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Figure 1: Multiview face capture using polarized spherical gradient illumination. (a) Acquired data from five viewpoints used for stereo
reconstruction. (b) Reconstructed geometry. (c) Hybrid normal rendering [Ma et al. 2007].

Abstract
We present a novel process for acquiring detailed facial geometry
with high resolution diffuse and specular photometric information
from multiple viewpoints using polarized spherical gradient illu-
mination. Key to our method is a new pair of linearly polarized
lighting patterns which enables multiview diffuse-specular separa-
tion under a given spherical illumination condition from just two
photographs. The patterns – one following lines of latitude and one
following lines of longitude – allow the use of fixed linear polariz-
ers in front of the cameras, enabling more efficient acquisition of
diffuse and specular albedo and normal maps from multiple view-
points. In a second step, we employ these albedo and normal maps
as input to a novel multi-resolution adaptive domain message pass-
ing stereo reconstruction algorithm to create high resolution facial
geometry. To do this, we formulate the stereo reconstruction from
multiple cameras in a commonly parameterized domain for mul-
tiview reconstruction. We show competitive results consisting of
high-resolution facial geometry with relightable reflectance maps
using five DSLR cameras. Our technique scales well for multiview
acquisition without requiring specialized camera systems for sens-
ing multiple polarization states.

Keywords: computational illumination, face capture, polarization,
message passing.

1 Introduction

Digitally reproducing the shape and appearance of real-world sub-
jects is a long-standing goal of computer graphics. In particular,
the realistic reproduction of human faces has received increasing
attention in recent years. Some of the best techniques use a com-
bination of 3D scanning and photography under different lighting
conditions to acquire models of a subject’s shape and reflectance.
When both of these characteristics are measured, the models can
be used to faithfully render how the object would look from any

viewpoint, reflecting the light of any environment. An ideal pro-
cess would accurately model the subject’s shape and reflectance
with just a few photographs. However, in practice, significant com-
promises are typically made between the accuracy of the geometry
and reflectance model and the amount of data which must be ac-
quired. Ma et al. [2007] introduced polarized spherical gradient
illumination for efficiently acquiring diffuse and specular photo-
metric information and employed it in conjunction with structured
light scanning to obtain high resolution scans of faces. In addition
to the detail in the reconstructed 3D geometry, the photometric data
acquired with this technique can be used for realistic rendering in
either real-time or offline contexts. However, the technique has sig-
nificant limitations. Chiefly, Ma et al.’s linear polarization pattern is
effective only for the frontal camera viewpoint, forcing the subject
to be moved to different positions to scan more than the front of the
face. Also, Ma et al.’s lighting patterns require rapidly flipping a
polarizer in front of the camera using custom hardware in order to
observe both cross- and parallel-polarization states. Finally, Ma et
al.’s reliance on structured light for base geometry acquisition adds
scanning time and system complexity, while further restricting the
process to single-viewpoint scanning.

In order to overcome the viewpoint restriction imposed by active il-
lumination, recent work [Beeler et al. 2010; Bradley et al. 2010] has
used advanced multiview stereo (MVS) to derive geometry from
several high-resolution cameras under diffuse illumination. While
the geometric detail derived by Bradley et al’s dynamic system is
not at the level of skin mesostructure, [Beeler et al. 2010] infers ad-
ditional detail through a "dark-is-deep" interpretation of the diffuse
shading, producing geometric detail correlating to skin pores and
creases. These techniques are notable since just a single set of si-
multaneous photographs suffices as input, allowing even ephemeral
poses to be recorded. However, the techniques are limited in that
they record only a diffuse texture map to generate renderings rather
than separated reflectance components, and the geometric detail in-
ferrable from diffuse shading can vary significantly from the true
surface detail which is more directly evidenced in specular reflec-
tions. Also, the single-shot nature of these techniques is not re-
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quired for acquiring most facial expressions, as subjects can typi-
cally maintain the standard facial expressions used in building facial
animation rigs for the handful of seconds required for multi-shot
techniques [Alexander et al. 2010]. To make our multi-shot capture
robust to subject motion, we leverage the joint optical flow tech-
nique of [Wilson et al. 2010].

Our work generalizes polarized spherical gradient illumination
techniques to multiview acquisition and yields high quality facial
scans including diffuse and specular reflectance albedo and normal
maps. Specifically, our new pair of linearly polarized spherical
illumination patterns enable camera placement anywhere near the
equator of a subject while providing high quality diffuse-specular
separation. Additionally, the technique only requires fixed static po-
larizers on the cameras enabling it to scale well for multiview acqui-
sition. We then simultaneously leverage both the diffuse and spec-
ular photometric data in a novel multi-resolution adaptive-domain
message passing stereo algorithm to reconstruct high resolution fa-
cial scans. We demonstrate the practicality of the proposed tech-
nique using data simultaneously acquired from five viewpoints.

In summary, our principal contributions are:

• A new polarized spherical gradient illumination technique
which enables multiview face scanning.

• A demonstration of multiview acquisition employing low-cost,
static polarizers on both the cameras and light sources.

• A novel multi-resolution adaptive domain message passing
stereo reconstruction algorithm which uses diffuse and specu-
lar albedo and normal maps for high quality facial geometry
reconstruction.

2 Related Work

3D Facial Capture While there has been a wide body of work
on 3D scanning of objects, we focus our discussion on scanning of
human faces due to the specific challenges in obtaining high-quality
geometry and reflectance information. There exist techniques for
high resolution scanning of static facial expressions based on laser
scanning a plaster cast, such as the scans performed by XYZRGB,
Inc. However, such techniques are not well suited for scanning
faces in non-neutral expressions and do not capture reflectance
maps. Several real-time 3D scanning systems exist that are able
to capture dynamic facial performances. These methods either
rely on structured light [Rusinkiewicz et al. 2002; Zhang et al.
2004; Davis et al. 2005; Zhang and Huang 2006], unstructured
painted face texture [Furukawa and Ponce 2009], or use photomet-
ric stereo [Wenger et al. 2005; Malzbender et al. 2006; Hernandez
et al. 2007; Klaudiny et al. 2010]. However, these prior methods are
limited: either they do not provide sufficient resolution to model fa-
cial details, they assume uniform albedo, or they are data-intensive.
Bickel et al. [2007] take an alternate approach by first acquiring a
detailed static scan of the face including reflectance data, augment-
ing it with traditional marker-based facial motion-capture data for
large scale deformation, and integrate high resolution video data
for medium scale expressive wrinkles. Recently, passive multiview
face scanning systems have been proposed which exploit detail in
the observed skin texture under diffuse illumination in order to re-
construct high resolution face scans [Beeler et al. 2010; Bradley
et al. 2010]. While achieving impressive qualitative results for ge-
ometry reconstruction, these techniques rely on synthesis of meso-
scopic detail from skin texture that may differ from true surface
detail. Furthermore, these techniques do not capture specular re-
flectance maps which are useful for realistic rendering. At the other
end of the spectrum, researchers have employed dense lighting and
viewpoint measurements in order to capture detailed spatially vary-
ing facial reflectance [Debevec et al. 2000; Weyrich et al. 2006].
However, such techniques are data intensive and do not scale well

for scanning of non-neutral facial expressions and dynamic facial
performances.

Spherical Gradient Illumination Ma et al. [2007] introduced a
technique for efficient high resolution face scanning of static ex-
pressions based on photometric surface normals computed from
spherical gradient illumination patterns. They capture separate pho-
tometric albedo and normal maps for specular (surface) and dif-
fuse (subsurface) reflection by employing polarization of incident
lighting. Photometric normals – in particular the detailed specular
normals – are used to add fine-scale detail to base geometry ob-
tained from structured light as in [Nehab et al. 2005]. However, Ma
et al.’s linear polarization pattern limits the acquisition to a single
viewpoint providing limited coverage of the scanned subject. Sub-
sequent work has extended the technique for capture of dynamic
facial performance using high speed photography [Ma et al. 2008],
as well as moderate acquisition rates using joint photometric align-
ment of complementary gradients [Wilson et al. 2010]. Recently,
Fyffe et al. [2011] have applied the technique for acquiring facial
performance from multiple viewpoints. However, the technique is
limited to acquiring unpolarized data for viewpoint independence
and employing heuristic post-processing for diffuse-specular sepa-
ration. Similar to the approach of Fyffe et al., we employ a message
passing based stereo reconstruction algorithm in this work. How-
ever, our proposed multi-resolution adaptive domain algorithm in
conjunction with the acquired polarized data results in better re-
construction of surface detail. Ghosh et al. [2010] proposed view
independent separation of diffuse and specular reflectance by mea-
suring the Stokes parameters of circularly polarized spherical illu-
mination. However, this technique requires four measurements per
spherical lighting condition with a set of different linear and circu-
lar polarizers in front of the camera in order to compute the Stokes
parameters and hence does not scale well for multiview acquistion
of live subjects. In this work, we extend the polarized spherical gra-
dient illumination technique for multivew face capture. In contrast
to previous work, we propose a novel polarization technique that
enables effective diffuse-specular separation for multiview acquisi-
tion in just two photographs for a given spherical lighting condition
while not requiring special hardware in front of the camera to image
multiple polarization states. Furthermore, our stereo reconstruc-
tion algorithm takes advantage of the acquired diffuse and specular
albedo and normal maps from multiple viewpoints to reconstruct
high resolution detailed facial scans.

3 Multiview Acquisition

In this section we describe our spherical polarization patterns and
acquisition setup for multiview face capture.

3.1 Polarization Pattern

We propose a novel pair of lat-long polarized lighting patterns
which allow multiview diffuse-specular separation under spheri-
cal illumination in just two photographs. The patterns are linearly
polarized and locally orthogonal on the sphere, one following the
horizontal lines of latitude (Figure 2, red) and one following ver-
tical lines of longitude (Figure 2, blue), and each is symmetric
about the up and down Y-axis. This symmetry allows measurement
from any viewpoint around the equator of the sphere near the XZ
plane. However, we emphasize that the usefulness these multiview
patterns is restricted to viewpoints near the equator, making them
less useful for capturing a subject from above or below. We also
note that the diffuse-specular separation achieved by the lat-long
patterns is slightly degraded compared to the optimal (but view-
dependent) pattern of Ma et al. [2007]. Nonetheless, we show
that in practice, the lat-long patterns very effectively record the
most important range of viewpoints and surface orientations for
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Figure 2: Lines of latitude-longitude (lat-long) linear polarization
patterns for multiview acquisition.

multiview facial capture. In Figure 3, we compare a symmetric
view-independent measurement obtained with circular polarization
(column a) to that obtained with the proposed lat-long multiview
polarization solution (column b). In order to better understand
the comparison, we show simulated results for a perfectly spec-
ular sphere as well as real measurements of a plastic orange for
both parallel-polarized (top) and cross-polarized (bottom) states.
The simulations were generated according to Mueller calculus of
polarized specular reflection [Ghosh et al. 2010] and employ a mi-
crofacet BRDF model that includes Fresnel reflectance. As can
be seen, the cross-polarized state of circular polarization results in
specular cancellation in the center of the sphere but strong specular
reflections due to the opposite chirality of the reflected circularly
polarized light beyond the Brewster angle. As such, Ghosh et al.’s
technique requires four photographs (to measure complete Stokes
parameters) for proper diffuse-specular separation under circularly
polarized spherical lighting. In comparison, our lat-long linear po-
larization patterns, viewed with a fixed vertical linear polarizer on
the camera (column b), result in high-quality diffuse-specular sep-
aration in just two photographs. Placing the cameras’ polarizers
vertically is important: since the lat-long patterns are symmetric
only about the Y-axis, viewing them through a horizontal linear
polarizer yields poor diffuse-specular separation (column c).

Since both of our patterns are symmetric about the Y-axis, one can
also consider the multiview diffuse-specular separation achievable
when employing only one of these patterns. Using just one pattern,
we can obtain approximately cross- and parallel-polarized states by
flipping a linear polarizer in front of the camera as in [Ma et al.
2007]. If we employ just the longitudinal pattern, we obtain the
parallel polarization state of Figure 3, (b) with good specular signal
over most of the sphere. However, when we flip the polarizer on
the camera to horizontal we obtain the cross polarized state of Fig-
ure 3, (c) with poor specular cancellation. Conversely, if we employ
just the latitudinal pattern then we obtain good specular cancela-
tion with a vertical polarizer on the camera (the cross-polarized
state of Figure 3, (b) ). However, flipping the polarizer on the
camera to horizontal shows a loss of specular signal close to the
Brewster angle as seen in the parallel-polarized state of Figure 3,
(c). Instead, when we employ both the longitudinal and latitudinal
patterns (with fixed vertical polarizers on the cameras), we obtain
the best specular cancelation in the cross-polarized state and the
strongest specular signal in the parallel-polarized state (Figure 3,
(b)). The proposed lat-long polarization patterns have two imple-
mentation advantages as well. The first is that they require only
a static (vertical) linear polarizer on each camera to observe both
cross-polarized and parallel-polarized states. Secondly, the regular

Figure 3: Polarization-based multiview diffuse-specular separa-
tion. Rows one and three: Simulated polarized reflectance on a
specular sphere. Rows two and four: Measured data of a plastic
orange. Top two rows: Parallel polarization state with diffuse +
specular. Bottom two rows: Cross polarization state with specular
cancellation. (a) Circular polarization. (b) Proposed lines of lat-
long linear polarization patterns with a vertical linear polarizer
in front of the camera. (c) Lines of lat-long linear polarization
patterns with a horizontal linear polarizer in front of the camera.
Note that although the circular polarization separation is symmet-
ric over the entire sphere (a), the proposed linear lines of lat-long
provides a cleaner separation of reflected directions for a camera
placed around the equator (b). However, the linear lines of lat-long
are only symmetric about the Y-axis and hence rotating the linear
polarizer in front of the camera to horizontal has a different result
with poor diffuse-specular separation (c).

grid structure of the polarization patterns makes it much simpler to
mount polarizers on the lights without tuning polarizer orientations
to cancel the reflections of a calibration object. In the next section,
we describe a practical realization of these proposed polarization
patterns for multiview face scanning.

3.2 Setup and Acquisition

Our setup for multiview face scanning consists of an LED sphere
with 156 individually controllable lights that allow us to illumi-
nate a subject with spherical illumination including the 1st-order
gradient patterns of Ma et al. [2007] for obtaining surface normal
estimates. We use five Canon 1D Mark III digital SLRs cameras
operating in "burst" mode to rapidly acquire polarized gradient il-
lumination data from multiple viewpoints as shown in Figure 4.
We place fixed vertical linear polarizers on the camera lenses and
illuminate the subject with spherical gradient illumination, switch-
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Figure 4: Acquisition setup for multiview face scanning.

ing between the latitudinal and longitudinal patterns using the LED
sphere. To realize both patterns on one LED sphere, we parti-
tion the LED lights into two interleaved banks, one with vertical
linear polarizers and one with horizontal. We take advantage of
the low frequency nature of the spherical gradient illumination as
the reflected light towards the camera integrates over the gradients
covered by the diffuse and specular lobes of the surface BRDF.
With this measurement setup, we rapidly capture a subject under
the complementary spherical gradient illumination conditions of
[Wilson et al. 2010] which are relatively robust to subject motion.
Our cameras record the complemetary gradients in two polarization
states in slightly over three seconds. From these measurements, we
obtain diffuse and specular albedo and normal maps from multiple
viewpoints (Figure 1, (a)). Figure 5, compares the quality of data
acquired with the lat-long polarization patterns in our setup with
those obtained with the view-dependent polarization pattern of Ma
et al. [2007] and its alternative circular polarization approach. As
can be seen, circular polarization suffers from specular pollution in
the diffuse albedo and poor signal strength in the specular reflec-
tion around the sides of the face corresponding to Brewster angle
(center-row). In contrast, the lat-long polarization patterns result in
diffuse and specular albedo and normal maps comparable in quality
to those obtained by the view-dependent linear polarization pattern
of Ma et al., with the added advantage of multiview acquisition.

Achieving Photometric Consistency across Viewpoint The dif-
fuse and specular albedo and specular normals acquired in this
manner from multiple viewpoints are thereafter used as input to a
stereo reconstruction algorithm (described in Section 4). The dif-
fuse albedo map is view-independent and hence a suitable input to
stereo matching. We compute the specular normal maps in world
coordinates to make them suitable for stereo as well. Finally, the
specular albedo maps exhibit view-dependent Fresnel gain toward
grazing angles (Figure 6, (a)). We compensate for the Fresnel gain
to make the specular albedo maps less view-dependent and more
suitable for stereo. We do this using a data-driven procedure as fol-
lows: we first build a 1D curve of the observed Fresnel gain from a
single viewpoint by averaging the observed intensities over the face
as a function of the angle θ between the estimated specular normal
N at a surface point and the camera view direction V (Figure 6, (c)).
In a second step, we employ this 1D curve to scale the observed
intensity at a surface point with a known surface orientation to that
observed at θ = 0 in order to obtain a view-independent specular
albedo map (Figure 6, (b)). We apply the same 1D Frensel curve,
built from data from a single viewpoint, to specular albedo maps
captured from all camera viewpoints to obtain Fresnel-compensated
albedo maps for stereo matching (Figure 1, (a)). Fresnel reflectance
depends in principle on the index of refraction of the surface (skin).

Figure 5: Diffuse-specular separation comparison on a face. Top
row: View-dependent separation using the linear polarization pat-
tern of [Ma et al. 2007]. Center row: Multiview separation using
circular polarization. Note the specular pollution in diffuse and
poor specular signal-to-noise ratio close to the Brewster angle at
the sides of the face. Bottom row: Multiview separation using the
proposed linear lat-long polarization patterns. Note the clean sepa-
ration and good specular signal-to-noise ratio over the entire face.

(a) spec. albedo (b) Fresnel compensated (c) Measured Fresnel gain

Figure 6: Data-driven Fresnel compensation from specular albedo.
(a) Captured specular albedo map. (b) Specular albedo map after
factoring out the measured Fresnel gain. (c) The measured view-
dependent Fresnel gain (as a function of N ·V ) in specular albedo
map used for Fresnel compensation.

Our approach of averaging the Fresnel curve across a face is moti-
vated by the fact that recent measurements found very little spatial
variation in the index of refraction across a face [Ghosh et al. 2010].

4 Geometry Reconstruction

Our multiview geometry reconstruction algorithm takes the ac-
quired diffuse and specular albedo and normal maps from each of
the cameras and derives a high resolution face mesh. We calibrate
our cameras using the technique of Zhang [2000] in a common co-
ordinate system for stereo reconstruction.
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4.1 Stereo Reconstruction

Stereo reconstruction methods typically compute a depth map de-
fined in the image spaces of the cameras used for acquisition. In
multiview acquisition setups, this is usually followed by merging
multiple depth maps into a single mesh. Further refinement may
then be performed using the merged mesh as a base. We instead
take an approach that requires no merging, and no separate re-
finement step. Similar to Fyffe et al. [2011], we represent facial
geometry using a cylinder as a base surface plus a displacement
map, where the displacement vectors point away from the cylinder
axis. However, we compute a single mesh directly in the cylindrical
parameterization domain, which eliminates the need for merging
multiple depth maps. The cylindrical displacement map X is com-
puted to minimize the following graphical cost function:

E(X) = ∑
s∈V

φs(xs) + ∑
(s,t)∈E

ψst(xs, xt), (1)

where V is the set of all pixel sites in the displacement map, E is
the set of edges connecting neighboring sites, xs is the displace-
ment (distance from cylinder axis) at site s, and φs, ψst are the
data term and smoothing term, respectively (detailed in the para-
graphs following). We employ the measured diffuse albedo map (3-
channels), the (Fresnel corrected) specular albedo map (1-channel),
and the photometric (specular) surface normal (3-channels) in the
data term, while also employing the photometric normal in the
smoothing term. These terms also make use of a visibility estimate.

Data Term Our data term is a weighted average of normalized
cross correlation costs (NCC) over all pairs of neighboring cam-
eras i, j. We use (1 − NCC)/2 as the cost [Beeler et al. 2010]
over a 3 × 3-sample window centered at the point p correspond-
ing to the cylinder coordinate (s, xs). We estimate a photometric
surface normal as a weighted blend of the normals seen by each
camera: ni j = (wini + w jn j)/|wini + w jn j|, where ni is the photo-
metric normal seen at p in camera i, vi is the view vector directed
towards camera i, and wi = (ni · vi) if p is visible to camera i (de-
termined by the current visibility estimate) and 0 otherwise. We
constrain the sample window in 3D to be perpendicular to ni j (and
as upright as possible), yielding samples that are roughly tangent to
the surface. To avoid aliasing due to differences in foreshortening,
we adjust the sample spacing on a per-camera-pair basis such that
the projected samples are separated by roughly one pixel on both
cameras in the pair. We sum the NCC cost over all data channels
c in diffuse albedo, specular albedo, and specular normal. This
provides increased localization compared to other works that use
only surface color. The overall weight for the pair of cameras i, j is
wi j = (wiw j(ni · n j))

2. The final data term is:

φs(xs) =
∑i j wi j ∑c(1− NCCi j;c(p))/2

∑i j wi j
. (2)

Smoothing Term First-order smoothing terms in stereo recon-
struction favor piecewise-constant depth maps, since only constant-
depth surfaces are admitted without penalty. Second-order smooth-
ing terms allow for smoother geometry estimates since they admit
any planar surface without penalty [Woodford et al. 2009], but are
more difficult to optimize. Fyffe et al. [2011] propose a first-order
term based on photometric surface normals, which eliminates the
piecewise-constant artifact, but still suffers from cracks in the ge-
ometry wherever the photometric normals are biased away from the
true geometric normals. Beeler et al. [2010] approximate second-
order smoothing in an iterative framework, and compute anisotropic
smoothing weights to avoid over-smoothing sharp features. We
combine these two techniques in our framework: our smoothing
term favors neighboring points in the plane defined by the photo-

metric surface normal, weighted by anisotropic smoothing weights
which we update between each iteration of message passing:

ψst(xs, xt) = wst
r2

xs+xt
min

i
((ni;ps · (ps − pt))

2 + (ni;pt · (ps − pt))
2)

(3)
where r is the angular resolution of the cylinder displacement map,
ps is the point corresponding to the cylinder coordinate (s, xs), ni;ps

is the photometric normal seen at ps in camera i, wst = wh;s + wh;t
if sites s and t are horizontal neighbors or wv;s + wv;t if s and t are
vertical neighbors, and wh;s,wv;s are respectively the horizontal and
vertical anisotropic smoothing weights at site s. The denominator
xs + xt makes the smoothing term invariant to the distance from the
cylinder axis. For anisotropic smoothing weights, we employ the
gradient of the diffuse albedo and the gradient of the photometric
surface normal (which we obtain by finite differences), since these
are available and often correlate to surface curvature. The horizon-
tal weights are as follows, with vertical weights likewise:

wh;s = W exp(−βα(αs+h − αs−h)
2 − βn(ns+h − ns−h)

2), (4)

where s + h is the next horizontal neighbor of site s, s − h is the
previous horizontal neighbor of site s, αs and ns are respectively
the diffuse albedo and photometric surface normal at site s obtained
as in the texture mapping step (detailed below), and W, βα , βn are
user-tunable parameters.

4.2 Minimization of the Cost Function

Optimization of (1) is performed using a novel adaptive domain
message passing framework, which extends the tree-reweighted se-
quential message passing algorithm (TRW-S) [Kolmogorov 2006]
to continuous-valued unknowns. Fyffe et al. [2011] propose in-
terleaved discrete and continuous TRW-S iterations to obtain a
continuous-valued result. However, that method is limited in its
adaptability to the objective function, primarily because the dis-
crete iterations use a sliding window of samples with fixed sample
spacing which may not conform well to the objective function, and
cannot recover from errors inherited from a lower resolution in a
multiresolution framework. We instead propose the following algo-
rithm, which we call TRW-SAD (Algorithm 1), which suffers from
neither of these drawbacks. A domain vector ds of possible assign-
ments is maintained for each variable s, initialized using stratified
random sampling of the continuous range of possible values. A
message vector mst or mts is maintained on each edge (s, t) of the
graph, where mst is a message from node s to node t and mts is a
message from node t to node s. All messages are initially set to
zero. A belief vector bs is computed for each node s of the graph
in an iterative message passing procedure. The nodes are traversed
sequentially according to an ordering i(s), which is reversed after
each iteration. Each message passing iteration follows Algorithm
1, where T is a temperature parameter (fixed at 10 in our tests),
γst = 1/max(Nst ,Nts) and Nst = |{(s, t) ∈ E | i(s) > i(t)}|.

Note that by virtue of the sequential nature of the algorithm, mst
and mts may use the same memory for storage, and bs need not
be stored at all. During the final iteration, the solution may be
extracted as xs = ds; j? , where j? = arg min j bs; j. Every time the
belief of a variable is computed, we generate a set of domain pro-
posals according to the updated belief and the incoming messages,
and compute the beliefs for these proposals as well. We then con-
ditionally replace domain values with domain proposals with an
acceptance likelihood based on the beliefs. Importantly, we never
replace the domain value with the least cost (lowest bs), so that the
retained least cost solution will be fused with the proposed samples
in subsequent iterations. To enable these adaptive domain updates,
we delay the min-marginalization of messages until after the mes-
sage has been passed, instead of before it is passed (as in TRW-S).
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Algorithm 1 The proposed TRW-SAD iteration.

for all nodes s ∈ V in the order of increasing i(s) do
// Compute belief:
for j ∈ 1 . . . |ds| do

bs; j ← φs(ds; j) + ∑
(t,s)∈E

min
k
(mts;k + ψst(ds; j, dt;k))

Sort ds, bs by increasing bs.
// Generate domain proposals:
for j ∈ 1 . . . |ps| do

ps; j ← new domain proposal.
βs; j ← φs(ps; j) + ∑

(t,s)∈E

min
k
(mts;k + ψst(ps; j, dt;k))

Sort ps, βs by increasing βs.
// Conditionally accept domain proposals:
for j ∈ 2 . . . |ds| do

for k ∈ 1 . . . |ps| do
if random(0, 1) ≤ exp( 1

T (bs; j − βs;k)) then
// The proposal is accepted:
ds; j ← ps;k
bs; j ← βs;k
// Mark the proposal as used:
βs; j ← ∞

// Update messages:
for (s, t) ∈ E with i(s) < i(t) do

for j ∈ 1 . . . |ds| do
mst; j ← γstbs; j −min

k
(mts;k + ψst(ds; j, dt;k))

// Reverse ordering:
i(s)← |V |+ 1− i(s)

Proposal Generation Strategy The domain proposals generated
within our algorithm are intended to sample the domain in the
neighborhood of the least cost solution. To generate a set of pro-
posals, we start with a set of suggested domain values Ss con-
taining the two domain values ds;1 and ds;2 corresponding to the
two least-cost belief values bs;1 and bs;2. We then add to Ss
two suggestions from each neighboring node t: the two domain
values arg minxs ψst(xs, dt;k1) and arg minxs ψst(xs, dt;k2) correspond-
ing to the two least-cost message values mts;k1 and mts;k2 , with
k1 = arg mink mts;k and k2 = arg mink 6=k1 mts;k. This allows our
method to recover from poor sampling by encouraging samples
that are consistent with neighboring nodes. Finally we add to Ss
the minimum and maximum possible displacement values. This
results in set Ss with up to 12 domain values for our four-connected
stereo matching cost function. We then sort the values in Ss to pro-
duce a discretely sampled function Fs(u) which maps values from
{1, 2, . . . |Ss|} to domain values. We then draw continuous-valued
samples u j ∼ uniform(1, |Ss|) and finally evaluate ps; j = Fs(u j)
with linear interpolation. We find that domain proposals generated
in this fashion produce acceptable results, while being faster than
sampling/importance resampling on a fine grid. We also find it ben-
eficial to not generate any domain proposals at all for the first two
iterations of the algorithm, to allow the beliefs to converge some-
what before the domains begin to adapt.

Multi-Resolution Optimization To improve efficiency, we adopt
a multi-resolution strategy in this work. We initialize the method by
down-sampling the resolution of the input and cylindrical domain
by a factor of 16 in each dimension. We then perform TRW-SAD
with 16 domain samples, for 16 iterations. Then we continue with
the next higher resolution (by a factor of 2) until we reach the
original resolution. We initialize the TRW-SAD domain of each
higher resolution using the final domain of the previous resolution,
up-sampled by a factor of 2. Each higher resolution uses half as
many TRW-SAD iterations and half as many domain samples as

the previous resolution (but no fewer than 4), since up-sampling
the previous domain provides a warm start. The domain samples
are pruned by truncating the vector ds, which is always ordered by
increasing bs. Additionally, after each resolution is processed, we
use the current geometry estimate to update the visibility estimate,
and apply a low-frequency correction to the photometric normals to
reduce bias, related to the correction used in [Ma et al. 2007]. The
entire procedure is outlined in Algorithm 2. The lack of an initial
visibility estimate creates artifacts that are not easily removed in
later iterations. To combat this issue, we first run our algorithm
on only the two smallest resolutions to obtain a coarse visibility
estimate. We then re-start the algorithm all over again, but retain
the coarse visibility estimate as the initial visibility estimate.

Algorithm 2 Multi-resolution geometry estimation.

for pass p from coarsest to finest resolution do
// Update resolution:
Scale all data to resolution required for pass p.
Up-sample (or initialize) cylindrical domain.
Prune TRW-SAD domains to max(24−p, 4) domain samples.
// Message passing:
Execute max(24−p, 4) steps of TRW-SAD using (1).
// Update result:
Compute vertex world coordinates from displacement map.
Update visibility estimate from geometry estimate.
Compute geometry normals from geometry estimate.
Correct bias in photometric normals using geometry normals.

Final Refinement The TRW-SAD algorithm becomes costly
with larger resolutions, especially with terms employing normal-
ized cross correlation. We observe that the geometry estimate
obtained in the second-to-last resolution pass is close to the final
result, and so we may employ a simplified cost function during the
final resolution pass without significant effect on the result. The
data term is simplified to a quadratic cost centered around the pre-
vious geometry estimate, with a fixed magnitude determined by a
user-tunable parameter. The smoothing term is simplified by set-
ting the surface normal to a fixed value obtained as in the texture
mapping step. The simplified cost function executes an order of
magnitude faster than the original cost function. The entire pro-
cessing time from photographs to final face mesh with textures is
one hour running on a single core of a 2008 Intel Xeon processor.

Texture Mapping We sample textures for the specular albedo,
specular normal, diffuse albedo, and red, green, and blue diffuse
normals by projecting the geometry vertices back into the camera
views, and blending the pixel values in the corresponding pho-
tographs. The result is a set of maps in the cylindrical parameter-
ization domain, aligned one-to-one with the geometry. We weight
the contribution of each camera with the same camera weighting
factor used in the data term. To avoid seams caused by weight
discontinuities, we feather the weights in the cylindrical domain
before computing the final blend.

5 Results

We now present some results of multiview face capture with the
proposed technique. As discussed in Section 3.2, we capture a
subject from five viewpoints near the equator of the LED sphere
using DSLR cameras operating in burst mode. We photograph the
subject under the complementary spherical gradient illumination
conditions of [Wilson et al. 2010] in both cross- and parallel-
polarization states and perform automatic photometric alignment
of the acquired data to compensate for any subject motion during
acquisition. Following the alignment step, we compute diffuse and
specular albedo and normal maps from multiple viewpoints which
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(a) Ma et al. (b) Our method

Figure 7: Geometry reconstruction comparison with the view-
dependent technique of [Ma et al. 2007]. (a) Structured light
scanning + specular detail embossing according to the technique
of Ma et al. (b) Proposed reconstruction based on the separated
diffuse and specular albedo and normal maps.

are then used as input for the message passing stereo reconstruction
algorithm. Figure 1 presents the acquired data of a subject (a), as
well as the result of the detailed geometry reconstruction (b) and
rendering with the acquired hybrid normals as described in [Ma
et al. 2007] (c). We present additional results of faces scanned
in relatively extreme expressions in Figure 12. The accompanying
video contains more renderings with varying viewpoint and lighting
for further evaluation of the results.

Figure 7 presents a qualitative comparison of our technique for fa-
cial geometry reconstruction with the approach of Ma et al. [2007]
that employs structured light scanning for base geometry re-
construction followed by embossing of specular detail according
to [Nehab et al. 2005]. Here, both techniques employ a single stereo
pair of cameras. As can be seen, our approach achieves very compa-
rable high quality reconstruction without requiring structured light
scanning or restricting the acquisition to a single viewpoint.

Figure 8 presents a qualitative comparison of our technique for face
capture with the recent approach of Fyffe et al. [2011] which em-
ploys heuristic diffuse-specular separation of albedo and normal
maps for input to a message passing stereo reconstruction algo-
rithm. Here, we simulated unpolarized input data for comparison
with Fyffe et al. (a) by adding together the parallel and cross po-
larized images obtained with our setup. Compared to Fyffe et al.,
our proposed TRW-SAD algorithm results in an improved geometry
reconstruction with the same heuristic based diffuse-specular sep-
aration of albedo and normals, particularly around discontinuities
such as eyelids, nostrils and lips (b). When employed in conjunc-
tion with polarization-based diffuse-specular separation, our tech-
nique results in an even more accurate reconstruction of the facial
geometry with greater surface detail (c).

Figure 9 presents a comparison of the mesoscopic detail synthe-
sized from skin texture under uniform diffuse illumination [Beeler
et al. 2010] with that obtained from specular normal maps. While
considerable qualitative surface detail can be derived from the tex-
ture alone, not all of this detail matches up to more directly ob-
servable surface detail obtained from specular reflection. In par-
ticular, some convexities on the surface and dark hair can be mis-
interpreted as concavities on the surface due to skin pores and wrin-
kles while some fine wrinkle detail that is captured in the specular
reflection can be completely missing in the skin texture due to sub-
surface scattering.

Finally, we present an application of our proposed polarization
technique in Figure 10 to a recently proposed passive illumination

(a) Fyffe et al. (b) TRW-SAD (c) Our method
(heuristic separation) (polarized separation)

Figure 8: Geometry reconstruction comparison with the multiview
technique of [Fyffe et al. 2011]. a) Reconstruction based on the
technique of Fyffe et al. employing heuristic diffuse-specular sep-
aration of albedo and normals. (b) Proposed reconstruction al-
gorithm with heuristic diffuse-specular separation. (c) Proposed
reconstruction algorithm with the proposed polarization based
diffuse-specular separation.

setup for multiview face scanning [Bradley et al. 2010]. Here, we
photograph a plastic macquette illuminated by nine flat light panels
to create a uniform illumination condition similar to the approach
of Bradley et al. When employing unpolarized lighting (a), there is
significant specular reflection in the photographs that can adversely
affect stereo correspondance. Bradley et al. reported having to ap-
ply specular canceling makeup to the subjects’ faces in order to aid
the multiview stereo which is not an ideal solution as it interferes
with natural facial appearance. Instead, employing sheets of lin-
ear polarizer on the light panels oriented along the lines of latitude
while mounting vertical linear polarizers on the cameras eliminates
most of the undesirable specular reflections in the photographs (b).

5.1 Discussion of Limitations

Lat-long polarization Our lat-long patterns cannot achieve per-
fect specular cancelation in the cross-polarized state compared to
the view-dependent pattern of Ma et al. [2007]. But the perfor-
mance is remarkably good both visually and in simulation, cancel-
ing 99.88% of the specular reflection over the surface of the sphere,
with the worst performance of only 99.63% near grazing angles.
Like Ma et al., the lat-long patterns also produce attenuated specu-
lar reflections for upward- and downward-pointing surface orienta-
tions due to the Brewster angle. However, these areas are typically
outside the region of interest for face scanning and hence this is
not a problem in practice. The two lat-long polarization patterns
were realized by partitioning the LED sphere into every-other-light
banks of polarized lights, reducing the angular resolution of the illu-
mination by half. While this still resulted in sufficient resolution for
facial reflection, the lower resolution could cause worse artifacts for
more specular materials. A future LED sphere could be envisioned
to produce either polarization state at each light position. The lat-
long patterns also result in progressive degradation in the quality
of diffuse-specular separation as the camera viewpoint is moved
above or below the equator (Figure 11). However, this degradation
is very gradual and we have found the method to work well up to 20
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(a) uniform illumination (b) specular detail

Figure 9: Mesoscopic detail comparison for two different areas
of a face. Top-three rows: upper cheek. Bottom-three rows: lips.
(a) Skin texture under uniform illumination. (b) Specular normal
map from polarized spherical gradients. Mesoscopic detail from
skin texture (rows two and five) incorrectly classifies some convex-
ities and dark hair as concavities, while failing to record some fine
wrinkles captured in the specular normals when embossed on base
geometry (rows three and six).

degrees away from the equator; at 15 degrees, the average amount
of uncancelled specular resolution is still just 1%.

Geometry reconstruction Our geometry reconstruction has
some limitations that we would like to address in future work.
The cylindrical parameterization domain, though convenient, is
unable to represent concavities in any direction other than towards
the cylinder axis, and care must be taken in choosing the cylinder
axis to avoid problems under the chin. Using a template mesh
may lessen this issue. Our method is also strongly dependent on
photometric surface normals, and suffers wherever the surface is
largely occluded from illumination, such as inside the nostrils and

(a): unpolarized (b): lines of lat (c): (a)− (b)

Figure 10: Lines-of-lat polarization with the setup of Bradley et
al.[2010]. Top-row: frontal viewpoint. Bottom-row: side view-
point. (a): Unpolarized illumination. (b): Light panels polarized
in the lines of latitude pattern. (c): (a)− (b) depicting the specular
reflection that is cancelled by the proposed polarization pattern.

(a) 0 degrees (b) 15 degrees (c) 30 degrees

Figure 11: Simulated lat-long polarization with change in view-
point. Top-row: Parallel-polarization. Bottom-row: Cross-
polarization. (a) Camera viewing at the equator. (b) Camera view-
ing from 15 degree above the equator. (c) Camera viewing from 30
degree above the equator.

mouth, and also under the chin.

6 Conclusion

We generalized the polarized spherical gradient illumination tech-
nique to multiview acquisition, demonstrating high quality fa-
cial capture and rendering with acquired diffuse and specular re-
flectance information. Our proposed lat-long polarization patterns
enable high quality multiview diffuse-specular separation of spher-
ical illumination from just two photographs, and it scales well to
many cameras as it only requires low-cost fixed linear polarizers in
front of cameras and light sources. We demonstrate the application
of the polarization pattern to an alternate passive illumination face
capture setup. The proposed polarization technique should have
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applications in general multiview acquisition of real world objects
and material reflectance.

We also presented a novel multiresolution adaptive domain message
passing stereo reconstruction algorithm which derives detailed fa-
cial geometry from both the diffuse and specular reflectance of the
face. Here, we eliminated the need for merging multiple depth maps
by formulating the multiview stereo reconstruction in a common
parameterization domain. In future work, it would be of interest to
apply our technique to dynamic facial performances, and also to in-
vestigate other parameterization domains for stereo reconstruction
of more complex shapes such as human bodies.
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(a) geometry (b) rendering (c) geometry (d) rendering

Figure 12: Reconstructed geometry (a),(c) and hybrid normal renderings (b),(d) of subjects in various non-neutral expressions.
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