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Abstract—In this paper, we introduce a new model 
called Latent Mixture of Discriminative Experts which 
can automatically learn the temporal relationship between 
different modalities. Since, we train separate experts for 
each modality, LMDE is capable of improving the pre-
diction performance even with limited amount of data. 
For model interpretation, we present a sparse feature 
ranking algorithm that exploits L1 regularization. An 
empirical evaluation is provided on the task of listener 
backchannel prediction (i.e head nod). We introduce a 
new error evaluation metric called User-adaptive Pre-
diction Accuracy that takes into account the difference 
in people’s backchannel responses. Our results confirm 
the importance of combining five types of multimodal 
features: lexical, syntactic structure, part-of-speech, visual 
and prosody. Latent Mixture of Discriminative Experts 
model outperforms previous approaches. 

Index Terms—Multimodal integration, mixture of ex-
perts, backchannel feedback, multimodal prediction mod-
els, evaluation metric, sparse regularization 

I. INTRODUCTION 

Along with the advances in multimodal sys-
tems and interfaces (i.e. smartphones, Microsoft 
Kinect), processing of multimodal information has 
gained great attention by many researchers. One 
of the main problems of multimodal information 
processing includes effective and efficient fusion 
of modalities from multiple resources. If integrated 
carefully, different modalities can provide comple-
mentary information that improves the performance 
of a system. 

While earlier work focused on either feature or 
decision fusion, new models have emerged that are 
specifically designed for multimodal data. There 
are several characteristics that a good fusion pro-
cess is desired to have. Among others, we discuss 
three of the most important characteristics. First, a 
good fusion process should be able to allow re-
weighting of noisy channels. In other words, it 
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Fig. 1. Latent Mixture of Discriminative Experts: a new dynamic 
model for multimodal fusion. In this graphical representation, xj 

represents the jth multimodal observation, hj is a hidden state 
assigned to xj , and yj the class label of xj . Gray circles are latent 
variables. The micro dynamics and multimodal temporal relationships 
are automatically learned by the hidden states hj during the learning 
phase. 

should be able to learn how confident each modality 
is in achieving a defined task (such as audio-visual 
speaker detection, human tracking, etc.). Second, 
effective training should be possible, even with 
limited amount of data. And third, fusion process 
should be interpretable, therefore analysis of each 
media should be made feasible. 

In this paper we introduce a new model called 
Latent Mixture of Discriminative Experts (LMDE), 
which directly addresses these three issues. A graph-
ical representation of LMDE is given in Figure 1. 
One of the main advantages of our computational 
model is that it can automatically discover the 
hidden structure among modalities and learn the 
dynamic between them. Since a separate expert is 
learned for each modality, effective training can be 
purveyed even with limited amount of data. Further-
more, our learning process provides a ground for 
better model interpretability. By analyzing each ex-
pert, the most important features in each modality– 
relevant to the task– can be conceived. To enable 
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efficient feature analysis, we propose a sparse fea-
ture ranking scheme based on L1 regularization 
technique [1], [2], [3]. 

We present empirical evaluation on the task of 
backchannel feedback prediction confirming the im-
portance of combining different types of multimodal 
features. Backchannel feedbacks include nods and 
para-verbals such as ”uh-huh” and ”mm-hmm” that 
listeners produce as they are speaking. Predicting 
when to give backchannel feedback is a good exam-
ple of complementary information, for which peo-
ple naturally integrate speech, gestures and higher 
level linguistic features. Figure 2 shows an example 
of backchannel prediction where a listener head 
nod is more likely. These prediction models have 
broad applicability, including the improvement of 
nonverbal behavior recognition, the synthesis of 
natural animations for robots and virtual humans, 
the training of cultural-specific nonverbal behaviors, 
and the diagnoses of social disorders (e.g., autism 
spectrum disorder). 

One last issue directly addressed in this paper is 
the evaluation metric for our multimodal prediction 
model. Listener feedback varies among people and 
is often optional (listeners can always decide to 
give feedback or not). Therefore, traditional error 
measurements (i.e. recall, precision, f-score) may 
not always be adequate to evaluate the performance 
of a prediction model. In this paper, we propose a 
new error measurement called User-adaptive Predic-
tion Accuracy (UPA) which takes into account the 
differences in people’s nonverbal responses. 

Our experiments are performed on a dataset of 
45 storytelling dyadic interactions [4]1. We compare 
our LMDE model with previous approaches based 
on Conditional Random Fields (CRF) [5], Latent-
Dynamic CRFs [6], and CRF Mixture of Experts 
(a.k.a Logarithmic Opinion Pools [7]), and a rule 
based random predictor [8]. All the results are 
validated by our User-adaptive Prediction Accuracy 
as well as the traditional error measurements like 
F1-score. We also provide an analysis of the most 
important features for each modality and give an 
intuition on why our intermediate fusion approach 
improves prediction performance. 

The rest of the paper is organized as follows. We 
first present the related works in Section II. Then 
we present our Latent Mixture of Discriminative 

1Freely available at http://rapport.ict.usc.edu/ 
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Fig. 2. Example of multimodal prediction model: listener nonverbal 
backchannel prediction based on speaker’s speech and visual gestures. 
As the speaker says the word her, which is the end of the clause (her 
is also the object of the verb bothering), and lowers the pitch while 
looking back at the listener and eventually pausing, the listener is 
then very likely to head nod (i.e., nonverbal backchannel). 

Experts model in Section III, and sparse feature 
ranking scheme in Section IV. We discuss the 
challenges in multimodal prediction modeling and 
describe our error computation metric in Section V. 
Experimental setup is explained in Section VI, 
Results and discussions are given in Section VII. 
Finally, we conclude with future research directions 
in Section VIII. 

II. RELATED WORK 

Multimodal information processing can be 
achieved mainly in three levels: early, late and 
intermediate [9]. Early fusion involves feature level 
integration, which exploits the correlation among 
all features [10], [11], [12]. McCowan et al. [13] 
presented a multimodal approach for recognition 
of group actions in meetings. In their experi-
ments, early integration gives significantly better 
frame error rates than all approaches apart from 
audio-visual Asynchronous Hidden Markov Model 
system, which is used to model the interactions 
between individuals. However, modeling temporal 
synchrony/asynchrony among modalities is a hard 
problem in early fusion, since features from differ-
ent modalities do not always happen at the same 
time. 

On the other hand, late fusion refers to decision 
level integration, in which the decisions of individ-
ual modalities are fused together to have a final 
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decision [14], [15], [16]. This level of integration is 
usually more scalable than feature level integration, 
since the decisions from multiple media are all in 
the same format. Snoek et al. [17] compares early 
fusion and late fusion for semantic concept learning 
from multimodal video. In their experiments, late 
fusion gives better performance for most concepts; 
however it comes with a cost of increased learning 
effort. For both early and late fusion, classifiers 
are generic, which are also used for unimodal data 
processing. 

In this paper, we present a probabilistic model 
(i.e. intermediate fusion) specifically designed for 
multimodal fusion, where the integration is done 
at the model level. Factorial Hidden Markov Mod-
els [18], Coupled Hidden Markov Models [18] and 
Layered Hidden Markov Models (LHMMs) are ex-
amples of statistical models for intermediate fusion 
of audio visual data. LHMMs was proposed in [19] 
for modeling office activity from multiple sensory 
channels. LHMMs can be seen as a cascade of 
Hidden Markov Models, where each layer is trained 
independently, and the results from a lower layer 
are used as input to an upper layer. Barnard and 
Odobez [20] use this framework in combination 
with unsupervised clustering of the data for event 
recognition in sports videos. Different than earlier 
intermediate fusion techniques, our model depends 
on discriminative models that can learn the dynamic 
among different modalities. 

Jordan et. al. [21] presented the Hierarchical Mix-
ture of Experts (HME) based on probabilistic splits 
of the input space. HME models a mixture of com-
ponent distributions referred to as experts, where 
the expert mixing ratios are set by gating functions. 
Bishop et. al. [22] proposed a variant of this model 
called Bayesian HME (BME) based on variational 
inference. HME and BME are mainly used for solv-
ing static regression and classification problems. On 
the other hand, we propose a discriminative model 
for solving sequential patterns, where we predict 
one label per time sample. Sminchisescu et. al. [23] 
used the BME approach for discriminative inference 
in continuous chain models. Similar to our LMDE 
model, it can learn the mixing coefficients among 
experts. In addition to this, LMDE exploits a latent 
variable that allows multiple mixing coefficients. In 
other words, each hidden state in our LMDE model 
can represent a different set of mixing coefficients. 

The application described in this paper integrates 

multimodal cues from one person are used to predict 
the social behavior of another participant. This type 
of predictive models has been mostly studied in 
the context of embodied conversational agents [24], 
[25]. Several researchers have developed models 
to predict when backchannel should happen. In 
general, these results are difficult to compare as 
they utilize different corpora and present varying 
evaluation metrics. Ward and Tsukahara [8] propose 
a unimodal approach where backchannels are as-
sociated with a region of low pitch lasting 110ms 
during speech. Models were produced manually 
through an analysis of English and Japanese conver-
sational data. Fujie et al. [26] use Hidden Markov 
Models to perform head nod recognition. In their 
paper, they combined head gesture detection with 
prosodic low-level features from the same person 
to determine strongly positive, weak positive and 
negative responses to yes/no type utterances. 

Maatman et al. [27] present a multimodal ap-
proach where Ward and Tsukhara’s prosodic al-
gorithm is combined with a simple method of 
mimicking head nods. No formal evaluation of the 
predictive accuracy of the approach was provided 
but subsequent evaluations have demonstrated that 
generated behaviors do improve subjective feelings 
of rapport [28] and speech fluency [4]. Morency 
et al. [29] showed that Conditional Random Field 
models can be used to learn predictive features 
of backchannel feedback. In their approach, mul-
timodal features are simply concatenated in one 
large feature vector for the CRF model. They show 
statistical improvement when compared to the rule-
based approach of Ward and Tsukahara [8]. Our 
experiments described in Section VI compare with 
this early fusion approach. 

Feature selection refers to the task of finding 
a subset of features that are most relevant to the 
model, and provides a good representation of data. 
It alleviates the problem of overfitting by elimi-
nating the noisy features. With only the relevant 
features, a better understanding and analysis of 
data is facilitated. A well known feature selec-
tion technique based on L1-regularization was ap-
plied for conditional random fields in robot tag 
domain [3]. Based on the gradient-based feature 
selection method (grafting) in [30], Vail et. al. [31] 
proposed an incremental feature selection technique 
for Maximum Entropy Modeling. For the task of 
listener backchannel prediction, Morency et. [29] 
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proposed a greedy approach where the first feature is 
selected based on it’s performance on the task when 
used individually. Then, new features are selected 
incrementally based on their effect in the perfor-
mance when added to the first feature. Different than 
this greedy approach, all features are present during 
the selection process in our sparse feature ranking 
scheme. 

The three main contributions of this paper are: 
• Latent Mixture of Discriminative Experts 

model for multimodal data integration. 
• A sparse feature ranking scheme for expert data 

analysis. 
• User-adaptive Prediction Accuracy for better 

evaluation. 

III. LATENT MIXTURE OF DISCRIMINATIVE 

EXPERTS 

The task of multimodal prediction involves ef-
fective and efficient fusion of information from 
multiple sources. One of the desired characteristics 
of good prediction model is that it should be able 
learn the temporal relationships between modalities. 
In this paper, we introduce a multimodal fusion al-
gorithm called Latent Mixture of Discriminative Ex-
perts (shown in Figure 1), that addresses important 
challenges involved in multimodal data processing. 
(1) The hidden states of LMDE can automatically 
learn the hidden dynamic between modalities. (2) 
By training separate experts, we improve the predic-
tion performance even with limited amount of data. 
(3) LMDE provides interpretability of modalities, 
which can be accomplished by expert analysis. 

The task of our LMDE model is to learn a 
mapping between a sequence of multimodal ob-
servations x = {x1, x2, ..., xm} and a sequence of 
labels y = {y1, y2, ..., ym}. Each yj is a class label 
for the jth frame of a video sequence and is a 
member of a set Y of possible class labels, for 
example, Y = {backchannel,no feedback}. 
Each frame observation xj is represented by a 
feature vector ∈ Rd , for example, the prosodic 
features at each sample. For each sequence, we also 
assume a vector of “sub-structure” variables h = 
{h1, h2, ..., hm}. These variables are not observed 
in the training examples and will therefore form a 
set of hidden variables in the model. Each hj is a 
member of a set Hyj of possible hidden states for 
the class label yj . H, the set of all possible hidden 
states, is defined to be the union of all Hy sets. 
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Fig. 3. An example of how the hidden variables of our LMDE model 
can learn the temporal dynamics and asynchrony between modalities. 

In the rest of this section, we first provide some 
intuitions motivating our model; then present de-
tails of our LMDE model, explain how we learn 
the model parameters and finally how inference is 
performed. 

A. Motivation 

To illustrate how our LMDE can use its latent 
variables to learn the hidden temporal relationship 
between modalities, we present an example (shown 
in Figure 3) based on the application of predicting 
listener responses known as backchannel feedback. 
In this scenario, the goal is to predict when a 
listener is most likely to predict a head nod (i.e 
the label yj+3) given the input features extracted 
from the speaker actions. In our LMDE model, each 
source of information (e.g. visual, lexical, auditory) 
is modeled by an expert. In our example we have 
two experts: pause/talking (orange) and low pitch 
region in speech (green). Figure 3 shows the speaker 
talking with low pitch at time j+1. We know from 
literature [8] that listeners are more likely to give 
a backchannel feedback (1) during a pause and (2) 
shortly after a region of low pitch (usually around 
700ms after the low pitch region). Our LMDE 
model can easily learn this temporal asynchronous 
relationship between speaker pause, speaker low 
pitch region and listener response by using only two 
hidden states per label (i.e. |H| = 2). 

In Figure 3, the first two hidden states (light gray 
circles) of each hidden variable hj are associated 
with the label no feedback and the last two hidden 
states (dark gray circles) are associated with the 
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label backchannel. At time j, the speaker is talking 
and none of the experts are active. Then, we see 
low pitch region at time j + 1, which activates the 
hidden state 2. At time j + 2, the speaker is still 
talking but with no low pitch region. Remark that 
since the second hidden state was activated at time 
j + 1  by the low pitch region, the same hidden 
state will stay active2. This is an example where the 
LMDE model shows memory functionality through 
its hidden variables hj 

3. At time j + 3, the hidden 
state 3 is activated due to a pause in speaker’s talk, 
which triggers prediction of a listener backchannel 
at that point in time. Then, at time j+4 the LMDE 
model gets back to the hidden state 1 when the 
speaker starts talking again. No head nod will be 
predicted at time j + 5, even though the speaker 
paused (because no low pitch region occurred ear-
lier). Another important aspect of the LMDE model 
illustrated in Figure 9 of our experimental results 
(see Section VII) is that the latent variables hj can 
learn multiple mixtures of experts, with one set of 
mixture weights per hidden state. More details on 
the LMDE model and the latent variables are given 
in the following subsections. 

B. LMDE Model 
Following Morency et al. [6], we define our 

LMDE model as follows: 

� 
P (y | x, θ) =  P (y | h, x, θ)P (h | x, θ) (1) 

h 

where θ are model parameters learned during train-
ing. 

To keep training and inference tractable, Morency 
et al. [6] restrict the model to have disjoint sets of 
hidden states Hyj associated with each class label. 
Since sequences which have any hj ∈/ Hyj will 
by definition have P (y | h, x, θ) = 0, the latent 
conditional model becomes: 

� 
P (y | x, θ) =  P (h | x, θ). (2) 

h:∀hj ∈Hyj 

where 

2This is possible because of the transition weights learned during 
training of the LMDE model. See Section III-B 

3The generative model HMM with multiple states per class could 
also exhibit such memorization. However, our LMDE model is a 
discriminative model that takes into account all other labels. 

� � � 
· Tl(h)+�l θl exp 

s θs · Ss(h, x)
P (h| x, θ) =  , (3)

Z(x’, θ) 

For convenience, we split θ into two parts: θl 
parameters related to the transition between hidden 
states, and θs parameters related to the relationships 
between expert outputs and the hidden states hj . Z 
is the partition function, and Tl(h, x’) is defined as 
follows: 

� 
Tl(h) =  tl(hj−1, hj , j), (4) 

j 

where j corresponds to the frame index, and 
tl(hj−1, hj , j) is the transition function. Each 
tl(hj−1, hj , j) depends on pairs of hidden variables 
in the model. Index l represent all possible transi-
tions between different hidden states. 

What differentiates our LMDE model from the 
original work of Morency et al. is the definition of 
Ss(h, x): 

� 
Ss(h, x) =  ss(hj ,φ(x, j)) (5) 

j 

where 

φ(x, j) = [qj1 qj2 ..qjα ..qj|e| ]. (6) 

|e| is the total number of experts. Each 
ss(hj ,φ(x, j), j) is a state function that depends on 
a single hidden variable hj and the expert output 
vector φ(x, j). Total number of indices s is equal 
to the number of experts |e| times the total number 
of hidden states |H|. Each transition/state function 
is associated with a value in the corresponding 
model parameters (θl and θs), which can be seen 
as a weight assigned to this function. For each 
hidden state Hyj , there is a subset of |e| model 
parameters in θs weighting the different expert out-
put. Therefore, using more than one hidden states 
per label allows us to learn multiple mixture of 
experts. Each qjα is the marginal probability of 
expert α at frame j, and equals to Pα(yj = a|x,λα). 
Each expert conditional distribution is defined by 
Pα(y|x,λα) using the usual conditional random field 
formulation: 
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� 
exp ( λα,k · Fα,k(y, x))

Pα(y| x,λα) =  k 
, (7)

Zα(x,λα) 

where λα represent the model parameters of each 
expert α. Fα,k is defined as 

m� 
Fα,k(y, x) =  fα,k(yj−1, yj , x, j), 

j=1 

and each feature function fα,k(yj−1, yj , x, j) is either 
a state function sk(yj , x, j) or a transition function 
tk(yj−1, yj , x, j). Each expert α contains a different 
subset of state functions sk(y, x, j), defined in Sec-
tion VI-C. 

C. Learning Model Parameters 

Given a training set consisting of n labeled se-
quences (xi,yi) for i = 1...n, training is done in 
a two step process. In the first step, we learn the 
model parameters, λ∗ 

α, for each expert α by using 
the following objective function from [32], [5]: 

n� 
L(λα) =  log Pα(yi | xi,λα) − R(λα) (8) 

i=1 

The first term in Equation 8 is the conditional 
log-likelihood of the training data. The second term 
is a regularization term, which can be seen as 
assuming a prior distribution over model parameter. 
The two most commonly used priors are Gaussian 
(L2 regularizer) and Exponential (L1 regularizer) 
priors. In our experiments, we choose to use the 
Gaussian prior since it consistently gives better 
prediction results. In Section IV, this prior will 
be replaced by an Exponential prior in our sparse 
ranking algorithm. 

A Gaussian prior assumes that each model pa-
rameter is drawn independently from a Gaussian 
distribution and penalizes according to the weighted 
square of the model parameters. It is defined as 

exp ||λα||
2 . A Gaussian prior provides smooth-

follows: 

R(λα) =  
1 

||λα||
2 

2σ2 
(9) 

where� 
1 

σ
2 is� the variance, i.e. P (λα) ∼ 

2σ2 

ing when the number of learned parameters is 
very high compared to the size of available data. 
Using a Gaussian prior results in a convex quadratic 

optimization function that can be solved by standard 
optimization techniques. The marginal probabilities 
Pα(yj = a | x,λ∗ 

α), are computed using belief prop-
agation. In our experiments, we performed gradient 
ascent using the BFGS optimization technique [33]. 

In the second step, we use the following objective 
function to learn the optimal parameter θ∗: 

� 
L(θ) =  

n 

log P (yi | xi,λα) − 
2

1 
σ2 

||θ||
2 (10) 

i=1 

The first term is the conditional log-likelihood of 
the training data. The second term is the log of a 
Gaussian prior with variance σ2 . 

Similar to the first step, we use gradient ascent 
with the BFGS optimization technique to search for 
the optimal parameter values, θ∗ . 

D. Inference 

Similar to parameter learning process, inference 
is also achieved in two steps. Given a new test 
sequence x, we first compute the marginal proba-
bilities Pα(yj = a| x,λα) for each expert. Secondly, 
we estimate the most probable sequence of labels 
y ∗ that maximizes our LMDE model: 

� 
y ∗ = arg  max  P (h | x, θ∗ ) (11)

y 
h:∀hi∈Hyi 

where θ∗ is the parameter values learned from 
training. To estimate the label yj ∗ of frame j, we first 
compute the marginal probabilities P (hj = a|x, θ∗) 
for all possible hidden states H . Then, we sum the 
marginal probabilities according to the disjoint sets 
of hidden states Hyj . Finally, the label yj ∗ associated 
with the optimal set is chosen. 

IV. SPARSE FEATURE RANKING 

One advantage of the LMDE model is that it can 
be easily interpreted to see what was learned. In 
this section, we present a feature ranking scheme 
that allows us to find the subset of features that are 
the most relevant to each expert. 

Our feature ranking scheme relies on sparse reg-
ularization of LMDE model parameters λα. Using 
a regularization term in the optimization function 
during training can be seen as assuming a prior 
distribution over the model parameter. In Section III, 
a Gaussian prior(L2-regularizer) was preferred due 
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Fig. 4. Example of sparse ranking using L1 regularization. As ρ 
goes from higher to lower values, model parameters start to become 
non-zero based on their relevance to the prediction model. 

to better classification performance. But here, we 
replace the L2-regularization term of Equation 8 by 
an Exponential prior (L1-regularizer), which allows 
us to better analyze the model. L1 regularization 
results in sparse parameters vector in which many 
of the parameters are exactly zero [34]. Therefore, 
it has been widely used in different domains for the 
purpose of feature selection [35], [3]. An Exponen-
tial prior penalizes according to the weighted L1 

norm of the parameters and is defined as follows: 

R(λα) = ρ � λα �1 (12) 

where ρ > 0 and determines how much penalty 
should be applied by the regularization term. 
Larger values indicate larger penalty, thus producing 
sparser parameter vector λα. 

Figure 4 shows an example of how ρ effects 
the model parameters. In this example, we trained 
a single expert with 5 input features: EyeGazes, 
POS:NN, utterance, POS:IN, and EnergyEdge (see 
Section VI-C for details about feature representa-
tions). Figure 4 shows the effect of regularization 
on model parameters λα. This regularization path 
was created by starting with a high regulariza-
tion penalty ρ where all the parameters are zero 
and then gradually reduce the regularization until 
all the parameters have non-zero values. In this 
path, if a parameter becomes non-zero in earlier 
stages (i.e., large ρ), this signifies the input feature 
associated with this parameter is important. Our 
ranking scheme is based on this observation. We 

rank the features in the order of them becoming 
non-zero in the regularization path. For the example 
shown in Figure 4, our algorithm will rank the 
features as follows: (1) EyeGazes and POS:NN, 
(2) EnergyEdge, (3) Utterance and POS:IN. The 
pseudo code for our sparse feature ranking approach 
is given in Algorithm 1. 

Algorithm 1 Sparse Feature Ranking 
ranked features = empty 
for ρ = ∞ down to 0 do 

train an expert CRF with L-1 regularization 
factor ρ 
for all nonzero feature params λα,k do 

if λα,k is NOT in selected features then 
ranked features = {ranked features, 
fi,k} 

end if 
end for 

end for 
return ranked features 

The regularization penalty ρ determines how 
sparse the model should be. More than one of these 
parameters may become non-zero at any given ρ 
regularization factor. Therefore, our feature ranking 
scheme allows more than one feature to have the 
same rank, meaning that these features have equiv-
alent influence and they should be selected together. 
Compared to other greedy methods [29], our sparse 
feature ranking algorithm is non-greedy in the sense 
that all features are present during selection process. 
Also, our algorithm is much more efficient than 
the greedy method, since the computational cost 
of our algorithm is determined by the number of 
regularization penalty values ρ used (which was 
76 in our experiments). On the other hand, the 
computational cost of the greedy approach increases 
with the number of features (a total of 1629 features 
are used in our experiments). 

Using an L1-regularizer results non-differentiable 
objective function. Therefore, we use Orthant-
Wise Limited-memory Quasi-Newton (owl-qn) 
method [36] for training L1-regularized log-linear 
models, which is an extension of L-BFGS optimiza-
tion technique. 

V. LMDE FOR MULTIMODAL PREDICTION 

LMDE is a generic approach designed to inte-
grate information from multiple modalities. In this 



8 

section, we first provide a detailed discussion about 
multimodal prediction, and more specifically about 
backchannel prediction which is used as the main 
task in our experiments. Then, we present the User-
adaptive Prediction Accuracy, a new evaluation met-
ric for prediction models. 

A. Multimodal Prediction 

Human face-to-face communication is a little like 
a dance, in that participants continuously adjust their 
behaviors based on verbal and nonverbal displays 
and signals. A topic of central interest in modeling 
such behaviors is the patterning of interlocutor ac-
tions and interactions, moment-by-moment, and one 
of the key challenges is identifying the patterns that 
best predict specific actions. Thus we are interested 
in developing predictive models of communication 
dynamics that integrate previous and current actions 
from all interlocutors to anticipate the most likely 
next actions of one or all interlocutors. Humans are 
good at this: they have an amazing ability to predict, 
at a micro-level, the actions of an interlocutor [37]; 
and we know that better predictions can correlate 
with more empathy and better outcomes [38], [39]. 

Building computational models of such a pre-
dictive process involves dynamics and temporal 
relationship between cues from different modali-
ties [40]. These different modalities contain comple-
mentary information essential to interpretation and 
understanding of human behaviors [41]. Psycholin-
guistic studies also suggest that gesture and speech 
come from a single underlying mental process, 
and they are related both temporally and seman-
tically [42], [43], [44]. 

Among other behaviors, backchannel feedback 
(the nods and paraverbals such as “uh-hu” and 
“mm-hmm” that listeners produce as some is speak-
ing) has received considerable interest due to its 
pervasiveness across languages and conversational 
contexts. Several systems have been demonstrated 
on the task of listener backchannel feedback pre-
diction [8], [27], [29]. Evaluation of results from a 
backchannel prediction model is challenging, since 
listener feedback varies between people and is of-
ten optional. While experiencing the same set of 
environmental conditions, some people may choose 
to give more frequent feedbacks, whereas some 
others may choose to be less active and give seldom 
feedbacks. Therefore, results from prediction tasks 

Time (seconds) 

10      20      30      40      50      60      70      80     

L1 

L2 

Listener1 

Listener2 

Fig. 5. A sample output sequence of listener feedback probabilities 
(in blue). Red and green boxes indicate the responses from Listener1 

and Listener2 respectively. The red and green lines indicate the 
thresholds on the output probabilities that can correctly assign the 
backchannel labels to the corresponding listener labels. 

are expected to have lower accuracies as opposed 
to recognition tasks where the data labels are well 
established. This indicates the necessity of a new 
error measurement, which can take into account 
differences in human behaviors. We address this 
issue in the next section. 

B. User-adaptive Prediction Accuracy 

The traditional way to evaluate prediction models 
is usually to set a threshold on the output prob-
ability, so that final decision can be made (i.e. 
backchannel or not). From these final predictions, 
typical error metrics, such as F1-score, precision 
and recall, can be measured. The same threshold 
will be applied to all data sequences from different 
people in the test set. However, people do not always 
respond the same way to the same stimuli (e.g. 
speaker’s actions). Some people may naturally give 
a lot of feedback while others will give feedback 
only when the speaker is directly requesting it. For 
this reason, using the same threshold for evaluating 
multiple listeners may not be representative of the 
real predictive power of the learned model (e.g. 
LMDE). 

Let’s illustrate this problem with an example as 
depicted in Figure 5. In this case, we have two 
listeners listening to the same speaker, but react-
ing differently. Listener1 gave only 1 backchannel 
feedback, while Listener2 was more actively nod-
ding his head and gave 5 backchannels. Figure 5 
shows the output of our LMDE model (backchannel 
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probabilities) as a continuous blue line and the 
potential predictions (local maxima) are depicted 
by the red stars. The question now is: can our 
learned model correctly predict both listeners? As 
shown in the figure, there is not one threshold 
that can correctly predict both listeners’ behaviors. 
However, given the right thresholds, this model can 
correctly predict both listeners. So, what should be 
the evaluation measure and the performance of the 
model? 

To address this issue, we propose a new error 
measurement called User-adaptive Prediction Ac-
curacy (UPA). The main intuition behind UPA is 
that we will ask our prediction model to give us 
the ni-best predictions, where ni is the number of 
times that a particular listeneri gave a backchannel. 
Following this intuition, UPA is defined as: 

N
1 � P (ni)

UPA  = (13)
L ni/lii 

where i is the listener id, N is the total number 
of listeners in the test data, ni is the number of 
backchannels listeneri provided during a dyadic 
interaction, and li is the length of the interac-
tion i. Therefore, the denominator term coveys the 
backchannel frequency of listeneri. L is the total 
length of all interactions with all the listeners. P (ni) 
is a function that compares the ni-best predictions 
from our LMDE model output to the ground truth 
backchannel labels from listeneri. The function 
P (ni) returns the number of correctly predicted 
listener backchannels. Predictions from our LMDE 
model are ranked by their probability output. 

UPA gives us a measure of the prediction qual-
ity while adapting to people’s different levels of 
backchannel responses. Consider the case where 
two different listeners gave the same amount of 
backchannel during their interactions, and the du-
ration of first interaction with one of the listeners 
is much longer than the duration of second inter-
action with the other listener. One would expect 
more noise (i.e. peaks) in the output probabilities 
of the first interaction corresponding to possible 
backchannel opportunities that the actual listener 
had missed. Therefore, a model that can correctly 
find the true backchannel opportunities even if the 
listener rarely provides backchannel should be given 
a higher weight. Therefore, we introduce li weight-
ing in Equation 13 to capture these differences in 

listener’s responses. Our UPA performance measure, 
by removing the performance variance due to the 
variability in amount of backchanneling, is a more 
reliable performance measure than standard mea-
sures like precision, recall and F-measure. 

VI. EXPERIMENTAL SETUP 

As mentioned in the previous section, we evaluate 
our LMDE on the multimodal task of predicting 
listener nonverbal backchannel. In this section, we 
first describe our dataset, backchannel annotation 
technique and multimodal speaker features. Then, 
we explain the baseline models used for comparison 
in our tests, and the experimental setup. 

A. Dataset 
We are using the RAPPORT dataset 4 from [4], 

which contains 45 dyadic interactions between a 
speaker and a listener. Data is drawn from a study of 
face-to-face narrative discourse (“quasi-monologic” 
storytelling). In this dataset, participants in groups 
of two were told they were participating in a study 
to evaluate a communicative technology. Subjects 
were randomly assigned the role of speaker and 
listener. The speaker viewed a short segment of a 
video clip taken from the Edge Training Systems, 
Inc. Sexual Harassment Awareness video. After the 
speaker finished viewing the video, the listener was 
led back into the computer room, where the speaker 
was instructed to retell the stories portrayed in the 
clips to the listener. The listener was asked to not 
talk during the story retelling. Elicited stories were 
approximately two minutes in length on average. 
Participants sat approximately 8 feet apart. All video 
sequences were manually transcribed and manually 
annotated to determine the ground truth backchan-
nels. The next section describes our annotation 
procedure. 

B. Backchannel Annotations 

In our experiments, we focus on visual backchan-
nels: head nods. A head nod gesture starts when 
the person starts moving his/her head vertically. 

4This dataset has also been used in [29] in which 50 interactions 
were reported. In that study, the only visual cue exploited is the 
speaker eye gaze. We have extracted more visual cues (smiles, eye 
brows) from the speaker videos and omitted the sequences for which 
the speaker videos were not completely annotated. 
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Fig. 6. Baseline Models: a) Conditional Random Fields (CRF), b) Latent Dynamic Conditional Random Fields(LDCRF), c) CRF Mixture 

of Experts (no latent variable) 

The head nod gesture ends when the person stops 
moving or when a new head nod is started. A new 
head nod starts if the amplitude of the current head 
cycle is higher than the previous head cycle. Some 
listeners’ responses may be longer than others al-
though they all correspond to one single respond. In 
our data, annotators found a total of 666 head nods. 
The duration of these nods varied from 0.16 seconds 
to 7.73 seconds. Mean and standard deviation of 
backchannel durations are 1.6 and 1.2 respectively. 
The minimum number of head nods given by one 
listener during one interaction is 1, the maximum is 
47, mean and standard deviations are 14.8 and 10.9 
respectively. 

Following Ward and Tsukahara’s [8] original 
work on backchannel prediction, we train our 
LMDE model to predict only the start time of 
the backchannel start cue (i.e. head nod). Follow-
ing again Ward and Tsukahara [8], we define the 
backchannel duration as a window of 1.0 seconds 
centered around the start time of the backchannel. 
A backchannel cue will be correctly predicted if at 
least one prediction of our LMDE model happens 
during this 1.0 seconds duration. All models tested 
in this paper use this same testing backchannel 
duration of 1.0 seconds. During the training of 
our LMDE prediction model, we will vary the 
backchannel duration to see which one is optimal. 
The Section VII-B describes these results, where we 
find the optimal training backchannel duration to be 
0.5 seconds. 

C. Multimodal Features and Experts 

This section describes the different multimodal 
features used to create our five experts. 

PROSODY Prosody refers to the rhythm, pitch and 
intonation of speech. Several studies have demon-
strated that listener feedback is correlated with a 

speaker’s prosody [45], [8], [46]. For example, 
Ward and Tsukahara [8] show that short listener 
backchannels (listener utterances like “ok” or “uh-
huh” given during a speaker’s utterance) are asso-
ciated with a lowering of pitch over some inter-
val. Listener feedback often follows speaker pauses 
or filled pauses such as “um” (see [46]). Using 
openSMILE [47] toolbox, we extract the follow-
ing prosodic features, including standard linguistic 
annotations and the prosodic features suggested by 
Ward and Tsukhara: 

• downslopes in pitch continuing for at least 
40ms 

• regions of pitch lower than the 26th percentile 
continuing for at least 110ms (i.e., lowness) 

• drop or rise in energy of speech (i.e., energy 
edge) 

• fast drop or rise in energy of speech (i.e., 
energy fast edge) 

• vowel volume (i.e., vowels are usually spoken 
softer) 

• pause in speech (i.e., no speech) 

VISUAL GESTURES Gestures performed by the 
speaker are often correlated with listener feed-
back [48]. Eye gaze, in particular, has often been 
implicated as eliciting listener feedback. Thus, we 
manually annotate the following contextual features: 

• speaker looking at listener (eye gaze) 
• speaker not looking at listener (˜ eye gaze) 
• smiling 
• moving eyebrows up 
• moving eyebrows down 

LEXICAL Some studies have suggested an associa-
tion between lexical features and listener feedback 
[46]. Using the transcriptions, we included all indi-
vidual words (i.e., unigrams) spoken by the speaker 
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during the interactions. 

PART-OF-SPEECH TAGS In [46], combination of 
pause duration and a statistical part-of-speech lan-
guage model is shown to achieve the best per-
formance for placing backchannels. Following this 
work, we use a CRF part-of-speech (POS) tagger to 
automatically assign a part of speech label to each 
word. We also include these part-of-speech tags (e.g. 
noun, verb, etc.) in our experiments. 

SYNTACTIC STRUCTURE Finally, we attempt to 
capture syntactic information that may provide rele-
vant cues by extracting three types of features from 
a syntactic dependency structure corresponding to 
the utterance. The syntactic structure is produced 
automatically using a data-driven left-to-right shift-
reduce dependency parser [49], trained POS on 
dependency trees extracted from the Switchboard 
section of the Penn Treebank [50], converted to 
dependency trees using the Penn2Malt tool5. The 
three syntactic features are: 

• Grammatical function for each word (e.g. sub-
ject, object, etc.), taken directly from the de-
pendency labels produced by the parser 

• Part-of-speech of the syntactic head of each 
word, taken from the dependency links pro-
duced by the parser 

• Distance and direction from each word to its 
syntactic head, computed from the dependency 
links produced by the parser 

Although our current method for extracting these 
features requires that the entire utterance be avail-
able for processing, this provides us with a first 
step towards integrating information about syntactic 
structure in multimodal prediction models. Many 
of these features could in principle be computed 
incrementally with only a slight degradation in 
accuracy, with the exception of features that require 
dependency links where a word’s syntactic head 
is to the right of the word itself. We leave an 
investigation that examines only syntactic features 
that can be produced incrementally in real time as 
future work. 

D. Baseline Models 

INDIVIDUAL EXPERTS Our first baseline model 
5http://w3.msi.vxu.se/ nivre/research/Penn2Malt.html 

consists of a set of CRF chain models, each trained 
with different set of multimodal features (as de-
scribed in the previous section). In other words, only 
visual, prosodic, lexical or syntactic features are 
used to train a single CRF expert. (See Figure 6a). 

MULTIMODAL CLASSIFIERS (EARLY FUSION) 
Our second baseline consists of two models: CRF 
and LDCRF [6]. To train these models, we con-
catenate all multimodal features (lexical, syntactic, 
prosodic and visual) in one input vector. Graphical 
representation of these baseline models are given in 
Figure 6-(a) and Figure 6-(b). 

CRF MIXTURE OF EXPERTS To show the impor-
tance of latent variable in our LMDE model, we 
trained a CRF-based mixture of discriminative ex-
perts. A graphical representation of a CRF Mixture 
of experts is given in Figure 6. This model is similar 
to the Logarithmic Opinion Pool (LOP) CRF sug-
gested by Smith et al. [7], in the sense that they both 
factor the CRF distribution into a weighted product 
of individual expert CRF distributions. However, the 
main difference between LOP and CRF Mixture of 
Experts model is in the definition of optimization 
functions. Similar to our LMDE model, training of 
CRF Mixture of Experts is performed in two steps: 
Expert models are learned in the first step, and the 
second level CRF model parameters are learned in 
the second step. 

PAUSE-RANDOM CLASSIFIER Our last baseline 
model is a random backchannel generator, which 
randomly generates backchannels whenever some 
pre-defined conditions in the speech is purveyed. 
These conditions include pauses that come after at 
least 700 milliseconds of speech and absence of 
backchannel feedback within the preceeding 800 
milliseconds. This random classifier has also been 
used by Ward and Tsukahara [8] for comparison. 

E. Methodology 

We performed held-out testing by randomly se-
lecting a subset of 11 interactions (out of 45) for the 
test set. The training set contains the remaining 34 
dyadic interactions. All models in this paper were 
evaluated with the same training and test sets. Vali-
dation of all model parameters (regularization term 
and number of hidden states) was performed using a 

https://5http://w3.msi.vxu.se
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Fig. 7. Comparison of individual experts with our LMDE model. 
Top: Recall (x-axis) v.s. Precision (y-axis) values for different 
threshold values. Bottom: Precision, Recall, F1 and UPA scores of 
corresponding models for selected amount of backchannel. 

3-fold cross-validation strategy on the training set. 
The regularization term was validated with values 
10k, k  = −1..3. Two different number of hidden 
states were tested for the LMDE models: 2, and 3 
(note that LMDE with 1 hidden state is equivalent to 
Mixture of CRF Experts model). In our experiments, 
the optimum number of hidden states was 2 when 
duration of backchannel labels was set to 0.5, and 3 
when duration of backchannel labels was set to 1.0 
or 1.5. 

The performance is measured by using UPA 
(described in Section V-B) as well as more con-
ventional metrics: precision, recall, and F-measure. 
Precision is the probability that predicted backchan-
nels correspond to actual listener behavior. Recall 
is the probability that a backchannel produced by a 
listener in our test set was predicted by the model. 
We use the same weight for both precision and 
recall, so-called F1, which is the weighted harmonic 
mean of precision and recall. F1 scores for each 
sequence is calculated first, then the final F1 result 
is computed by averaging these sequence scores. 

During testing, we find all the ”peaks” (i.e., 
local maxima) from marginal probabilities P (yj = 
a| x, θ). When computing UPA, the final predictions 
are selected from these peaks so that the number 
of model predictions are equal to the number of 

Fig. 8. Comparison of our LMDE model with previously pub-
lished approaches for multimodal prediction. Top: Recall (x-axis) 
v.s. Precision (y-axis) values for different threshold values. Bottom: 
Precision, Recall, F1 and UPA scores of corresponding models for 
selected amount of backchannel. 

listener backchannels in the test sequence. For the 
f1-score, the prediction model needs to decide on 
a specific threshold (i.e., amount of backchannel) 
for the marginal probabilities for all users. The 
value of this threshold is automatically set during 
validation. Since we are predicting the start time 
of a backchannel, an actual listener backchannel is 
correctly predicted if at least one model prediction 
happen within the 1 second interval window around 
the start time of the listener backchannel. 

The training of all CRFs and LDCRFs were done 
using the hCRF library6. The LMDE model was 
implemented in Matlab based on the hCRF library. 
The input observations were computed at 30 frames 
per second. Given the continuous labeling nature 
of our LMDE model, prediction outputs were also 
computed at 30Hz. 

VII. RESULTS 

In this section we present the results of our 
empirical evaluation. We designed our experiments 
so to test different characteristics of the LMDE 
model. First, we present our quantitative results 
that evaluate: (1) integration of multiple sources of 
information, (2) late fusion approach and (3) latent 

6http://sourceforge.net/projects/hrcf/ 

https://6http://sourceforge.net/projects/hrcf
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variable which models the hidden dynamic between 
experts. Then, we present qualitative analysis related 
to: (1) the output probabilities from individual ex-
perts and the LMDE model, (2) the most relevant 
features in early and late fusion models, (3) model 
robustness and (4) UPA analysis. 

A. Comparative Results 

INDIVIDUAL EXPERTS We trained one individual 
expert for each feature types: visual, prosodic, lex-
ical and syntactic features (both part-of speech and 
syntactic structure). Precision, recall, F1, and UPA 
values for each individual expert and our LMDE 
model are shown in Figure 7 (Bottom) 7. Even 
though the experts may not perform well individ-
ually, they can bring important information once 
merged together. Recall-precision curve in Figure 7 
(Top) shows that our LMDE model was able to take 
advantage of the complementary information from 
each expert. 

LATE FUSION We compare our approach with 
two early fusion models: CRF and LDCRF (see 
Figure 6). Figure 8 summarize the results. The 
CRF model learns direct weights between input 
features and the gesture labels. The LDCRF is able 
to model more complex dynamics between input 
features with the latent variable. We can see that our 
LMDE model outperforms both early fusion model 
because of its late fusion approach. 

When merging the features together in an early 
manner, the noise from one modality may hide or 
suppress the features from a different modality. By 
training separate experts for each different modality, 
we are able to reduce the effect of this noise, 
therefore learn models that can generalize better to 
new multimodal data. 

LATENT VARIABLE The CRF Mixture of Ex-
perts [7] directly merges the expert outputs while 
our LMDE model uses a latent variable to model 
the hidden dynamic between experts (see Figure 6-
(c)). This comparison (summarized in Figure 8) is 
important since it shows the effect of the latent 
variable in our LMDE model. 

7While calculating these values, we first find the peaks from 
marginal probabilities for possible prediction points. However, there 
is no guarantee that a peak will appear during all ground truth 
backchannel regions. Therefore, we cannot get higher recall values 
for some of the experts, i.e. Visual Expert. 

TABLE II 
PERFORMANCES OF INDIVIDUAL EXPERT MODELS TRAINED BY 

USING ONLY THE TOP 5 FEATURES SELECTED BY OUR FEATURE 

RANKING ALGORITHM. THE LAST TWO ROWS REPRESENT THE 

LMDE MODELS USING THE EXPERT MODELS TRAINED WITH 

ONLY 5 FEATURES SELECTED BY EITHER BY A GREEDY 

METHOD [29] OR OUR SPARE FEATURE RANKING SCHEME. 

Expert Precision Recall f1 upa 
Prosodic5 0.1463 0.5645 0.2324 0.1545 
Visual5 0.1457 0.2671 0.1886 0.1558 
Lexical5 0.1059 0.1706 0.1307 0.1471 
POS5 0.1522 0.5602 0.2394 0.1409 
Syntactic5 0.0995 0.5626 0.1691 0.1302 
Greedy5 0.2007 0.3241 0.2479 0.2585 
LMDE5 0.1914 0.5306 0.2814 0.2331 

B. Analysis Results 

EXPERT ANALYSIS Our first analysis looks at 
speaker features that are the most relevant to listener 
feedback prediction. This analysis is performed by 
applying our sparse feature ranking algorithm de-
scribed in Section IV to each expert separately. 
Top 5 features for our five experts are listed in 
Table I 8. First interesting results are the two fea-
tures appearing in Prosodic Expert and one feature 
appearing in Visual Expert: pause, low pitch and 
eye gaze. These features have also been identified 
in previous work [8], [29] as important cues for 
backchannelling. Similarly, um feature in Lexical 
Expert can be considered as a filler pause and 
reasonable cue for backchannel prediction. Visual 
Expert selects nod as the second-best feature, which 
can be associated with mirroring effect. This sug-
gests that our experts are learning relevant features. 

To confirm that these selected features are rel-
evant to the L2 trained models, we trained new 
experts and LMDE models using the top 5 features 
of each expert selected by our sparse feature ranking 
algorithm. In other words, for each expert, we 
trained a new CRF model by using only the top 
5 features selected for that expert. Performance of 
these new expert models are listed in Table II. It is 

8Utterence indicates when the user is talking. POS:NN indicates 
singular noun, POS:PRP indicates personal pronoun, POS:VBG in-
dicates verb, POS:UH indicates interjection and POS:NNS indicates 
plural noun. DIRDIST:L1 and L2 describe the distance and direction 
from the head node in the parse tree (i.e. left within distance 
1). LABEL:PMOD and LABEL:SUB indicate a proposition and a 
subject modifier respectively. HEADPOS:VBZ indicatea verb head 
node. 
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TABLE I 
TOP 5 FEATURES FROM RANKED LIST OF FEATURES FOR EACH LISTENER EXPERT. 

Expert 1 
(Prosodic) 

Expert 2 
(Visual) 

Expert 3 
(Lexical) 

Expert 4 
(POS) 

Expert 5 
(Syntactic) 

Utterence 
Pause 
Vowel Volume 
Energy Edge 
Low Pitch 

˜ EyeGaze 
Nod 
EyeBrows Up 
EyeBrows Down 
EyeGaze 

she 
um 
that 
he 
women 

POS:NN 
POS:PRP 
POS:VBG 
POS:UH 
POS:NNS 

DIRDIST:L1 
HEADPOS:VBZ 
LABEL:PMOD 
DIRDIST:L2 
LABEL:SUB 

interesting to see that using only five features can 
achieve performance as good as when using all the 
features. We see some increase in both f1 and upa 
values for POS and Syntactic experts when 5 fea-
tures used. We believe that this is due to noise when 
all features are used. For comparison, we trained a 
new LMDE model using these new expert models. 
The performance of this model, which we refer to 
as LMDE5, is given in Table II. LMDE5 achieves 
a higher f1 value than all individual experts, and 
a very similar upa value as the original LMDE 
(remark that all the features were present while 
training the expert models in the original LMDE). 

We also compared our sparse feature ranking 
algorithm to the greedy feature selection method 
presented in [29]. For this purpose, we used this 
greedy method to select 5 features for each expert, 
and learned expert models trained with these 5 
features. Then, these expert models are used to 
learn an LMDE model, referred to as Greedy5. 
The results are shown in Table II. LMDE5 and 
Greedy5 achieved similar performance. However, 
our sparse ranking scheme is a much faster algo-
rithm than the greedy method. The computational 
cost of the greedy algorithm increases with the 
number of features, whereas the computational cost 
of our spare ranking scheme is determined by the 
number of regularization penalty values ρ (76 in our 
experiments). 

LMDE MODEL ANALYSIS Our second analysis 
focuses on the multimodal integration which hap-
pens at the latent variable level in our LMDE model, 
Figure 9 shows the output probabilities for all five 
individual experts as well as our model. The strength 
of the latent variable is to enable different weighting 
of the experts at different point in time. 

Time

62s 65s 69s 72s

Looking  at  listener Looking  at  listener

Fig. 9. Output probabilities from LMDE and individual experts for 
two different sub-sequences. The gray areas in the graph correspond 
to ground truth backchannel feedbacks of the listener. 

listener gave backchannel feedback 3 times (around 
62s, 64s and 71s), which are indicated by the gray 
areas. As we analyze the outputs from different 
experts, we see that the Lexical and POS experts 
were able to learn the backchannel opportunity for 
the first backchannel feedback at 62s. These two 
experts are highly weighted (by one of the hidden 
state) during this part of the sequence. All the 
experts except the Visual Experts assigned a high 
chance of backchannel around 65.5s, where there is 

In the sequence depicted in Figure 9, the actual no listener feedback. The Visual Expert was highly 
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TABLE IV 
PERFORMACES OF BASELINE MODELS AND OUR LMDE MODEL AS WE INCREASE THE DURATION OF BACKCHANNEL LABELS DURING 

TRAINING. 

Training Backchannel Duration 
0.5 1.0 1.5 

f1 upa f1 upa f1 upa 
LMDE 0.3026 0.2640 0.2774 0.2439 0.2751 0.2291 
Early CRF 
Early LDCRF 
Mixture CRF 

0.2512 0.1615 
0.1638 0.0788 
0.2430 0.2027 

0.2384 0.1916 
0.1856 0.0669 
0.2245 0.1834 

0.2397 0.1764 
0.1648 0.0496 
0.2037 0.1576 

TABLE III 
NUMBER OF BACKCHANNEL FEEDBACKS PROVIDED BY EACH OF 

THE 11 LISTENERS IN OUR TEST SET AND THEIR CORRESPONDING 

UPA, PRECISION, RECALL AND F1 SCORE. 

num of upa Precision Recall f1 
feedbacks 
1 0.000 0.031 1.000 0.061 
1 0.000 0.050 1.000 0.095 
2 0.000 0.031 0.500 0.059 
4 0.000 0.077 0.500 0.133 
5 0.200 0.091 0.600 0.158 
8 0.375 0.104 0.625 0.178 
16 0.562 0.282 0.687 0.400 
21 0.238 0.269 0.333 0.298 
23 0.478 0.433 0.565 0.491 
25 0.320 0.286 0.720 0.409 
40 0.500 0.528 0.475 0.500 

weighted during this time, so that the influence 
of all other experts was reduced in the LMDE 
output. This difference of weighting shows that a 
different hidden state is active during this part of 
the sequence. 

MODEL ROBUSTNESS As mentioned in Sec-
tion VI-B, one of the hyper-parameter of our LMDE 
prediction model is the duration of backchannel 
cues used during training. To analyze sensitivity 
of our model to backchannel duration, we varied 
the duration from 500 seconds to 1500 seconds, 
and retrained our LMDE model and the baseline 
models. F1 and UPA values are given in Table IV. 
We observe a drop in the LMDE performance as 
we increase the duration. This was true for most of 
the other models, which suggests that it is better 
to train prediction models with more focused labels 
(i.e. narrow backchannel duration). It should also 

be noted that LMDE outperforms all other baseline 
models for all different durations. 

UPA ANALYSIS 

In our earlier experiments (see Figure 7, we have 
seen that the Visual and Lexical experts seem to 
perform about the same based on their F1 values 
(0.1914 and 0.1943), but their UPA values are quite 
different (0.1558 and 0.1131). Looking at their F1 

results, we would expect these two experts to have 
very similar Recall-Precision curves. However, their 
recall-precision curves in Figure 7 indicate that the 
Visual Expert is a better model than the Lexical 
Expert, which is already confirmed by our UPA 
measure. We can see another such example between 
the POS and Syntactic Experts. The F1 values 
indicate that POS Expert (0.1866) is a better model 
than the Syntactic Expert(0.1395). On the other 
hand, their UPA values(0.1122 and 0.1252) tell that 
these are similar models, which is also confirmed 
by their Precision-Recall curves in Figure 7. These 
observations suggest that our UPA measurement is 
a more representative measure than the F1 score. 

To analyze the variability among listeners, we 
have listed in Table III the individual test per-
formances and the number of backchannel feed-
back provided by each listener. One interesting 
conclusion derived from this result is that there is 
some correlation with the number of feedbacks and 
upa, precision, and f1 values. As the number of 
backchannels increase, these values increase as well. 

VIII. CONCLUSION 

In this paper, we addressed three main issues 
involved in building predictive models of human 
communicative behaviors. First, we introduced a 
new model called Latent Mixture of Discriminative 
Experts (LMDE) for multimodal data integration. 
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Many of the interactions between speech and ges-
ture happen at the sub-gesture or sub-word level. 
LMDE learns automatically the temporal relation-
ship between different modalities. Since, we train 
separate experts for each modality, LMDE is capa-
ble of improving the prediction performance even 
with limited amount of data. 

We evaluated our model on the task of nonverbal 
feedback prediction (e.g., head nod). Our exper-
iments confirm the importance of combining the 
five types of multimodal features: lexical, syntactic 
structure, POS, visual, and prosody. An important 
advantage of using our LMDE model is that it en-
ables easy interpretability of individual experts. As 
a second contribution, we have presented a sparse 
feature ranking scheme based on L1 regularization 
technique. Our third contribution is a new metric 
called User-adaptive Prediction Accuracy (UPA). 
This metric is particularly designed for evaluating 
prediction models, and we plan to apply it to other 
prediction models as well. LMDE is a generic model 
that can be applied to a wide range of problems. In 
the future, we want to apply it for other multimodal 
prediction tasks. 
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