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1 Introduction

In this report I will document the work I have done during my internship
at Institute for Creative Technologies from 22 January to 25 April under
supervision of Louis-Phillipe Morency. During this time I have done research
in the field of virtual humans, more specifically in the field of predicting and
producing listener backchannels. But more on that later.

I will start this report with a little background about the Institute for
Creative Technologies and the project group which I was part of. After this
the goal of my internship will be explained in Section 2. A general overview
of our approach of achieving the goals set in Section 2 will be explained in
Section 3. A more detailed description of the different steps taken will be
given in Section 4. Following on that the results of the conducted research
will be presented in Section 5. Finally a discussion of the work done, recom-
mendations for improvement and future work will be given in Section 6.

1.1 Institute for Creative Technologies

In 1999 the Institute for Creative Technologies (ICT) was established as part
of the University of Southern California [1]. The institute is funded by the
US Army to explore the possibilities of artificial intelligence, graphics and
immersion if applied to the field of learning through interactive media. This
research is done in collaboration with talent from Hollywood and the game
industry.

As said before their main goal is to apply interactive media to the field
of learning and training experiences. This is mostly done by designing in-
teractive environment in which the trainee can interact with a system as
though it was real life. Most of the previous approaches to these kind of en-
vironments were focused on drills and mechanics. Opposed to this approach,
ICT aims to enhance the human interactions and emotions of these systems.
These qualities are proven to have a deep impact on the learning of critical
thinking and decision-making skills.

1.2 Rapport Project

When you are designing a virtual human, not only his appearance is impor-
tant, also his behavior. If it behaves unnatural people immediately recognize
this and can become confused, which is not helpful when you implement
virtual humans in a learning environment.

One of the behavior patterns which occurs during natural conversation
is rapport. Rapport is the feeling of being on the same wavelength as the
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person to whom you are talking. The conversation is going smoothly and
you understand each other. The Rapport Project is trying to create this
feeling between a virtual human and an actual human being. One of the
main factors which contribute to this feeling is the feedback given during the
conversation. This feedback can be through visual observations as gestures,
eye gaze and facial expression as well as through speech. Therefor the project
tries to analyze all of these observations and derive a behavioral pattern from
it.

2 Goal

During autumn two French interns started working on a toolbox which is able
to analyze all the observations which could have an impact on the feeling of
rapport [2]. More specifically it tries to predict backchannels of a listener
based on the observations from the speaker. They did this under supervision
of Louis-Phillipe Morency. The toolbox analyzes data from a previously
conducted user study and through machine learning it finds a model which
predicts the backchannels.

My goal was to improve this toolbox in several ways. First of all there
was more data collected through the same user study which needed to be
prepared for use with the toolbox. Furthermore there were new analyzing
tools available which provided us with new observations which may have an
impact on backchannels, like eye gaze and automatic sound processing. This
new information needed to be prepared for use with the toolbox as well.

Since the ultimate goal of Louis-Phillipe Morency for this part of the
Rapport Project is to release the toolbox for general use in research, the
documentation and the structure needed to be improved as well. The toolbox
needed to be partially redesigned and several improvements in speed and
efficiency are needed.

Finally the evaluation of the results of the toolbox needed to be improved.
The performance measure which was implemented was not clear on the per-
formance of this approach opposed to previous approaches to the problem.

If all these goals are achieved a publication about the toolbox would be
the final goal of my internship at ICT.
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3 General Overview

The main goal of this project is to learn through machine learning a model
which can be used to generate listener feedback, based on observations of the
speaker. In this section the way such a model can be used will be explained
as well as a general description of the process needed to obtain such a model.

Just like real humans, virtual humans are provided with senses through
advancements in the fields of audio and video analysis. A lot of behavior is
determined by the things that happen around us and senses are the means
which provide us with this information. What the exact relations are be-
tween these observations and the displayed behavior is a complex problem.
Especially if subtle differences have a influence. Humans are trained through
experience to pick up on those subtle signals and display the appropiate
behavior automatically and without much thought. It makes you wonder
whether a computer can do the same.

One way this can be achieved is by using sequential probabilistic mod-
els, like Conditional Random Fields or Hidden Markov Models, to model
behavior. These kind of models take a sequence of observations as input
and return, based on previously learned rules, a sequence of probabilities. In
our case these probabilities will represent the probability that at that spe-
cific moment in time the listener would produce a backchannel, based on the
rules it learned from previously seen real life examples and the sequence of
observations it was provided.

To obtain such a model the following steps need to be taken.

e Data Collection: Through a user study collect real life examples
of conversations. From these conversation we are going to learn the
patterns which are hidden behind the behavior of the listener. This
step is explained in detail in Section 4.1.

e Feature Extraction: Extract from the real life conversations the in-
teresting information. We have recorded audio and video recordings
from the conversations. In this step we collect all the potentially rel-
evant information we can get from these recordings, such as which
words were spoken, in which way were they spoken and where was the
speaker looking while he spoke them. This step is explained in detail
in Section 4.2.

e Feature Encoding: Represent the collected information in a suitable
way. All the features we have collected from the recordings in the
previous step may have a different kind of effect on listening behavior.
It is hard for a sequential model to learn these different effects with a
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limited data set. Therefor we represent each feature in different ways
to model the different kind of effects a feature may have. This step is
explained in detail in Section 4.4.1.

e Feature Selection: Select from all the information available the most
useful. Providing a sequential model with all the information available
will not produce the best results and consumes too much time. By
doing a selection in advance we can eliminate less useful features such as
specific words and speed up the learning process. This step is explained
in detail in Section 4.6.

e Training of the Sequential Model: Train a sequential model with
this information. With the limited number of only potentially relevant
features we going to train our sequential model. This step is explained
in detail in Section 4.5.

e Performance Measure: Evaluate the trained sequential model by
measuring its performance. Finally we need to evaluate the model to
see whether the results we get are good or not. The way this is done
is explained in detail in Section 4.7.

4 Detailed Description

To be able to do all the steps for learning the patterns hidden behind the
behavior of the listener as discussed in Section 3 we developed a MATLAB
toolbox. This toolbox provides all the functionality you need to analyze real
life examples of human behavior and extract through machine learning the
hidden patterns behind them. In this section we will go through the steps in
more detail and explain through a case study of learning listener backchan-
nels the way the toolbox can be used and what factors need attention when
attacking a similar problem.

4.1 User Study

An important factor in trying to learn human behavior from real-life examples
is a well constructed user study. If your original data does not represent real
life you can not expect the toolbox to learn anything which is applicable in
real-life. Think carefully what you want to learn and which data you may
need to do this.

Data for our case study is drawn from a study of face-to-face narrative
discourse (’quasi-monologic’ storytelling). 104 subjects (67 women, 37 men)
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Figure 1: Setup for training and evaluation corpus. This study of face-to-
face narrative discourse (’quasi-monologic’ storytelling) included 104 sub-
jects. The speaker was instructed to retell the stories portrayed in two video
clips to the listener.

from the general Los Angeles area participated in this study. They were
recruited using Craigslist.com and were compensated $20 for one hour of
their participation. From the 52 sessions recorded, 1 was excluded from our
data set because of a missing video recording and another one was missing
an audio recording, making the total number of sessions used 50.

Participants in groups of two entered the laboratory and were told they
were participating in a study to evaluate a communicative technology. The
experimenter informed participants: ”The study we are doing here today is
to evaluate a communicative technology that is developed here. An example of
the communicative technology is a web-camera used to chat with your friends
and famaily.”

Participants completed a consent form and a pre-experiment question-
naire eliciting demographic and dispositional information. Subjects were
randomly assigned the role of speaker and listener. The speaker remained
in the computer room while the listener was led to a separate side room to
wait. The speaker then viewed a short segment of a video clip taken from
the Edge Training Systems, Inc. Sexual Harassment Awareness video. Two
video clips were selected and were merged into one video: The first, ”Cyber-
Stalker,” is about a woman at work who receives unwanted instant messages
from a colleague at work, and the second, ”"That’s an Order!”, is about a
man at work who is confronted by a female business associate, who asks him
for a foot massage in return for her business.

After the speaker finished viewing the video, the listener was led back
into the computer room, where the speaker was instructed to retell the stories
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portrayed in the clips to the listener. Elicited stories were approximately two
minutes in length on average. Speakers sat approximately 8 feet apart from
the listener. Finally, the experimenter led the speaker to a separate side room.
The speaker completed a post-questionnaire assessing their impressions of
the interaction while the listener remained in the room and spoke to the
camera what s/he had been told by the speaker. Participants were debriefed
individually and dismissed.

We collected synchronized multimodal data from each participant includ-
ing voice and upper-body movements. Both the speaker and listener wore
a lightweight headset with microphone. Three Panasonic PV-GS180 cam-
corders were used to videotape the experiment: one was placed in front the
speaker, one in front of the listener, and one was attached to the ceiling to
record both speaker and listener.

4.2 Feature Extraction

After recording all the signals you need, it is time to extract the features
from these signals you want to analyze. Providing the toolbox with just the
raw signals is not likely to give you good results. Some processing of these
signals is needed. This can either be done automatically using a toolbox
which can extract the features you need or done by hand, having coders
annotate different aspects of the signals. In our case study we used both
approaches. All the features we used and how we collected them is discussed
below. A feature is the binary representation of a specific event with a start
and end time. Having them in an unified representation makes the addition
of new features an easy step.

4.2.1 Automatic Prosodic Features

To extract the pitch and intensity from the speech signal from the speaker
audio recordings we had two toolboxes available, Aizula and LAUN. Aizula is
the toolbox originally designed by Ward and Tsukahara for their hand-crafted
rule based approach to detecting backchannels [3]. LAUN is a reimplemen-
tation of that code developed by Lamothe and Morales [4]. Both toolboxes
also provide several acoustic features derived from the raw pitch and inten-
sity. After analysis of the output of both toolboxes we decided to use the
Aizula toolbox, since this provided the most reliable results.
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The features the toolbox extracted were:

Downslopes in pitch

Regions of low pitch

Utterances

Fast drop or rise in intensity of speech

e Drop or rise in intensity of speech

Softly spoken words

Basically all of these features were thresholded versions of the raw pitch
and /or energy signals. By applying threshold we get binary signals indicating
whether the feature was happening at that specific time or not.

For our features the change in pitch was considered a downslope when
it dropped for at least 0.015 for at least 40 milliseconds. The pitch was
considered low when it was lower than the 26th percentile for at least 110
milliseconds. Utterances indicates whether someone is speaking for at least
700 milliseconds at that time. The following two features indicate a sudden
drop in intensity or a more gradual drop. The function of these features is
to be an automatic detection of pauses in the speech signal. Both represent
the same thing, but the first one uses a more discriminative threshold than
the other. The final features indicates whether a word is spoken softer than
80% of the average volume.

4.2.2 Transcriptions

Besides having the speech signal automatically analyzed, we also had human
coders annotate the narratives with several relevant features. All elicited
narratives were transcribed, including pauses, filled pauses (e.g. “um”), in-
complete and prolonged words. These transcriptions were double-checked by
a second transcriber. This provided us with the following extra lexical and
prosodic features:

All individual words (i.e., unigrams)

e Pause in speech (i.e., no speech)

Filled pause (e.g. “um”)

Lengthening of words (e.g., “I li::ke it”)
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e Emphasized or slowly uttered words (e.g., “ex_a_c_tly”)

Incomplete words (e.g., “jona-")

Words spoken with continuing intonation

Words spoken with falling intonation (e.g., end of an utterance)
e Words spoken with rising intonation (i.e., question mark)

Note that some of them provide the same information as some of the fea-
tures which we extracted with Aizula, for instance Pause in speech and Fast
drop or rise in intensity of speech. It never hurts to have more, slightly dif-
ferent versions of the same information. The toolbox is able to select the
version that works best for the specific task, in our chase the prediction of
backchannels.

4.2.3 Annotations

From the speaker video the eye gaze of the speaker was annotated on whether
he/she was looking at the listener. After a test on five sessions we decided
not to have a second annotator go through all the sessions, since the differ-
ences in annotations were insignificant. The feature we obtained from these
annotations is:

e Speaker looking at the listener

Now we have all the features we want to use for the prediction of backchan-
nels, but the most important information is still missing, namely our ground
truth on which we train and evaluate our system. In our case we want to
prediction backchannels. Since the listeners in our user study were instructed
not to speak, they only gave backchannels through head nods. So from the
listener video recording these head nods were annotated and then double-
checked by a second coder.

4.3 Data Importation

Before being able to use the features described in Section 4.2 they will have to
be imported into MATLAB and formatted to the same format. The format
which we use internally for all the features is displayed in Figure 2.

Action is a cell of matrices. For each session of the user study or each
instance of data you have there is a column in Action. For each feature
there is a row. The row corresponds to the row in Caption which contains
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Caption Action
Session 1 Session 2 Session 3 Session 4 Start End
Pause le—>] [85 by 2 matrix] [60 by 2 matrix] [33 by 2 matrix] [71 by 2 matrix] 7 | 223488 | 225036
/
Low pitch le—>1 [23 by 2 matrix] [22 by 2 matrix] [23 by 2 matrix] / 23.4864 | 23.7756
/
Eye gaze [<—>| [64 by 2 matrix] [15 by 2 matrix] / 25.7064 25.8604
“and" j«—>1 [10 by 2 matrix] [12 by 2 matrix] [15 by 2 matrix] [11 by 2 matrix] 29.2907 | 29.7487
“like" le—>] [2 by 2 matrix] [7 by 2 matrix] [5 by 2 matrix] \ 32.6847 | 33.1217
\
36.5018 | 36.6030
RealGestures \
A \
43.4906 | 43.6095
r Session Start End Type B \
\
1 17.7871 18.3671 1 \ 74.3230 | 74.4882
\
2 8.5712 9.5912 2 \ 77.0971 | 77.2665
\
2 15.5512 16.0912 1 \ 80.6023 | 80.8523
\
3 9.3481 11.4781 1 \ 85.4951 85.6124

Figure 2: Action is a cell of matrices. For each session of the user study
or each instance of data you have there is a column in Action. For each
feature there is a row. The row of corresponds to the row in ’Caption’ which
contains the name of this feature. In each cell in Action there is a matrix
containing the start and end times in seconds for each instance of the feature
that occurred during the session.

the name of this feature. In each cell in Action there is a matrix containing
the start and end times in seconds for each instance of the feature that
occurred during the session. So for instance during session 4 the word “and”
was spoken for the first time from 22.3468 to 22.5036 seconds and for the
second time from 23.4864 to 23.7756 seconds. If a certain feature does not
occur during a session the cell is empty.

In our case the annotations, collected in ELAN, can be imported with
the function readELAN, while the transcriptions, who were collected in Tran-
scriber, can be imported with the function readTrans. When you have new
features in another format, all you need to do is write a function which
imports your data into MATLAB in the format depicted in Figure 2.

Also depicted in Figure 2 is the format in which the gestures are stored
you are trying to predict, namely in the table RealGestures. This cell
contains for each instance the start and end time of the gesture, along with
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the session in which it occurred. Finally the definition of its type is stored.
For instance between 8.5712 and 9.5912 seconds in session 2 a gesture of type
2 (let’s say a head shake) has occurred. A little while later between 15.5512
and 16.0912 seconds in that same session a gesture of type 1 (let’s say a head
nod) occurred. This way all your different gestures can be stored in one cell
and will later be used as the labels you are trying to learn.

4.3.1 Timestamp Alignment

Because you are using different recordings it is important that you align them
to the same timeline. Not every recording started at exactly the same time.
You need to define a time 0.0 to which you align all your features to. In our
case we had a loud beep before the actual conversation started. We used
this beep as our time 0.0. To find the offset of each recording we looked at
the the time this beep occurred. All these offsets were used in our import
function to correct the times so that they are aligned to the same time line. A
more detailed description of the way we aligned our data using the functions
provided by the toolbox can be found in the Appendix, Section 7.1.

4.3.2 Normalizing Labels

As mentioned earlier maybe the most important thing are your ground truth
labels. If they do not represent what you want to learn, the toolbox will not
learn it. In our case we want to learn when to generate a backchannel. In
order to do that you want to know the most likely times at which point you
should start a backchannel. What this backchannel actually looks or sounds
like is not within the scope of our research. Our labels should represent this.

From the annotations there is a lot of variation in the backchannel signals.
Some people give short determined backchannels, while others give long ex-
tended backchannels. In our data the length of the backchannels varied from
0.16 to 7.73 seconds. We do not want this variation in our labels since it may
influence the performance of our models, while most of these differences are
caused by way that particular person generally produces backchannel and
not by the features we use in training. Therefore we changed every label to
a fixed length of 1 second, starting at the originally annotated start time.

4.4 Data Set Preparation

At this point we have imported all the features into the Action data structure
and aligned them to the same timeline. We are ready to use them. But how?
What do we want to learn from them? How could they effect our labels,
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Example of a speaker feature: —

Encoding templates:

-Binary: :

-Step (width=0.5, delay = 0.0): _fgle=  -Ramp (width=0.5, delay=0.0):
-Step (width=1.0, delay = 0.0): _[ouls -Ramp (width=1.0, delay=0.0):
-Step (width=0.5, delay = 0.5): —huls —  -Ramp (width=2.0, delay=0.0):
-Step (width=1.0, delay = 0.5): sl “RMP (Width=0.5, delay=1.0):
-Step (width=1.0, delay = 1.0): S -Ramp (width=1.0, delay=1.0):
-Step (width=1.0, delay = 1.0): e -Ramp (width=2.0, delay=1.0):

adsail

Figure 3: Encoding dictionary. This figure shows the different encoding
templates used by our prediction model. Each encoding templates were se-
lected to model different relationships between speaker features (e.g., a pause
or an intonation change) and listener backchannels. This encoding dictionary
gives a more powerful set of input features to the sequential probabilistic
model used by our prediction model.

in our case backchannels. Each feature may have a different way to affect
backchannels and we should somehow try to capture that. That is why we
use an encoding dictionary. This encoding dictionary is explained in the
following section.

4.4.1 Feature Encoding

The goal of the encoding dictionary is to propose a series of encoding tem-
plates that potentially capture the relationship between speaker features and
listener backchannel. The Figure 3 shows the 13 encoding templates used in
our experiments. These encoding templates were selected to represent a wide
range of ways that a speaker feature can influence the listener backchannel.
These encoding templates were also selected because they can easily be im-
plemented in real-time since the only needed information is the start time
of the speaker feature. Only the binary features also uses the end time. In
every case, no knowledge of the future is needed.
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The three main types of encoding templates we used are:

¢ Binary encoding This encoding is designed for speaker features which
influence on listener backchannel is constraint to the duration of the
speaker feature.

e Step function This encoding is a generalization of binary encoding by
adding two parameters: width of the encoded feature and delay between
the start of the feature and its encoded version. This encoding is useful
if the feature influence on backchannel is constant but with a certain
delay and duration.

e Ramp function This encoding linearly decreases for a set period of
time (i.e., width parameter). This encoding is useful if the feature
influence on backchannel is changing over time.

It is important to note that a feature can have an individual influence on
backchannel and /or a joint influence. An individual influence means the input
feature directly influences listener backchannel. For example, a long pause
can by itself trigger backchannel feedback from the listener. A joint influence
means that more than one feature is involved in triggering the feedback. For
example, saying the word “and” followed by a look back the listener can
trigger listener feedback. This also means that an feature may need to be
encoded more than one way since it may have a individual influence as well
as one or more joint influences.

The encoding of these actions is done in the function encodeActions. If
you want to use other encodings you can add your encoding to that function.

4.5 Model Training

Independent of which type of model you use for machine learning are the
steps you need to take to do proper machine learning. You cannot learn a
model with all the information you have at hand and then test it on the same
information. If you do so there is no way of knowing whether your learned
model is applicable on other sets or if it only fits the set you have used to
train it. This phenomenon is called over-fitting. It might be too specifically
trained for the data you collected.

To prevent this from happening the data is usually split into different
distinct sets. The largest part of your information is usually used for training
of the model. For the following steps, validation and testing, a smaller set
should suffice. What is done in each step is explained below.



4 DETAILED DESCRIPTION 16

Used for Testing Used for Training and Validation
A AL
r N~ N
Data spit 3 [ O
“ J
Y

50 Sessions

Figure 4: Our 50 sessions are split in 5 different ways. In every split 10
sessions are used for testing (red) and 40 sessions are used for training and
validation (blue).

e Training: During training you try different settings for the unknown
variable(s) in your model. For each of these settings you train a model
based on the sequences in your training set.

e Validation: During validation you select from the different settings
you have tried in the training step the one which performs best when
you apply the learned model on the validation set. So during this phase
you choose the settings for you model.

e Testing: Finally you test your model with the settings selected in the
validation step on the test set to assess the performance of your learned
model.

How we used these techniques in our approach is explained in the following
section.

4.5.1 Data Splits

In Figure 4 the way we split our data in test data (red) and training and
validation data (blue) is displayed. In every split we use 10 sessions for testing
and the other 40 for training and validation. We do this 5 times so that we
have test results for each of our sessions. The splits are done in such a way
that in every 10 sessions of the test data the total number of backchannels
in every split is about the same. This way we avoid a big difference between
splits which might cause big differences in validation performance compared
to test performance.

The training and validation data is also splitted into two different sets.
10 sessions are selected randomly from the set and used for validation. The
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other 30 are used for training. The best way to do validation would be to
use cross-validation, where you do this split 4 times so you use every sessions
once for validation and the other 3 times for training. We did not do this
for speed purposes, we only split it once. The toolbox does provide this
functionality though. How to enable this functionality is explained in the
Appendix, Section 7.2. During validation we select the best value for the
unknown parameters(s) in the used model (in our case Conditional Random
Fields (CRF), see Section 4.5.2). The CRF is trained with 6 different values
for the regularization term and based on the validation performance the best
value is selected for the model. These values were 10¥, k = —1..3.

4.5.2 Training Models

As mentioned in the previous section we mainly used Conditional Random
Fields (CRF) [5] as machine learning model. This is a discriminative proba-
bilistic model. Being discriminative, it tries to find the best way to differen-
tiate between cases where a backchannel is given by the listener from cases
where no backchannel is given. Some of the advantages it has over other
models are its speed and the applicability to our specific problem.

Besides CRF we also used Hidden Markov Models (HMM). Opposed to
the discriminative strategy of CRF this model applies a generative strategy.
This means that is tries the best way to generalize the moments where the
listener performs a backchannel without looking at the moments where the
listener does not. In Section 5 we will show that the strategy of CRF works
better for our problem, which does not mean it will always be the case. For
other problems the strategy of HMM may work better.

Besides these popular probabilistic models the toolbox also provides func-
tionality for Latent-Dynamic CRF, which is a variant which tries to combine
the best of both CRF and HMM.

4.5.3 Training Samples

For our training data set we do not actually use the whole sessions. The main
reason for this is that the model will be biased to not give a backchannel
because there are a lot more times were no backchannel is given as opposed
to times were there is a backchannel. Another advantage of sampling our
training data this way is that the size of our training data is reduced this
way, without losing much relevant information. This speeds up the training
process.

To resolve this we take samples from the original data as can be seen
in Figure 5. First we select all the instances with a label (lower part of
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Figure 5: From the original sequences (blue) the chunks are selected which
form our training data (red). We select as many training samples with a
label as without. This way the model is not biased in giving a backchannel
or not.

Figure 5). As you can see we do not select exactly the parts were the label is
happening, but also some part around it of varying length. This way we will
get the transitions, which are the most interesting parts. We vary the length
because otherwise the model might learn that after a certain time it is very
likely that a backchannel is happening regardless of which features there are.

Then we select just as many samples of varying length without backchan-
nels (upper part of Figure 5). The samples are picked randomly from the
original data. This way we ensure that our model is not biased in giving a
backchannel or not.

4.6 Feature Selection

Dealing with machine learning speed is always an issue. If you want to
train your model with all the features you have available, patience is a good
quality to have. The long waits can be avoided by filtering your features
before starting to use machine learning. Another reason to do this is the fact
that we do not have enough data to let the algorithm itself find the relevant
features. In the following section we will explain the steps we have taken to
reduce our original number of features of over 8000 to a more manageable
number.

4.6.1 Individual Selection

In our case we have more than 8000 features. Most of them are words which
are most likely too specific for our data and can not be used in a general
application of the learned model. The goal of the first step is to eliminate
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those features. This is done by looking at the performance of a feature by
itself, so called individual selection.

Individual feature selection is designed to do a pre-selection based on (1)
the statistical co-occurence of speaker features and listener backchannel, and
(2) the individual performance of each speaker feature when trained with any
encoding template and evaluated on a validation set.

The first step of individual selection looks at statistics of co-occurence
between backchannel instances and speaker features. The number of co-
occurence is equal to the number of time a listener backchannel instance
happened between the start time of the feature and up to 2 seconds after
it. This threshold was selected after analysis of the average co-occurence
histogram for all features. After this step the number of features is reduced
to 50. The function findTopFeatures executes this step in our toolbox.

The second step is to look at the best performance an individual feature
can reach when trained with any of the encoding templates in our dictionary.
We train for each feature a sequential model with each encoding from our
encoding dictionary. So if we have 50 features and 10 encodings we train 500
models. Because for each model only one feature with one encoding is used,
the training of these models takes hardly any time. For each feature we select
the encoding which performed best and after analyzing the performance of
each of the individual models we select a subset of the 12 best performing
features.

4.6.2 Iterative Selection

We now have a subset of the 12 best performing features. Simply training
a model with all these features with different encodings will still not give us
the best performance. We need to find the best combination of features and
encodings within these 12. Trying every combination is too time consuming
so we need to use a smarter strategy.

Figure 6 shows the first two iterations of our algorithm which aims to find
which features best complement each other. The algorithm starts with the
complete set of feature hypothesis (combination of a feature and an encoding)
and an empty set of best features. At each iteration, the best feature hypoth-
esis is selected and added to the best feature set. For each feature hypothesis,
a sequential model is trained and evaluated using the feature hypothesis and
all features previously selected in the best feature set. While the first itera-
tion of this process is really similar to the individual selection, every iteration
afterward will select a feature that best complement the current best features
set. Note that during the selection process, the same feature can be selected
more than once with different encodings, but it will only do so if the new
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Figure 6: This figure illustrates the feature encoding process using our en-
coding dictionary as well as two iterations of our iterative feature selection
algorithm. The goal of iterative feature selection is to find a subset of features
that best complement each other for prediction of listener backchannel.

encoding actually complements the previous features. The procedure can be
stopped when the validation performance starts decreasing.

4.7 Performance Measure

In the previous sections the term performance occurred several times. But
how do you actually measure this? What is the best strategy or measurement
for the performance of your model. In this section some of the different
approaches which are implemented in the toolbox will be discussed.

The output of a probabilistic model will typically look like Figure 7. Over
the course of time the model will produce a probability indicating a listener
should produce a backchannel or not, based on the input features from the
speaker. So how do you translate this into predictions?

4.7.1 Frame Based Predictions

One way to make the predictions is to threshold the curve and produce
backchannels during the time the probability is above the threshold. This
may result in unnaturally long backchannels. For instance if we would apply
this technique to the probability curve of Figure 7 with the threshold set at
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Figure 7: This figure illustrates the output of a probabilistic model. At each
time frame (the sampling rate is 30 Hz) there is a probability indicating
whether a listener backchannel should occur or not.

0.2, we would have a backchannel from approximately frame 1675 to frame
1800. With a sampling rate of 30Hz, this means approximately 4 seconds.
Furthermore the width of is not that significant for our study. We are mostly
interested in the start point of the gesture, although for other applications
the width may make more sense.

For this approach we calculate the error rates by comparing each frame
of the ground truth to the predictions.

4.7.2 Peak Based Predictions

Another way to make the prediction is to look at the peaks in the curve.
Especially the highest peaks are the most opportune moments to produce a
backchannel according to our model. So we can make our predictions from
the curve by finding all the peaks and than selecting only the peaks that
exceed our threshold as our predictions.

Since we only have one frame for each of our predictions we calculate the
error rates a little bit differently. We check whether the prediction made by
our model is during an actual backchannel. Since we have normalized our
gestures to one second, we use this value as the margin of error. The toolbox
provides functionality to widen or to narrow this margin though.
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2 - precision - recall
F="7 (1)

precision + recall
truepositives

Recall =

truepositives + falsenegatives
truepositives

Precision = (3)

truepositives + falsepositives

4.7.3 Expressiveness Level

In both the frame based and the peak based prediction a threshold is used.
This threshold can be seen as an expressiveness level. The lower your thresh-
old, the more backchannels will be produced and thus the more expressive
your listener is. This is one of the advantages of using a probabilistic model
for modeling this type of behavior as opposed to deterministic decision rule
based approaches used by other researchers [3, 6].

4.7.4 F-Measure

From the error rates calculated either on frame based or peak based predic-
tion we can compute the F-measure. As can be seen in Equation 1 this is the
weighted harmonic mean of precision and recall. Precision is the probability
that a backchannel produced by a listener in our test set was predicted by the
model, while recall is the probability that predicted backchannels correspond
to actual listener behavior. We use the same weight for both precision and
recall, so called F;.

4.7.5 Gesture Prediction Error

Besides the generally used F-Measure method to measure the performance,
we also came up with our own measurement. Because there is a lot of varia-
tion in the expressiveness of the recorded listener in our data set, it may not
be fair to use one threshold for the whole testing phase. A different threshold
for each listener, adjusted to his/her expressiveness level may give a more
accurate reflection of the performance of our model.

Since we know for each sequence the number of backchannels the listener
gave, we can ask our model the same number of predictions by selecting the
same number of highest peaks. So if the listener produced 4 backchannels
during the sequence of Figure 7, we will select the 4 peaks which exceed the
0.25 probability, and if the listener produced 11 backchannels we can select
all the peaks which exceed the 0.20 probability.
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Algorithm 1 Rule Based Approach of Ward and Tsukahara [3]
Upon detection of
P1: a region of pitch less than the 26th percentile pitch level and
P2: continuing for at least 100 milliseconds
P3: coming after at least 700 milliseconds of speech,
P4: providing you have not output backchannel feedback within the pre-
ceding 800 milliseconds,
P5: after 700 milliseconds wait,
you should produce backchannel feedback.

We can compare these predictions to the ground truth labels to get the
percentage we agree. We then calculate the weighted mean over the length
of each sequence as our final performance.

We have not yet formally evaluated this performance measure, so we
use Fy in the following result section. There are some more performance
measure that have been implemented. All these performance measures can
be calculated using the function ComputeError.

5 Results

We compared our prediction model with the rule based approach of Ward
and Tsukahara [3] since this method has been employed effectively in virtual
human systems and demonstrates clear subjective and behavioral improve-
ments for human/virtual human interaction [7]. We re-implemented their
rule based approach summarized in Algorithm 1. The two main features used
by this approach are low pitch regions and utterances (see Section 4.2.1). We
also compared our model with a “random” backchannel generator as defined
in [3]: randomly generate a backchannel cue every time conditions P3, P4
and P5 are true (see Algorithm 1). The frequency of the random predic-
tions was set to 60% which provided the best performance for this predictor,
although differences were small.

Table 1 shows a comparison of our prediction model with both approaches.
As can be seen, our prediction model outperforms both random and the rule
based approach of Ward and Tsukahara. It is important to remember that
a backchannel is correctly predicted if a detection happens during an actual
listener backchannel. Our goal being to objectively evaluate the performance
of our prediction model, we did not allow for an extra delay before or after
the actual listener backchannel. Our error criterion does not use any ex-
tra parameter (e.g., the time window for allowing delays before and/or after
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Results T-Test (p-value)
Fy Precision| Recall | Random| Ward
Our prediction model (with feature selection) | 0.2236 | 0.1862 [ 0.4106 | <0.0001 | 0.0020
Ward's rule-based approach [12] 0.1457 | 0.1381 0.2195 | 0.0571 -
Random 0.1018 | 0.1042 | 0.1250 -

Table 1: Comparison of our prediction model with previously published rule-
based system of Ward and Tsukahara [3]. By integrating the strengths of
a machine learning approach with multimodal speaker features and auto-
matic feature selection, our prediction model shows a statistically significant
improvement over the unimodal rule-based and random approaches.

the actual backchannel). This stricter criterion can explain the lower perfor-
mance of Ward and Tsukahara approach in Table 1 when compared with their
published results which used a time window of 500ms [3]. We performed an
one-tailed t-test comparing our prediction model to both random and Ward’s
approach over our 50 independent sessions. Our performance is significantly
higher than both random and the hand-crafted rule based approaches with
p-values comfortably below 0.01. The one-tailed t-test comparison between
Ward’s system and random shows that that difference is only marginally
significant.

Our prediction model uses two types of feature selections: individual
feature selection and iterative feature selection (see Section 77 for details).
It is very interesting to look at the features and encoding selected after both
processes:

e Pause using binary encoding

e Speaker looking at the listener using ramp encoding with a width of 2
seconds and a 1 second delay

e ’‘and’ using step encoding with a width 1 second and a delay of 0.5
seconds

o Speaker looking at the listener using binary encoding

The joint selection process stopped after 4 iterations, the optimal number
of iterations on the validation set. Note that Speaker looking at the listener
was selected twice with two different encodings. This reinforces the fact that
having different encodings of the same feature reveals different information
of a feature and is essential to getting high performance with this approach.
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Results T-Test
Fi Precision| Recall |(p-value)
Joint and individual feature selections 0.2236 | 0.1862 0.4106 0.1312
Only individual features selection 0.1928 | 0.1407 | 0.5145

Table 2: Compares the performance of our prediction model before and after
joint feature selection(see Section 2). We can see that joint feature selection
is an important part of our prediction model.

Results T-Test
F, Precision| Recall |(p-value)
Multimodal Features 0.1928 | 0.1407 | 0.5145 0.1454
Unimodal Features 0.1664 | 0.1398 | 0.3941

Table 3: Compares the performance of our prediction model with and without
the visual speaker feature (i.e., speaker looking at the listener). We can see
that the multimodal factor is an important part of our prediction model.

It is also interesting to see that our prediction algorithm outperform Ward
and Tsukahara without using their feature corresponding of low pitch.

In Table 2 we show that the addition joint feature selection improved per-
formance over individual feature selection alone. In the second case the se-
quential model was trained with all the 12 features returned by the individual
selection algorithm and every encoding templates from our dictionary. These
speaker features were: pauses, energy fast edges, lowness, speaker looking at
listener, “and”, vowel volume, energy edge, utterances, downslope, “like”,
falling intonations, rising intonations.

In Table 3 the importance of multimodality is showed. Both of these mod-
els were trained with the same 12 features described earlier, except that the
unimodal model did not include the Speaker looking at the listener feature.
Even though we only added one visual feature between the two models, the
performance of our prediction model increased by approximately 3%. This
result shows that multimodal speaker features is an important concept.
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6 Discussion and Future Work

Even though we already got good results as shown in Section 5 there is still
room for improvement in the toolbox. On the technical side there are some
memory issues when trying to perform large tasks at once. The latest version
of Matlab may solve this.

More interestingly are the improvements which can be made to the algo-
rithms. The automatic iterative feature selection as discussed in Section 4.6.2
works well, but the search is very linear at the moment. It is greedy in the
way that it only selects the best in each iteration and only explores that path,
although other features also increase the performance. One could imagine
that selecting the second best will provide a better solution in the long run.
A tree based search algorithm could provide this functionality.

Another point which may increase the performance is the selection of the
samples as discussed in Section 4.5.3. At this point the selection of samples
without backchannels is done at random over all the sequences. Since people
are different in their listening behavior one can not know for sure that a
sample without a backchannel is a bad time to provide a backchannel. This
particular listener did not nod his head, but another person might have done
it. To be more certain that your samples without backchannel are valid,
selecting more of them from sequences where the listener provided a lot of
backchannels would be a good strategy. The listener already provided a
backchannel at almost every opportune moment. The instances where he did
not, are probably a bad time to do it, so you should use those moments as
negative samples.

By designing a new user study you can also solve the previously discussed
problem. The problem with the current data set is the individual differences
between persons. The amount of backchannels provided can be a difference in
the behavior of the listener, but also the engagement of the speaker may have
had an effect on the expressiveness of the listener. It is hard to generalize
from such a diffuse data set. Also when measuring your performance you
can not know for sure if a prediction made by the model is really a bad one.
Maybe another person would have performed a backchannel at that moment.

The user study which may solve these problems may look like this. The
same video screen set up is used as in the current study. Instead of having a
different person as the speaker every time, a prerecorded video of a speaker
is played. It is important that the listener believes it is not a video, but a
direct live stream and the speaker in the video can see the listener. Several
listeners, for instance ten, will interact with the same speaker using the same
intonations and so on. By having more than one of those speaker videos you
can create a large data set.
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With this data set you can compare the different listeners which inter-
acted with the same video. You can see at which point nobody provided a
backchannel and maybe even more interesting the times at which everybody
did. You really want your model to predict those instances correctly, so this
information can also be used in evaluation stage.

With the gesture prediction error (GPE) as discussed in Section 4.7.5 we
tried to simulate this. An official evaluation of this performance measure
is not performed yet and we mostly used the F; measure at this point, but
maybe GPE is a better way to measure the performance of your model with
the data set currently available. Also we use the same weight for precision
as for recall when calculating the F-measure. An evaluation should be made
about whether precision or recall is the most important factor to optimize
and adjust the weight of both factors accordingly.

Beside improvements to the toolbox there are still many options to ex-
plore available using the toolbox. We only applied it to the general case of
backchannels. There are more than one type of backchannel. You have the
continuation signal, but also a conformation signal. Each of those backchan-
nels have a different application and presumably a different set of triggers.
Learning a different model for each of those backchannel types would be a
good next step in exploring backchannels with this toolbox.

Also the addition of more observations and encodings will hopefully in-
crease the performance. One could think of gestures or facial expression of
the speaker as new multimodal features. But the toolbox provides a lot more
possibilities for other research as well.
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7 Appendix

7.1 Aligning the Recordings

The following section is a manual of how we used the alignVideo and
alignWav functions of the toolbox to align the different recordings to the
same timeline.

7.1.1 Available Recordings

From the face to face conversations recordings were made using a digital
video camera. One is made of the speaker and one recording is made of the
listener. Each sequence started recording and after a few seconds varying
from 1 tot 22 a beep is heard which can be used to align them to the same
timeline. The speaker is asked to put on a head set which records the speech.
After approximately 2 seconds the beep sound which can also be heard in
the video sequences is played.

7.1.2 Choosing Time 0

The first thing we need to do is decide which time we take as our time 0. We
have different data sources and each of those has its own timeline. To align
them to the same timeline we choose the start of the beep as time 0. This
moment can be found in each of our data sources at our disposal.

7.1.3 Aligning Video Recordings with alignVideo

The first one, alignVideo, is designed for finding the beep in the video
sequences. It automatically finds the first time the sound level reaches a
threshold handed as a parameter to the function and returns this time in
seconds. By default this parameter is set to 0.95 which is reached by most
of the video sequences. You may want to lower this threshold if the function
returns -1, which means the sound level never reached the threshold, or if
the returned value is very high (above 25 seconds), meaning the threshold
is reached late in the video. 0.60 seemed like a good value of the threshold
parameter for our video recordings. It is also good to first play the video to
get a rough estimate of which value the function should return.

7.1.4 Aligning Audio or Video Recordings with alignWav

The alignVideo function works fine for the video sequences, but didn’t per-
form that well on the .wav files. Since the source of the sound of the beep
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Figure 8: This is the interface of the alignWav function. In blue you can see
the wave curve of the first 5 seconds of the audio recording. In red is the
cursor which moves along the wave curve as you play the audio.

is further away from the microphone than the mouth of the speaker, the
beep is usually softer than the speech. Also the sound in general is softer.
You have to set the threshold to 0.01 to have a chance to detect the beep
using alignVideo, but usually it detects some breathing happening before
the beep instead. Another function was thus written to align those, called
alignWav. This function semi-automatically detects the beep using the fol-
lowing approach. In blue it displays the wave curve of the first 5 seconds of
the .wav file as can be seen in Figure 8. At the same time the audio is played
and a cursor (in red) follows the sound across the curve. This way the user
can identify the curve of the beep. The user now has three options:

e Play the same segment of the video again (hit the r’ button on the
keyboard)

e Play the next segment of the video (hit any other key on the keyboard)

e Identify the curve of the beep (by left-clicking on the figure just before
the curve which represents the beep)

When the user didn’t hear the exact location of the beep or has any doubts
he/she can choose to replay the same segment by hitting the 'r’ button on
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the keyboard. This will replay the same segment along with the cursor like
it did the first time.

If the user is sure the beep wasn’t in the first segment it can go to the
next segment to see if it is in that one. If the beep is at about the border
between these segments it is advised to change the length of the window
which is used for segmentation to make sure you pair the right curve to the
beep. This can be done by passing this value as an input parameter.

Finally if the user has identified the curve representing the beep he/she
can click just before the curve on the figure. The function will begin searching
for the first time the sound level exceeds the threshold which is by default
0.01. Again this value can be tweaked by passing a different value as an
input parameter. The function finally displays a green line at the time it has
detected the beginning of the beep.

This function can actually be used for aligning the videos as well if the
user prefers. Keep in mind though that since the audio of the videos is stereo
the function runs a little slow. It can of course also be used for finding the
exact timing of other sounds than the beep.

7.1.5 Storing the Offsets

The timings obtained by the two functions are collected in a matrix called
OffsetDing. This matrix 165 rows and four columns. The 165 rows cor-
respond to the session number of each recording session. The four columns
contain the offset information needed to align the various data sources in
such a way that time 0 is when the beep starts. Keep in mind that in some
cases a negative number might be required if the beep isn’t included in the
data source, which occurs in some occasions of the headphone source. If this
happens the start of speech, obtained by using alignWav on the headphone
file and the speaker video file, can be used to calculate the offset.

In the first column the offset of the speaker video is stored. The second
column contains the offset of the listener video recording and the third one
has the offset of the audio recording of the speaker. The final column contains
the offset for ELVIN. It is basically the type of notification is used; the ding
which has no delay (earlier sessions) or the beep which has 2 seconds delay.
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7.2 Variables in paramsdata

Within the toolbox there are a lot of variables that can be influenced. All
of these variables are combined in a MATLAB struct called paramsData. In
this section all the fields of paramsdata will be explained.

e randSeed Every time we use random we want to be able to repeat the
process. Therefore we initialize the random generator with this value.

The following fields are settings for the creation of the data splits as
discussed in Section 4.5.1 which is done in the function createDataSplits.

e NFold The number of times you want to split the data. In Figure 4
was set to 5.

e validLabels The labels of the ground truth feature which are valid.
In our case we only had 2 labels, 0 and 1. 1 indicates a backchannel
from the listener is happening, while 0 indicates no backchannel is
happening. This way you can identify which labels you want to use

if you have more labels, for instance a different label for the different
kind of backchannels.

e bLeaveOneOut This number indicates the number of sequence which
are used for validation as discussed in Section 4.5.1. In our case this
value was set to 10.

The following fields are settings for the sampling process as discussed in
Section 4.5.3 which is done in the function chunkTrainData.

e rangeSizeChunks These two values indicate the range of the length
in frames the selected samples without backchannels (label 0). In our
case these values were between 30 and 50 frames.

e timeBorderGestures These two values indicate the length in frames
of the transition phase (the frames before the label becomes 1) which
is added to the samples with backchannels (label 1). In our case these
values were between 3 and 60 frames.

e trainNbSeqsOnlyOneLabel Indicates for each label how many sam-
ples are selected without a transition phase during training. In our case
the values was set to [500 0], which means 500 samples with only label
0 were selected and 0 samples with only label 1 for training.
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e trainNbSeqsWithThisLabel Indicates for each label how many sam-
ples are selected with a transition phase during training. In our case
the values was set to [0 500], which means 0 samples with label 0 were
selected with a transition phase and 500 samples with label 1 were
selected with a transition phase for training.

e testNbSeqsOnlyOneLabel Indicates for each label how many sam-
ples are selected without a transition phase during testing. We did not
use the sampling in the testing phase.

e testNbSeqsWithThisLabel Indicates for each label how many sam-
ples are selected with a transition phase during testing. We did not use
the sampling in the testing phase.

e validateNbSeqsOnlyOneLabel Indicates for each label how many
samples are selected without a transition phase during validation. We
did not use the sampling in the validation phase.

¢ validateNbSeqsWithThisLabel Indicates for each label how many
samples are selected with a transition phase during validation. We did
not use the sampling in the validation phase.



