| 8o70| 3737] 22
5| 075] 9688| 3985| 25
5] 050 12,807 | 4664 | 28
5] 025] 19525| 6873| 29
10 1.00] 12,745] 3740] 32
10| 075] 15035 | 4037| 37
10] 050] 19,144 | 4718 | 4.1
10] 025] 26901 | 6861 39

E.3. Scheduling Test

We ran the two expected-loss based techniques over the
four scheduling data sets. In each case the L = 3 and ng = 15.
The results are shown in Table VII. The main result is that the
algorithms correctly bounded the expected loss with one ex-
ception—EL?2 gave greater than expected loss on data set D3.
It appears that this exception arose from a significant departure
from normality in the distributions comprising the data set.
Additional trials demonstrated this discrepancy goes away if
the initial sample size is increased, thereby improving the
normal approximation.

F. Discussion of Expected Loss Evaluation

The three evaluations of EL1 and EL2 give clear support for
the effectiveness of these algorithms. The techniques per-
formed as predicted, properly bounding the expected loss un-
der a variety of parameter configurations. We did observe that
under some of the configurations, EL2 gave slightly larger
than requested loss. More generally, it appears that the ex-
pected loss approach will be more susceptible to departures
from normality in the utility distributions when compared with
the interval-based approach. Both approaches use a normal
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distribution to approximate the distribution of a sample mean.
However the interval-based approach is only sensitive to the
area under parts of the normal curve. The expected loss com-
putation makes use of both the area and the shape of certain
parts of the normal curve. Thus the expected loss approach
demands more fidelity from its approximation, and this fidelity
is degraded when the underlying distribution is not normal.
This effect can be compensated by using a larger n, for the
expected loss technique.

TABLE VII
ESTIMATED EXPECTED TOTAL NUMBER OF OBSERVATIONS AND EXPECTED
Loss OF AN INCORRECT SELECTION FOR THE SCHEDULING DATA

Paraineters EL1 EL2
set | k H*'| Samples | Loss | Samples | Loss
D1 |3 3.0 78 0.1 49 1.0
D2 | 2 3.0 30| 18 . .30 | 18
‘D3 |7 3.0 335 | 3.0 177 ] 3.9
D4 |7 3.0 735 1.7 283 2.2

G. Comparing Interval-Based to Expected Loss Approaches

One cannot state that interval-based techniques are better or
worse than expected loss approaches—each is solving a
slightly different problem. Interval-based approaches are at-
tempting to identify a nearly optimal hypothesis with high
confidence while expected loss approaches are attempting to
minimize the cost of a mistaken selection. If the goal of the
task is to identify the best hypothesis then clearly an interval-
based approach should be used. If the goal is to simply im-
prove expected utility as much as possible, either could be
used. It is unclear which is to be preferred.

Our original motivation in developing these approaches was
to develop effective techniques for adaptive problem-solving.
In this section we attempt to assess how the various ap-
proaches perform on this task. In particular we consider how
the approaches perform in the problem of learning a set of
problem-solving heuristics for the NASA scheduling domain.
In this test the algorithms were given the task of optimizing
four control parameters of the adaptive scheduler, with the
goal of speeding up the schedule generation process. The
solution to this consists of identifying a good heuristic for each
of the four control parameters, where the best choice for a par-
ticular parameter depends on the heuristics chosen for the
other control parameters. We implement a hill-climbing strat-
egy for finding a good combination of heuristics. For more
details on this application domain see [23].

We run each algorithm under a variety of parameter settings
and compare the best performance of each algorithm (i.e., the
lowest cost setting that resulted in a high expected utility on
average). In this test the interval-based algorithms are run with
confidence levels y' = (.75, 0.90, 0.95 and indifference levels
€= 1.0, 4.0, 7.0. The expected loss algorithms are run with
loss bound L = 5, 1, 0.5. For each setting 1000 runs are con-
ducted, we then determined the best settings as the lowest cost
solution within 1.0 utility of the average best solution found
per algorithm (effectively enforcing a minimum utility of
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16.5). These best settings and the averaged results (from 1,000
runs each) are shown in Table VIII. These results show that
the algorithms produce roughly comparable utilities, the dif-
ference in utilities is smaller than the smallest indifference
interval specified to the intervai-based algorithms. From this
comparison we must conclude that, at least in the case of this
NASA scheduling application, there is little difference be-
tween the interval-based and expected loss approaches, neither
in terms of expected improvement nor in terms of sample
complexity. As expected, the unequal allocation approaches
performed better in terms of learning cost. Finally, all of the
improved algorithms outperformed the benchmark COM-
POSER algorithm in terms of learning cost.

TABLE VIII
DIRECT COMPARISON OF ALL FOUR AL.GORITHMS

Algorithm | Cost (100s CPU sec) | Examples | Utility
COMPOSER. (0.90) 6128 4075 | 17.3
STOP1 (0.75,1.0) 4199 2785 17.1
STOP2 (0.75,1.0) 3140 1924 | 166
EL1 (1.0) 2347 1557 | 168

EL2 (0.5) 2211 1454 | 16.4

VI. DISCUSSION AND CONCLUSIONS

There are many issues relevant to hypothesis evaluation
which have not been addressed in this paper. One issue is
modeling the computational cost of inferring and applying the
statistical models. In some applications, one might imagine
that these costs would play a significant role in determining the
usefulness of our hypothesis evaluation mode. However, in our
target application of learning for scheduling, the cost of gather-
ing further information heavily outweighs the cost of inferring
and applying the statistical models. However, for other do-
mains we concede that this may not be the case. A second re-
lated issue is to estimate and trade off this cost of applying the
statistics and decision theory relative to the cost of additional
examples.

Another issue is to better understand the qualitative condi-
tions under which the cost sensitive measures (STOP2 and
EL2) will outperform the equal error distribution models
(STOP1 and EL1). Generally speaking, if the means and vari-
ances vary significantly, the cost sensitive measures should
perform better. Additionally, if the marginal computations are
reasonable projections, the cost sensitive measures should also
outperform the other measures.

An important issue is the use of the O(k) error function.
Further empirical evaluation needs to be performed to better
understand the relationship between », and the number of H),,
switches during hypothesis evaluation, and exactly how this
relates to the error models and to the required confidence pa-
rameter ¥. As a further subtlety, one might consider removing
strategies which become dominated at any point in the ¢valua-
tion (in contrast with the current approach which requires all
strategies to be compared against the final Hy,g).

Another issue is determining the exact impact of the dual

example phenomenon (where two examples are needed to
compute each data point for the differential distribution).
Additionally, if we had a method of estimating a utility differ-
ence with unequal numbers of examples that would be very
helpful, but since the utilities are covarying it seems unlikely
that such a technique will be found.

This paper has described techniques for choosing among a
set of alternatives in the presence of incomplete information
and varying costs of acquiring information. In our approach,
the cost and utility of various alternatives are represented using
parameterized statistical models. Using techniques from an
area of statistics called parameter estimation, models can be
inferred from performance on sample problems. These statisti-
cal models can then be used to estimate the utility and cost of
acquiring additional information and the utility of selecting
specific alternatives from the possible choices at hand. These
techniques have been applied to adaptive problem-solving, a
technique in which a system automatically tunes various con-
trol parameters on a performance element to improve perform-
ance in a given domain. Empirical results were presented com-
paring the effectiveness of these techniques on artificially gen-
erated data and speedup learning from a real-world NASA
scheduling domain.

APPENDIX A:
THE EXPECTED 1.OSS CALCULATION

We begin by noting that we want to integrate over the dif-
ference between the two utilities, over the region in which the
unselected hypothesis strategy has a higher utility. Consider
the expected loss for the selection of hypothesis strategy H;
over H,. In order to compute this, we need to examine the dif-
ferential distribution U, ; and integrate from zero to infinity.

{ (T~ }1
0.5
i ldl

i N :

—| e

S, N2m J-O

we then make the substitution of

_(-0)
S;

i 1)-

~j
which results in the following implied substitutions:

o S,
+U_,, de=——dl,and dl = ~L dz
I T Jn

and to compute the limits of integration we note that when
=0

Si-jz

=

and when / = o then

resulting in:
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we now note that the first integral has an analytic solution, that
J‘e-o.s,r’xdx = g 05¢

leaving us with the following:
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(expected loss formula 1).

APPENDIX B:
THE TURNBULL AND WEISS ALGORITHM

Turnbull and Weiss have proposed a sequential interval-
based procedure for selecting the member of a population with
largest mean. Members are considered normal variables with
unknown mean and unknown variance. The procedure is as
follows, For each hypothesis take an initial sample of n, ob-
servations, then take observations sequentially. Stop sampling

from a hypothesis when: _"sé <L, where 52 is the sample vari-
ance and »; is the number of examples taken for hypothesis i.
The value #” will be defined momentarily. When sampling has
stopped on all hypotheses, select the hypothesis with the high-
est sample mean. The value n" is defined as ‘E’—Z where d is cho-

sen to satisfy:
[ (Fo+a) " fo)dy = 7°

where F(y) and f(y) are the cumulative distribution function
and probability density function of the standard normal distri-
bution, € is the indifference interval, and y' is the confidence
level. Bechhoffer provides extensive tables to-determine d
[18]. Turnbull and Weiss provide a proof that their algorithm
asymptotically exhibits the requested confidence as the aver-
age variance of the hypotheses divided by the indifference
interval converges to zero.

APPENDIX C:
THE COMPOSER SYSTEM

The COMPOSER system [20] uses a statistical approach
very similar to STOP1. Because COMPOSER performs hill
climbing, it is always working from a current strategy H, and a
candidate set of alternative strategies H,, ..., H;. COMPOSER
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computes the incremental utilities of adopting each of the al-
tgmativc__su'atcgies over H, (ie, COMPOSER tracks
U, -+ Uiy, » computing confidence intervals for each of

these distributions). COMPOSER selects 7, samples from each
distribution, then at each iteration it samples equally from each

distribution. If any hypothesis H; € H,, ..., H; is shown to
have U, _, >0 with confidence 7, it is selected (ties are bro-
ken by the highest U,

shown to have U,

). At any iteration, any hypothesis

Yy

-4, <0 with confidence ¥ is removed from

the candidate set. The process terminates when a candidate
strategy is selected or there are no more candidate hypotheses.

There are two major differences between COMPOSER and
STOPI1. First, because each strategy is compared to the de-
fault, the presence of an extremely good hypothesis strategy
cannot be used to prune other hypothesis strategies. This is
unfortunate because a good hypothesis strategy (e.g., better
than the current strategy) can be shown to dominate a poor
hypothesis more easily (faster) than the poor hypothesis can be
shown to be dominated by the current strategy. The second
difference is that STOP1 incorporates an indifference interval.
In some cases, one or more hypotheses will have approxi-
mately the same utility as the current strategy. Thus it may take
many samples to determine which strategy is better, but the
overall gain or loss is insignificant. This is a poor expenditure
of sampling resources.
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