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Abstract
We propose a joint filtering and factorization algorithm to re-
cover latent structure from noisy speech. We incorporate the
minimum variance distortionless response (MVDR) formula-
tion within the non-negative matrix factorization (NMF) frame-
work to derive a single, unified cost function for both filtering
and factorization. Minimizing this cost function jointly opti-
mizes three quantities – a filter that removes noise, a basis ma-
trix that captures latent structure in the data, and an activation
matrix that captures how the elements in the basis matrix can be
linearly combined to reconstruct input data. Results show that
the proposed algorithm recovers the speech basis matrix from
noisy speech significantly better than NMF alone or Wiener fil-
tering followed by NMF. Furthermore, PESQ scores show that
our algorithm is a viable choice for speech denoising.
Index Terms: NMF, MVDR, denoising, filtering.

1. Introduction
Observation of latent structure in data provides researchers with
a tool for data analysis and interpretation. Non-negative matrix
factorization (NMF) is a widely-used method for observing the
latent structure in a signal of interest. First proposed by Paatero
and Tapper [1, 2] and developed further by Lee and Seung [3],
NMF has been employed in a variety of areas, from analyzing
molecular structure [4] to enhancing noisy speech [5, 6]. The
drawback to NMF is that it is sensitive to outliers in the data, be-
cause the NMF formulation minimizes the square residual error.
Researchers have proposed several techniques to overcome this
drawback. Kong et al. derived update equations that minimize
the L2,1 norm rather than the Frobenius norm, and achieved
better image clustering results using the modified metric [7].
Another approach is to induce sparsity on the activation matrix
to control the number of basis elements that are simultaneously
activated, which can reduce the influence of outlier in the data
in the factorization process [8, 9]. We propose a method to fil-
ter the data during the factorization process to try to overcome
outliers and noise in the data.

We model the filter on the minimum variance distortion-
less response (MVDR) filter. This filter was first proposed by
Capon for beamforming in array signal processing [10], and
then later adapted for spectral estimation by Rao et al. [11, 12].
The MVDR filter computes a power spectrum that estimates the
spectral envelope of a signal with the property that it does not
distort the spectrum. It does so by computing a bank of fil-
ters, each of which try to pass a specific frequency of the signal
undistorted while suppressing the output at other frequencies.
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This formulation leads to a smoother estimate of the spectrum
that is less sensitive to noise compared to the Fourier transform
of the signal. This is a desirable property for improving the
performance of NMF when factoring noisy data. Thus, we will
rewrite the MVDR formulation and use it in the NMF frame-
work to perform filtering of the noisy data during the factoring
operation.

The paper is organized as follows. Section 2 describes the
NMF and MVDR algorithms and describes our proposed ap-
proach to combine these two methods to achieve joint filtering
and factorization of a noisy signal. Section 3 compares the per-
formance of the proposed algorithm to NMF as well as NMF
of a Wiener-filtered input. In Section 4, we discuss our experi-
ments and point out the conditions in which our algorithm per-
forms well and where it fails. Finally, we state our conclusions
and future work in Section 5.

2. Joint filtering–factorization formulation
NMF factors a M × N non-negative matrix V into a M × K
non-negative basis matrix W and K × N non-negative acti-
vation matrix H by minimizing ‖V − WH‖2F . Since all the
matrices are non-negative, WH is a parts-based representation
of V that discovers latent structure in the data. The columns
of W contain the fundamental units of this structure while H
describes the level of activation for each of these fundamental
units. For example, if V is a spectrogram of speech, then W will
capture the phones in that speech, while H tells how much each
phone was activated during the speech segment. However, if
there is noise in the speech, then it is possible for some columns
of W to capture properties of the noise, which can obscure the
speech structure.

To overcome noise in the data, we design a filter modeled
on the MVDR filter because it has the desirable property of pre-
serving salient peaks in the spectrum. Thus, it can be used to
preserve speech, which has spectral peaks at the formant fre-
quencies. Vaz et al. showed in [13] that you can relax the distor-
tionless constraint to improve the spectral estimation of vowels
in noisy conditions. The relaxed constraint prevents the MVDR
filter from preserving peaks outside the frequency range of in-
terest. We aim to incorporate the MVDR formulation within the
NMF framework to perform joint filtering and factorization of
noisy data. More specifically, we will use the data in V to de-
rive a set of filters that optimally estimates the spectrum of the
desired signal corrupted with noise, and use this filtered data to
calculate an improved basis matrix estimate. The MVDR for-
mula for a filter gk that passes a frequency ωk undistorted is

ĝk = argmin
gk

gH
k Rgk s.t.

∣∣∣eH(ωk)gk

∣∣∣ = 1, (1)
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where R is a Toeplitz autocorrelation matrix of the input signal

x[n] and e(ωk) =
[
1 ejωk · · · ejωk(N−1)

]T
. By relaxing the

distortionless constraint, as in [13], we can rewrite this as:

ĝk = argmin
gk

gH
k Rgk s.t.

∣∣∣eH(ωk)gk

∣∣∣ = αk, (2)

where αk is the desired frequency response at the kth frequency.
Using Parseval’s Theorem, we can write a roughly equivalent
formulation in the frequency domain as

Ĝk = argmin
Gk

‖Gk ⊗X‖22 s.t. GkkXk = αkXk, (3)

where Gk is the frequency response of gk, Gkk is the value of
the frequency response of Gk at the kth frequency, X is the fre-
quency response of the input data, and ⊗ denotes element-wise
multiplication. Equation 3 computes the frequency response
that has a pre-determined fixed value at the kth frequency and
has minimal amplitude at the other frequencies. For maximum
minimization, the frequency response that the other frequencies
should be 0. To jointly compute a bank of filters, we solve

Ĝ = argmin
G

‖G⊗X‖22 s.t. G⊗X = A⊗X, (4)

where A = [α1 α2 · · ·αM ]T is a vector of the desired fre-
quency response for all frequencies. To achieve joint filtering
and factoring, we incorporate Equation 4 in the NMF frame-
work. We formulate the cost function as

J = ‖G⊗ V −WH‖2F + λ1‖G⊗ (WH)‖2F+
λ2‖G⊗ (WH)−A⊗ (WH)‖2F ,

(5)

where V is the spectrogram of the input speech data. The first
term in the cost function performs NMF on the filtered input
data, λ1 controls the level of filtering, and λ2 controls the extent
to which G is constrained by the desired frequency response A.

2.1. Update equations
Computing the gradient of J with respect to G and setting it to
zero allows us to obtain a closed-form solution for the filter G:

G =
(WH)⊗ V + λ2A⊗ (WH)2

V 2 + (λ1 + λ2)(WH)2
, (6)

where the division and square operators are element-wise. Since
G depends on W and H , the filter is updated at every iteration
during the algorithm. The iterative update equations for the ba-
sis matrix W and time-activation matrix H are as follows:

Wab ←Wab + ηab
∂J

∂Wab

←Wab + ηab
( N∑
j=1

GajVajHbj −Wab

N∑
j=1

H2
bj−

λ1Wab

N∑
j=1

G2
ajH

2
bj − λ2Wab

N∑
j=1

(Gaj −Aaj)
2H2

bj

)

Gab ← Gab + γab
∂J

∂Gab

← Gab + γab
( M∑

i=1

GibVibWia −Hab

M∑
i=1

W 2
ia−

λ1Hab

M∑
i=1

G2
ibW

2
ia − λ2Hab

M∑
i=1

(Gib −Aib)
2W 2

ia

)
.

(7)

By setting

ηab =
Wab

Wab

N∑
j=1

H2
bj + λ1Wab

N∑
j=1

G2
ajH

2
bj+

λ2Wab

N∑
j=1

(Gaj −Aaj)
2H2

bj

γab =
Hab

Hab

M∑
i=1

W 2
ia + λ1Hab

M∑
i=1

G2
ibW

2
ia+

λ2Hab

M∑
i=1

(Gib −Aib)
2W 2

ia

,

(8)

one can obtain multiplicative updates for W and H as

W ←W ⊗ (G⊗ V )HT

WHHT + λ1W ⊗ C + λ2W ⊗D

H ← H ⊗ WT (G⊗ V )

WTWH + λ1E ⊗H + λ2F ⊗H
,

(9)

where the division is element-wise, and

Cab =(Ga,: ⊗Hb,:)(Ga,: ⊗Hb,:)
T

Dab =((Ga,: −Aa,:)⊗Hb,:)((Ga,: −Aa,:)⊗Hb,:)
T

(10)

Eab =(W :,a ⊗G:,b)
T (W :,a ⊗G:,b)

Fab =(W :,a ⊗ (G:,b −A:,b))
T (W :,a ⊗ (G:,b −A:,b)).

2.2. Alternative interpretation of G
Recall that our input data matrix V is computed as the spec-
trogram of the input speech signal x[n], or in other words, the
magnitude-squared of the discrete short-term Fourier transform
(STFT) of x[n], which may be expressed as

X(m,ω) =

∞∑
n=−∞

x[n]w[n−m]e−jωn, (11)

where w[n−m] is a L-length window function that “selects” L
samples of x[n] at shift m to be Fourier-transformed. If x[n] is a
noisy signal, then we can compute a filter gm[n] at each shift m
to optimally filter the noise for that windowed segment. Thus,
we can filter the windowed x[n] at shift m with gm[n] to get
a denoised signal ym[n]. The discrete-time Fourier transform
(DTFT) of ym[n] is

Y (m,ω) =

∞∑
n=−∞

ym[n]e−jωn

=

∞∑
n=−∞

(x[n]w[n−m] ∗ gm[n]) e−jωn. (12)

Using Parseval’s Theorem, we can rewrite the right hand side of
Equation 12 as

Y (m,ω) = X(m,ω)G(m,ω), (13)

where G(m,ω) is the DTFT of gm[n]. The right hand side
of Equation 13 is essentially the same as what is expressed in
Equation 4. Therefore, one can think of Equation 4 as comput-
ing an optimal filter gm[n] for a windowed segment of the noisy
signal.
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Figure 1: Mean correlation for different values of λ1 and λ2

with K = 40. This plot was generated with bicubic interpola-
tion.

3. Experiments and Results
3.1. Parameter settings
We first optimized the parameters λ1 and λ2 and the num-
ber of basis vectors K. We randomly sampled 40 sentences
from the MOCHA-TIMIT corpus [14], with 20 sentences spo-
ken by male speakers and the other 20 sentences spoken by
female speakers. The sentences are recorded in clean condi-
tions. We added white noise to these sentences at 5 dB SNR
level. We used our algorithm, with K fixed to 401, λ1 ∈
{0.2, 0.4, 0.6, 0.8}, and λ2 ∈ {0.5, 1, 1.5, 2}, to obtain basis
matrices for the clean and noisy signals. We calculated the cor-
relation between the basis matrix of the clean signal and the
basis matrix of its corresponding noisy version to find the opti-
mum λ1 and λ2. Figure 1 shows the mean of the correlations
for each combination of λ1 and λ2. The correlation between the
clean and noisy basis matrices is calculated using

ρ =
1

K

K∑
k=1

|W T
clean(:, k)W noisy(:, k)|

‖W clean(:, k)‖2‖W noisy(:, k)‖2 . (14)

Equation 14 computes the mean of the cosine of the angle be-
tween a vector in the clean basis and the corresponding vec-
tor in the noisy basis. The correlation measure ranges from 0
to 1, with higher values indicating better correlation between
the clean basis and noisy basis. Hence, the correlation is a
measure of the basis recovery of the noisy signal compared
to the clean signal. We sorted the columns of the basis ma-
trices in ascending order of center of gravity prior to comput-
ing the correlation to make the computation meaningful. Us-
ing the optimum λ1 and λ2, we re-ran our algorithm with
K ∈ {5, 10, 15, 20, 25, 30, 35, 40} to find the K that maxi-
mizes the correlation2. Figure 2 shows the mean of the corre-
lations for each K. The parameter settings that maximized the
correlation are λ1 = 0.8, λ2 = 1, and K = 25.

Since we are doing joint filtering and factorization of
speech, we want to set the filter constraint A to something
meaningful. Generally, the first three formants (ranging typi-
cally from 200 Hz to 3000 Hz [16]) are important for speech
intelligibility. Therefore, we set each column of A to be the
frequency response of a 24-order equiripple bandpass FIR fil-
ter with a passband of 150 Hz to 4500 Hz. We set the higher
part of the passband range to be higher than 3000 Hz to account

1An empirical initial choice, roughly equal to the number of phones
in English, so that we get a basis for each phone.

2We also considered using the Akaike Information Criterion or AIC
[15] to find the optimal K. However, this criterion is not be very use-
ful in our case as the model complexity term outweighs the data log-
likelihood term significantly. In other words, the criterion prefers less
complex models, i. e., smaller values of K.

Figure 2: Mean correlation for different values of K with λ1 =
0.8 and λ2 = 1.

for fricatives, which have high frequency components. We note,
however, that the setting of A is data-specific that enforces prior
knowledge about the data (in this case, typical frequency range
of speech) on G. If there is no prior knowledge, or the signal of
interest exists at all frequencies, then an allpass filter (matrix of
1s) can be used for A.

3.2. Evaluation
Using the optimum parameter settings, we compared the per-
formance of the proposed algorithm to standard NMF as well as
Wiener filter denoising followed by standard NMF (henceforth
Wiener filter + NMF). We randomly sampled a different set
of 100 sentences from the MOCHA-TIMIT corpus [14], with
50 sentences spoken by male speakers and the other 50 sen-
tences spoken by female speakers. We added white noise, pink
noise, speech babble, and factory floor noise from the NOISEX
database [17] to these sentences at 5 dB and 10 dB SNR levels.
For each noise and SNR level, we computed correlation for the
basis matrices returned by our algorithm, standard NMF, and
Wiener filter + NMF. Figure 3a shows the correlations for each
algorithm in each noise conditions. The values shown are the
average of the correlation values of the 100 sentences in each
noise condition. Figure 4 shows the basis matrices recovered
from the different noises at 10 dB SNR for one sentence.

To evaluate the performance of the filtering in the proposed
algorithm, we calculated the Perceptual Evaluation of Speech
Quality (PESQ) score of the denoised speech [18]. We re-
constructed the denoised speech from the recovered noisy ba-

sis and activation matrices by applying the formula V̂denoised =
Vnoisy ⊗ (WnoisyHnoisy) and then computing the inverse Fourier

transform of V̂denoised. Figure 3b shows the PESQ scores for the
reconstructed signals from our algorithm and standard NMF,
and the denoised signal from the Wiener filter in the different
noise conditions. As with the correlation metric, these scores
are averaged over the 100 sentences.

4. Discussion
We used the Wilcoxon rank-sum test, a non-parametric version
of the Student’s T-test, to evaluate the statistical significance of
our results. The correlation values of our proposed algorithm is
significantly better than NMF’s and Wiener filter + NMF’s cor-
relation values at the 99% level in all noise conditions. This sug-
gests that the basis matrices recovered from noisy data by our
algorithm better represents the underlying structure of the sig-
nal of interest compared to using standard NMF or filtering the
signal prior to performing NMF. This holds true across station-
ary and non-stationary noises, and wideband and narrowband
noises. Overall, it appears that the joint filtering and factoring
approach performs the best on wideband stationary noise, such
as white and pink noises. This is because the bandpass filter in
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(a) (b)

Figure 3: (a) Correlation scores and (b) PESQ scores for proposed algorithm, standard NMF, and Wiener filter + NMF in 5 dB (front)
and 10 dB (back) SNR levels.
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Figure 4: 25-component basis matrices for one TIMIT sentence recovered from the proposed algorithm (top row), NMF (middle row),
and Wiener filter + NMF (bottom row) under different noise conditions. The x-axis shows the basis component index and the y-axis
shows the frequency in Hertz.

A helps G to remove a lot of the out-of-band noise, while the
MVDR-like formulation in our algorithm helps G preserve the
speech, which appears as peaks in the passband region of the
spectrum. On the other hand, the proposed algorithm’s perfor-
mance degrades in narrowband noise. If the noise lies outside
the frequencies of interest, then it will be likely suppressed by
the stopband imposed by A. However, if the noise is within the
passband, there are no such guarantees.

From looking at the correlation scores in Figure 3a, one
can see that the joint filtering and factorization approach con-
sistently outperforms the filtering followed by factorization ap-
proach. This suggests that there are benefits to filtering dur-
ing the factorization operation rather than prior to factorization.
One such benefit is that the filter can adapt to the factored out-
puts W and H and reweight the frequency response to further
boost frequencies of interest while suppressing undesirable fre-
quencies. Another benefit is relatively consistent basis recovery
in different kinds of noise. One can see in Figure 4 that the
proposed algorithm returns similar basis matrices in the differ-
ent noise conditions more consistently as compared to the other
algorithms.

From the PESQ scores in Figure 3b, one can see that the
proposed algorithm’s denoising performance is on par with
NMF and Wiener filtering methods. The difference in PESQ
scores between our algorithm and NMF is statistically signifi-
cant only in the 10 dB noise conditions, but the Wiener filter

scores are significantly worse than our algorithm and NMF in
all noise conditions. This suggests that in addition to recover-
ing improved basis matrices with the proposed algorithm, one
can also reconstruct a denoised signal with a quality compara-
ble to other denoising methods. We note that the parameters
we used were optimized on the correlation metric, so a differ-
ent set of parameter could improve our algorithm’s denoising
performance.

5. Conclusion
We have proposed a joint filtering and factorization approach
for recovering latent structure in a signal of interest that is cor-
rupted with noise. Results show that the basis matrices recov-
ered by our proposed algorithm represent structural information
better than using NMF factorization alone or performing filter-
ing prior to NMF factorization. Furthermore, we found that the
quality of denoised signals reconstructed from our algorithm is
comparable to the quality when using NMF or Wiener filtering
for denoising, making our algorithm a viable alternative for sig-
nal denoising.

In the future, we would like to broaden the applicability of
our method by incorporating more generalized divergence met-
rics into the cost function. We will also explore probabilistic
extensions, similar to how probabilistic latent component anal-
ysis (PLCA) is a probabilistic interpretation of NMF [19].
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