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Abstract

This work studies the problem of information divergence estimation based on data-dependent partitions. A histogram-
based data-dependent estimate is proposed adopting a version of Barron-type histogram-based estimate. The main
result is the stipulation of sufficient conditions on the partition scheme to make the estimate strongly consistent. Fur-
thermore, when the distributions are equipped with density functions in ( d,B( d)), we obtain sufficient conditions
that guarantee a density-free strongly consistent information divergence estimate. In this context, the result is pre-
sented for two emblematic partition schemes: the statistically equivalent blocks (Gessaman’s data-driven partition)
and data-dependent tree-structured vector quantization (TSVQ).
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1. Introduction

Let P and Q be probability measures defined on ( d,B( d)), the finite dimensional Euclidean space equipped
with the Borel sigma field, then the information divergence of P with respect to Q is expressed by (see, eg., Kullback
(1958); Gray (1990)),

D(P||Q) = sup
π∈Q

�

A∈π

P(A) · log
P(A)
Q(A)

, (1)

where Q denotes the collection of finite measurable partitions of d. For this quantity to be finite, it is necessary that
P � Q (Kullback, 1958), which makes ∂P∂Q (x) the Radon-Nicodym (RN) derivative of P with respect to Q well defined.
Considering the important case when P and Q are absolutely continuous with respect to the Lebesgue measure λ, i.e.,
P � λ and Q � λ, it is sometime convenient to use the following expression (see, Gray (1990)),

D(P||Q) =
�

d
p(x) · log

p(x)
q(x)
λ(∂x), (2)

where p(x) = ∂P∂λ (x) and q(x) = ∂Q∂λ (x) are the density functions of P and Q, respectively. The information divergence,
also known Kullback-Leibler (KL) divergence or relative entropy, is a well known fundamental quantity in statistics
and information theory (Kullback, 1958; Cover and Thomas, 1991; Gray, 1990). In statistics, KL divergence expresses
the average information per observation to discriminate between two probabilistic models (Kullback, 1958). In large
deviations, it characterizes the rate function, which reflects the exponential decay of convergence of empirical mea-
sures to their probabilities, Sanov’s Theorem (see, eg., den Hollander (2000)), and the rate of decay of the probability
of error in a binary hypothesis testing problem, Stein’s Lemma (see Cover and Thomas (1991)).

On the application side, mainly because of its role as a discriminative measure (Kullback, 1958), the information
divergence has found wide use in statistical learning-decision problems. It has been adopted as an optimality criterion
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for parameter re-estimation (Singer and Warmuth, 1996; Juang and Rabiner, 1985), as a similarity measure for mod-
eling clustering and indexing (Vasconcelos, 2004b, 2000; Do and Vetterli, 2002), as an indicator to quantify the effect
of estimation error in a Bayes decision approach (Vasconcelos, 2004a; Silva and Narayanan, 2009), to quantify the
approximation error of vector quantization in statistical hypothesis testing (Jain et al., 2002; Poor and Tomas, 1977)
and as fidelity indicator for feature selection and feature extraction (Saito and Coifman, 1994; Novovicova et al.,
1996). These learning scenarios do not have access to the distributions and consequently they rely on empirical data
to estimate this quantity. A standard setting considers X1, ..Xn and Y1, ..,Yn to be independent and identically dis-
tributed (i.i.d.) realizations of P and Q, respectively. Then the problem becomes finding a distribution-free function
or estimator D̂(·) from d·n × d·n to such that D̂(X1, ..Xn,Y1, ..,Yn) converges to D(P||Q) almost surely as n tends to
infinity (strong consistency).

In this regard, the closely related problem of differential entropy estimation has been systematically studied for dis-
tributions equipped with densities, adopting for instance non-parametric histogram-based, kernel-based and nearest-
neighbor techniques. In these settings, the conditions for density-free strong consistency are well understood. An
excellent review can be found in Beirlant et al. (1997) and some recent contributions in Darbellay and Vajda (1999);
Paninski (2003, 2008). Another closely related problem is the non-parametric density estimation, as the KL diver-
gence is a functional of two probability measures. In this context the classical problem of strong consistency in L1
sense is well understood (Lugosi and Nobel, 1996; Devroye and Györfi, 1985). More recent work on non-parametric
distribution estimation considers consistency under stronger notions (Györfi and van der Meulen, 1994; Barron et al.,
1992; Györfi et al., 1998; Berlinet et al., 1998). In particular the seminal work of Barron et al. (1992) proposed varia-
tions of classical histogram-based density estimates to achieve consistency in two types of information divergences,
motivated by the learning problem on universal lossy compression. This approach has been extended by Györfi et al.
(1998) and Berlinet et al. (1998) for the problem of consistency in χ2-divergence and in Csiszár’s φ-divergence (where
the information divergence is a particular case), respectively. Although the two aforementioned research lines have
been systematically explored, to the best of our knowledge, their estimates and results do not extend directly to the
consistent estimation of information divergence. The main reason is that the learning setting here is different. On
the one hand, we need to consider finite samples from the two distributions, P and Q, while on the other, we need to
infer the distributions from the data in a way that is appropriate to the particular nature of the divergence information
functional. However because of their inherent connections, the extensions of techniques and results from distribution
and differential entropy estimation to KL divergence estimation are important directions to explore.

In that spirit, there have been some recent contributions, in particular for P and Q defined in ( d,B( d)) and
both absolutely continuous with respect to the Lebesgue measure λ. The first important reference in this regard is
from Wang et al. (2005), who proposed a histogram-based divergence estimation based on partitioning the space in
statistically equivalent intervals. Sufficient conditions on the proposed data-driven partition were stipulated to guaran-
tee strong consistency. Silva and Narayanan (2007) took this direction a step further finding consistency conditions
for a general family of data-driven partition schemes. The main limitation of these two works is that they are only
valid when the sample points of P and Q are taken to infinity in a specific order, one after the other, which limits
their applicability. Alternatively, Nguyen et al. (2007) proposed a variational approach to estimate the divergence
(see, Gray (1990); den Hollander (2000)). Under certain approximation assumptions and smoothness condition on
the likelihood-ratio, strong consistency and asymptotic rate of convergence for the proposed estimate were obtained.
More recently, Wang et al. (2009) proposed nearest-neighbor techniques, where mean-square consistency was the
main focus of analysis.

In this work we present contributions in the area of histogram-based information divergence estimation, in particu-
lar studying data-driven partitions schemes (Lugosi and Nobel, 1996; Nobel, 1996; Devroye et al., 1996; Darbellay
and Vajda, 1999). We have significantly improved the initial findings in (Wang et al., 2005; Silva and Narayanan,
2007). We reformulate the problem, propose new estimates and results to address properly the case when the samples
of P and Q jointly tend to infinity, and furthermore, report new practical implications by getting concrete density-free
KL divergence estimates from previously unexplored multivariate data-driven partition schemes.

Specifically in Section 3, we present the general histogram-based estimation scheme. This scheme quantizes the
space function of the data and constructs a version of the Barron-type of histogram-based density estimate (Barron
et al., 1992) as a way to approximate δPδQ (x), which can be considered the sufficient statistics for the problem. Then
assuming that D(P||Q) < ∞, Theorem 4 in Section 5 characterizes sufficient conditions on the partitions scheme to
make the estimate strongly consistent. This result does not require P and Q to be absolutely continuous with respect
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to λ, and furthermore, it is valid for distributions defined on a general measurable space (X,S). Concerning the
approximation error presented in Section 4, we adopt Csiszár’s notion of asymptotically sufficient partitions (Csiszár,
1967, 1973), and when P � λ and Q � λ, Theorem 2 presents a condition for this error to vanish based on a shrinking
cell property for data-driven partitions (Lugosi and Nobel, 1996; Breiman et al., 1984; Devroye et al., 1996). For the
estimation error, in Section 5, we use the Vapnik-Chervonenkis (VC) inequality (Vapnik and Chervonenkis, 1971;
Vapnik, 1998) (see also Devroye et al. (1996); Lugosi and Nobel (1996)) and characterize a concentration result on
the empirical distributions, Lemma 3, that makes this error tend to zero as n tend to infinity with probability one.

In the second part of this work, we explore applications of our main result. In Section 7 consistency is demon-
strated for multivariate statistically equivalent blocks — Gessaman’s data-dependent partition (Gessaman, 1970),
while Section 8 shows equivalent results for tree-structured vector quantizations (TSVQ) (Devroye et al., 1996;
Breiman et al., 1984; Nobel, 2002). Importantly in both settings, a range of pamarametric values are characterized to
obtain a family of density-free consistent estimates. The main challenge faced in deriving these results, is to prove
the adopted shrinking cell condition, which is achieved from the adaptive nature of the data-driven partition schemes.
Finally, some of the proofs and derivations are organized in the appendix.

2. Preliminaries

This section provides notation and key results used for the rest of paper.

2.1. Complexity Notions for Partitions
Let (X,S) be a measurable space, and let us denote by Q the collection of finite measurable partitions for X.

ConsideringA ⊂ Q, the maximum cell count ofA is given by (see Devroye et al. (1996))

M(A) = sup
π∈A
|π| , (3)

where |π| denotes the number of cells of π. In addition, a notion of combinatorial complexity forA can be introduced
(Lugosi and Nobel, 1996; Devroye et al., 1996). Let us consider a finite length sequence xn

1 = (x1, .., xn) ∈ Xn, and the
induced set by {x1, .., xn}, then we can define ∆(A, x1, .., xn) as the number of different partitions of {x1, .., xn} induced
by the elements ofA, i.e.,

∆(A, x1, .., xn) = |{{x1, .., xn} ∩ π : π ∈ A}| , (4)

where {x1, .., xn} ∩ π is a short hand for {{x1, .., xn} ∩ A : A ∈ π}. Then the growth function of A is given by (Lugosi
and Nobel, 1996)

∆∗n(A) = max
xn

1∈X
n
∆(A, x1, .., xn). (5)

2.2. Partition Schemes
A n-sample partition rule πn is a mapping fromXn to the space of finite-measurable partitions forX, i.e., Q, where

a partition scheme for X is the countable collection of n-sample partitions rules Π = {π1, π2, ...}. Let Π be an arbitrary
partition scheme for X, then for every partition rule πn ∈ Π we can define its associated collection of measurable
partitions (Lugosi and Nobel, 1996) by

An = {πn(x1, .., xn) : (x1, .., xn) ∈ Xn
} . (6)

In this context, for a given n-sample partition rule πn and a sequence (x1, .., xn) ∈ Xn, πn(x|x1, .., xn) denotes the
mapping from any point x ∈ X to its unique cell in πn(x1, .., xn), such that x ∈ πn(x|x1, .., xn).
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2.3. Vapnik-Chervonenkis Inequalities
Let X1, X2, .., Xn be i.i.d. realizations of a random variable with values in X and with probability measure P on

(X,S). Let A be a collection of measurable partitions for X, where ∀π ∈ A, ∀B ∈ π we can obtain the classical
empirical distribution by

Pn(B) =
1
n

n�

i=1
B(Xi), (7)

with B(x) being the indicator function of the set B. In this context, the following concentration inequality can be
stated.

LEMMA 1. (Lugosi and Nobel, 1996) ∀n ∈ , ∀� > 0,

sup
π∈A

�

A∈π

|Pn(A) − P(A)| > �

 ≤ 4∆∗2n(A)2M(A) exp−

n�2
32 ,

where refers to the process distribution of X1, X2, · · · .

The following is a simple extension for the case of mixture distributions.

LEMMA 2. Let X1, .., Xn and Y1, ..,Yn be i.i.d. realizations driven by P and Q respectively in (X,S) and inducing
the empirical distributions Pn and Qn, respectively. Then ∀a ∈ [0, 1], ∀� > 0 and ∀n > 0,


sup
π∈A

�

A∈π

���µa
n(A) − µa(A)

��� > �

 ≤ 8∆∗2n(A)2M(A) exp−

n�2
128 ,

where µa(A) = (1 − a) · P(A) + a · Q(A) and µa
n(A) = (1 − a) · Pn(A) + a · Qn(A) are the mixing and empirical mixing

distributions. (Derivation presented in Appendix A).

These results are versions of the celebrated Vapnik-Chervonenkis inequality (Vapnik and Chervonenkis, 1971;
Vapnik, 1998). These inequalities bound the deviation of the empirical distribution with respect to the probability,
in the total variational distance sense, uniformly in the collection of partitions A. Remarkably these bounds are
distribution free and functions of the aforementioned complexity notions forA.

2.4. Asymptotic Relationships
Let (an)n∈ and (bn)n∈ be two sequences of non-negative real numbers. We say that (an)n∈ dominates (bn)n∈ ,

denoted by (bn) � (an) (or alternatively (bn) is O(an)), if there exists C > 0 and k ∈ such that bn ≤ C · an ∀n ≥ k.
We say that (bn)n∈ and (an)n∈ (both strictly positive) are asymptotically equivalent, denoted by (bn) ≈ (an), if there
exits C > 0 such that limn→∞

an
bn
= C, and on the other hand, we say that (an) is o(bn) if limn→∞

an
bn
= 0.

3. The Data-Driven Estimator

Let P and Q be probability measures in ( d,B( d)) such that D(P||Q) < ∞. For the learning problem let us
consider X1, .., Xn and Y1, ..,Yn i.i.d. realizations of random variables in d and driven by P and Q, respectively, and
let Π = {π1, π2, · · · } be a data-driven partition scheme for d. We propose a plug-in histogram-based estimate for the
information divergence of the form,

Dπn(Y1,..,Yn)(P∗n||Qn) ≡
�

A∈πn(Y1,..,Yn)

P∗n(A) · log
P∗n(A)
Qn(A)

, (8)

where P∗n is a Barron type of empirical measure (Barron et al., 1992) given by,

P∗n(A) ≡ (1 − an) · Pn(A) + an · Qn(A), (9)
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with (an)n∈ a real sequence with values in [0, 1], and Pn and Qn the empirical measures in (7) induced by X1, .., Xn
and Y1, ..,Yn, respectively, and restricted to the sub-sigma field σ(πn(Y1, ..,Yn)) ⊂ B( d)1. Note that the role of the
data-driven partition is to restrict the domain where we construct the empirical distributions, and consequently the
sub-sigma field where the information divergence is defined (see, eg., Gray (1990)).

Considering that Dπn(Y1,..,Yn)(P∗n||Qn) is a measurable function of X1, .., Xn and Y1, ..,Yn, we are interested in studying
the strong — with respect to empirical process {(Xn,Yn), n ∈ }– consistency of Dπn(Y1,..,Yn)(P∗n||Qn). The proposed
construction was based on the analysis of the following estimation-approximation error inequality,

���Dπn(Y1,..,Yn)(P∗n||Qn) − D(P||Q)
��� ≤
���Dπn(Y1,..,Yn)(P∗n||Qn) − Dπn(Y1,..,Yn)(P̃n||Q)

��� (10)

+
���Dπn(Y1,..,Yn)(P̃n||Q) − D(P||Q)

��� , (11)

where P̃n(A) ≡ (1 − an) · P(A) + an · Q(A), ∀A ∈ πn(Yn
1 ). Concerning the estimation error in (10), we use two

techniques to bound the deviation of the divergence functional in (8) when considering empirical measures. The first
is a condition on the partition scheme Π, where we impose that Qn(A) ≥ kn

n , ∀A ∈ σ(πn(Y1, ..,Yn)), (kn) representing
the critical empirical mass. The second is due to Barron et al. (1992) which is a smoothing technique (9) for estimating
the Radon-Nicodym derivative ∂P∂Q (x) when P � Q, which is given in our setting considering that D(P||Q) < ∞. Both
design sequences (an) and (kn) are strictly positive and provide a way of ensuring a minimum probability mass for
both P∗n and Qn in ( d,σ(πn(Yn

1 ))), which in conjunction with the distribution free concentration inequalities in Section
2.3, offer the key elements to bound the estimation error. Concerning the approximation error in (11), we have chosen
the data-dependent partition as only a function of the i.i.d. realizations associated with the reference measure Q. This
partial information choice is justified by the fact that P � Q (details are presented in Section 4).

For the following sections the process distributions of Y1,Y2, · · · and the joint process (X1,Y1), (X2,Y2), · · · will be
denoted by and , respectively, and their marginal probabilities restricted to finite blocks, i.e. Yn

1 ≡ (Y1, ..,Yn) and
Zn

1 ≡ ((X1,Y1), ..., (Xn,Yn)), by n and n, respectively.

4. Approximation Error Analysis

In this section we study the approximation quality of data-dependent partition schemesΠ for the information diver-
gence estimation (8). This notion is strongly related with the concept of asymptotically sufficient partition developed
by Csiszár (1973, 1967) and recent extensions presented by Vajda (2002), Liese et al. (2006) and Berlinet and Vajda
(2005) (see also Liese and Vajda (1987)). The main difference here is that we are dealing with data-dependent parti-
tions driven by an empirical process, instead of the deterministic sequence of partitions considered in these previous
works. However, these notions extend naturally to our domain.

Definition 1. Let P, Q be probability measures in (X,S) and Π be a partition scheme of X driven by the process
Y1,Y2, · · · with distribution . Π is said to be simultaneously (P,Q)-approximating with respect to if, ∀δ > 0
and for any measurable partition π = {A1, .., Ar} ∈ Q, there exists a sequence of finite measurable partitions π∗n =�
An,1, .., An,r

�
⊂ σ(πn(Yn

1 )), such that

lim sup
n→∞

sup
i=1,..,r

���P(Ai) − P(An,i)
��� < δ and lim sup

n→∞
sup

i=1,..,r

���Q(Ai) − Q(An,i)
��� < δ,

-almost surely.

Adopting this definition in our histogram-based construction in (8), we have the following theorem.

THEOREM 1. Let P, Q be probability measures in (X,S) such that D(P||Q) < ∞. Let Π be a partition scheme
driven by the i.i.d. realizations Y1,Y2, · · · of the reference measure Q. If Π is simultaneously (P,Q)-approximating
with respect to (the process distribution of Y1,Y2 · · · ) and (an) is o(1), then,

lim
n→∞

��������

�

A∈πn(Yn
1 )

P̃n(A) · log
P̃n(A)
Q(A)

− D(P||Q)

��������
= 0, (12)

-almost surely. (Proof in Appendix B.)

1σ(π) denotes de smallest sigma field containing the element of π ⊂ B( d).
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The verification of the (P,Q)-approximating condition for Π is in practice a difficult problem. A more concrete
condition can be stated for the case of (X,S) = ( d,B( d)) (and in general for complete and separable spaces equipped
with a norm or distance), based on what is called a shrinking cell condition2 for data-dependent partition schemes (see,
eg., Devroye et al. (1996)). Let us first introduce the following concept. For any A ∈ B( d), we define its diameter by

diam(A) = sup
x,y∈A
||x − y|| , (13)

where ||·|| refers to the Euclidian norm in d.

THEOREM 2. Let Π = {π1, · · · } be a partition scheme for ( d,B( d)) and P and Q be probability measures in
Pλ( d) (the space of distributions absolutely continuous with respect to the Lebesgue measure λ). Considering P � Q
and Π driven by the i.i.d. realizations Y1,Y2, · · · with Yi ∼ Q, the scheme is simultaneously (P,Q)-approximating with
respect to if, ∀γ > 0,

lim
n→∞

Q
��

x ∈ d : diam(πn(x|Y1, ..,Yn)) > γ
��
= 0, (14)

-almost surely. (The proof is presented in Appendix C.)

Remark 1. In the context of a deterministic sequence of partitions, Liese et al. (2006, Theorem 6) propose a condition
to check their notion of asymptotically sufficiency with respect to the φ-divergence, Csiszár (1973, 1967), for every
pair of probabilities (P,Q) dominated by the Lebesgue measure. This is based on the notion of L∞-covering of the
partition sequence with decreasing radius. This result could be naturally extended in our domain, however, the
proposed shrinking cell condition in (14) is weaker than the mentioned L∞-covering condition.

To conclude this section, in the context of ( d,B( d)), if the partition scheme has a product rectangle structure,
we can extend a result of asymptotic sufficient partition developed by Vajda (2002) (for completeness, see also Liese
et al. (2006), Liese and Vajda (1987) and Berlinet and Vajda (2005)).

Definition 2. A partition scheme Π = {π1, π2, · · · } is a product rectangle partition, if for all n > 0, for all yn
1 ∈

d·n,
the partition rule πn can be written as,

πn(yn
1) = π(1)

n (yn
1) ⊗ · · · ⊗ π(d)

n (yn
1),

where π( j)
n (yn

1) is a partition rule that dichotomize in terms of intervals, for all j ∈ {1, . . . , d}.

Definition 3. (Vajda (2002)) Let {P1,P2, · · · } be an indexed sequence of finite measurable partitions of ( d,B( d))
and µ a sigma finite measure on ( d,B( d)). We say that the partition sequence is asymptotically µ-sufficient, if for
all x ∈ d

lim
n→∞
µ(Pn(x)) = 0,

with Pn(x) denoting the set in Pn that contains x.

For our histogram-based construction and problem setting we have the following result.

THEOREM 3. (Vajda (2002)) Under the general setting and assumptions of Theorem 2, let Q(1), . . . ,Q(d) denote
the marginals probability measure of Q on ( ,B( )). If Π is a product rectangle partition scheme (Definition 2) and
for every j ∈ {1, . . . , d},

�
π( j)

1 (Y1), π( j)
2 (Y2

1 ), · · ·
�

is asymptotically Q( j)-sufficient partition of (Definition 3) -almost
surely, (an) is o(1), and D(P||Q) < ∞, then

lim
n→∞

��������

�

A∈πn(Yn
1 )

P̃n(A) · log
P̃n(A)
Q(A)

− D(P||Q)

��������
= 0, (15)

-almost surely. (Proof derives from Vajda (2002) (Theorem 5).)

2This shrinking cell condition was proposed by Lugosi et al. (Lugosi and Nobel, 1996) for controlling approximation error in histogram-
based density estimation. Also Csiszár (Csiszár, 1973, 1967; Liese and Vajda, 1987) presented a similar sufficient condition for his notion of
approximating sequence of partitions in separable metric spaces.
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For the case of product rectangle partition scheme the sufficient conditions impose in Theorem 3 are weaker than
the shrinking cell condition stipulated in Theorem 2. However, the product structural constraint provides an important
limitation when we want to partition the space function of the data, as pointed out by Darbellay and Vajda (1999). In
fact, (14) is the condition we use to control the approximation error in our practical settings in Section 6.

Remark 2. The shrinking cell condition for Q in (14) implies that the same asymptotic property is satisfied for
the measure P (Halmos, 1950; Varadhan, 2001). This provides the justification for our choice of data-dependent
construction in (8) which is exclusively driven by i.i.d. samples of Q. In practice this choice ends up to be sufficient to
obtain (14), as demonstrated for two concrete schemes later in this work.

5. The Main Result

THEOREM 4. Let P and Q be probability measures in (X,S) such that D(P||Q) < ∞. Let X1, .., Xn and Y1, ..,Yn
be i.i.d. realizations of P and Q, respectively, and Π = {π1, π2, ...} a partition scheme with associated sequence of
measurable partitions A1,A2, · · · . If for some l ∈ (0, 1), there exists p ∈ (0, l/2), τ ∈ (0, l − 2p] and (kn)n∈ a
non-negative sequence such that

a) (kn) � (n0.5+l/2), (an) � (n−p) and (an) = o(1),

and on Π we impose that:

b) limn→∞ n−τM(An) = 0,

c) limn→∞ n−τ log∆∗n(An) = 0,

d) ∀n ∈ , ∀(y1, .., yn) ∈ Xn, infA∈πn(yn
1) Qn(A) ≥ kn

n ,

e) and Π is simultaneously (P,Q)-approximating with respect to ,

then
lim
n→∞

Dπn(Yn
1 )(P∗n||Qn) = D(P||Q),

-almost surely.

There are two sets of conditions stipulated in this result: conditions a), b), c), d) that account for the estimation
error, while the asymptotically sufficient nature of Π in e) in conjunction with a) accounts for the approximation error.
Concerning the estimation error, we use the following result.

LEMMA 3. Under the learning setting and conditions of Theorem 4 (in particular a), b), c) and d)),

lim
n→∞

sup
A∈πn(Yn

1 )

�����
Q(A)
Qn(A)

− 1
����� = 0, (16)

lim
n→∞

sup
A∈πn(Yn

1 )

������
P̃n(A)
P∗n(A)

− 1
������ = 0, (17)

-almost surely. (Derivation in Appendix D.)

Proof: The approximation error converges to zero -almost surely from Theorem 1. For the estimation error in
(10), we use the following inequality:

��� Dπn(Yn
1 )(P∗n||Qn) − Dπn(Yn

1 )(P̃n||Q)
��� ≤

��������

�

A∈πn(Yn
1 )

P∗n(A) · log P∗n(A) −
�

A∈πn(Yn
1 )

P̃n(A) · log P̃n(A)

��������
(18)

+

��������

�

A∈πn(Yn
1 )

P̃n(A) · log Q(A) −
�

A∈πn(Yn
1 )

P∗n(A) · log Qn(A)

��������
. (19)
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The expression in the right hand side (RHS) of (18) is upper bounded by,

�

A∈πn(Yn
1 )

���P∗n(A) − P̃n(A)
��� · log

1
P∗n(A)

+
�

A∈πn(Yn
1 )

���log P∗n(A) − log P̃n(A)
��� · P̃n(A) (20)

≤ log
1

an · bn
· sup
π∈An

�

A∈π

���P∗n(A) − P̃n(A)
��� + sup

A∈πn(Yn
1 )

���log P∗n(A) − log P̃n(A)
��� , (21)

where bn ≡
kn
n . (20) is from triangular inequality and (21) from the construction of P∗n on πn(Yn

1 ) (P∗n(A) ≥ an · bn, for
all A ∈ πn(Yn

1 )) and the fact that by definition πn(Yn
1 ) ∈ An. Without loss of generality we assume that an < 1 and

bn < 1, ∀n > 0. From Lemma 2 and conditions a), b) and c), it is simple to show that, ∀� > 0,

lim
n→∞

1
n

log

log

1
an · bn

· sup
π∈An

�

A∈π

���P∗n(A) − P̃n(A)
��� > �

 < 0,

then from Borel-Cantelli lemma the first term of (21) tends to zero -almost surely. Concerning the second term in
(21), from (17) limn→∞ supA∈πn(Yn

1 )
P̃n(A)
P∗n(A) = 1 and limn→∞ supA∈πn(Yn

1 )
P∗n(A)
P̃n(A) = 1 -almost surely. On the other hand, we

have that ∀A ∈ πn(Yn
1 ),
���� P
∗
n(A)

P̃n(A) − 1
���� ≤ |

P̃n(A)−P∗n(A)|
P∗n(A) ·

P∗n(A)
P̃n(A) , then limn→∞ supA∈πn(Yn

1 )

���� P
∗
n(A)

P̃n(A) − 1
���� = 0 -almost surely. Finally

noting that ∀n,

sup
A∈πn(Yn

1 )

������log
P̃n(A)
P∗n(A)

������ ≤ max


 sup

A∈πn(Yn
1 )

������
P̃n(A)
P∗n(A)

− 1
������ , sup

A∈πn(Yn
1 )

������
P∗n(A)
P̃n(A)

− 1
������


 .

proves the result for (18). Similarly from the construction of Qn on πn(Yn
1 ), the expression in (19) is upper bounded by

log
1
bn
· sup
π∈An

�

A∈π

���P∗n(A) − P̃n(A)
��� + sup

A∈πn(Yn
1 )

���log Qn(A) − log Q(A)
��� .

The same arguments presented for (18) apply to prove that this bound tends to zero with probability one, in this case
adopting Lemma 1 and (16).

6. Applications

In this section we address two practical questions. First, is there a partition scheme that using the histogram-based
estimate in (8), provides a strongly consistent KL divergence estimator distribution-free for a family of probability
measures? Second, assuming a positive answer for the previous question, what are the range of design values on these
constructions that guarantee this result?

To address these questions, we study how the set of sufficient conditions presented in Theorems 2 and 4 translate
into specific design conditions in the context of two specific partition schemes: non-product statistically equivalent
partitions (Gessaman, 1970; Lugosi and Nobel, 1996) and tree-structure vector quantization (TSVQ) (Devroye et al.,
1996; Nobel, 2002; Scott, 2005; Breiman et al., 1984). In this regard, we restrict to ( d,B( d)) and to the case when
P and Q belong to Pλ( d) (the family of distributions absolutely continuous with respect to the Lebesgue measure in
( d,B( d))).

7. Statistically Equivalent Data-Dependent Partitions

7.1. ln-spacing Partition Rule for
Let us first start with a simple scanario. Let us consider the real line ( ,B( )) as the measurable space and a

partition scheme that dichotomizes the space in statistically equivalent intervals. This was the setting explored by
Wang et al. (2005). More precisely, let Y1, ..,Yn be i.i.d. realizations drawn from Q ∈ Pλ( ). The order statistics
Y (1), ..,Y (n) are defined as the permutation of Y1, ..,Yn such that Y (1) < Y (2) < · · · < Y (n) — this permutation exists
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with probability one as Q � λ. Based on this sequence, the resulting ln-spacing partition rule is given by πn(Yn
1 ) =�

In
i : i = 1, ..,Tn

�
=
�
(−∞,Y (ln)], (Y (ln),Y (2ln)], .., (Y ((Tn−1)ln),∞)

�
, where Tn = �n/ln� assuming the non-trivial case where

n > ln. Note that under this construction every cell of πn(Yn
1 ) has at least ln samples from Y1, ..,Yn, which match with

the critical mass constraints of Theorem 4. Then we can state the following result.

THEOREM 5. Adopting the ln-spacing partition scheme for the histogram-based estimate in (8) with (ln) ≈ (n0.5+l/2)
and (an) ≈ (n−p), there exists a range of design parameters D =

�
(l, p) ∈ 2 : l ∈ (0, 1), p ∈ (0, l

2 ), 1 + 4p < 3l
�
� ∅

(see Figure 1), such that for any pair P, Q in Pλ( ) where D(P||Q) < ∞,

lim
n→∞

Dπn(Yn
1 )(P∗n||Qn) = D(P||Q).

-almost surely.

Proof: We check the sufficient conditions of Theorem 4. First note that a) and d) are satisfied by construction of
the estimate. Concerning b), again by constructionM(An) ≤ n/ln+1, then considering τ = (l−2p), n−(l−2p)M(An) ≤
n1−(l−2p)/ln + n−(l−2p). Given that (ln) ≈ (n0.5+l/2), p < l

2 and 1 − 3l + 4p < 0,

lim
n→∞

n−(l−2p)
M(An) = 0. (22)

For c), Lugosi and Nobel (1996) showed that ∆∗n(An) =
� Tn+n

n
�
, where using that log

� s
t
�
≤ s · h(t/s) (Devroye et al.,

1996), with h(x) = −x log(x) − (1 − x) log(1 − x) for x ∈ [0, 1] — the binary entropy function (see Cover and Thomas
(1991)), it follows that,

n−(l−2p) log
�
∆∗n(An)

�
≤ n−(l−2p)

· (n + Tn) · h
�

n
n + Tn

�

≤ 2n1−(l−2p)
· h
�Tn

n

�
≤ 2n1−(l−2p)

· h
�

1
ln

�

= −
2n1−(l−2p)

ln
log(1/ln) − 2n1−(l−2p)(1 − 1/ln) log(1 − 1/ln). (23)

The first term on the right hand side (RHS) of (23) behaves like O(n0.5(1−3l+4p · log(ln)), where from the fact that
1 + 4p > 3l and (ln) � (n) this sequence tends to zero. The second term on the RHS of (23) behaves asymptotically
like −n1−(l−2p) · log(1 − 1/ln), which is upper bounded by ( n1−(l−2p)

ln
·

1
1−1/ln

) ≈ ( n1−(l−2p)

ln
) (from log(x) ≤ x − 1). This last

sequence tends to zero as (ln) ≈ (m0.5+l/2) and 1+ 4p < 3l. Finally for condition e), Lugosi and Nobel (1996, Theorem
4) proved that it is sufficient to show that limn→∞

ln
n = 0, and given that by construction (an) is o(1), we prove the

theorem.
Note that the proof reduces to checking the sufficient conditions of Theorem 4. In fact these are the restrictions

that define the domain of admissible parametersD.

Remark 3. These conditions imply that limn→∞ ln = ∞ and (ln) is o(n), which are the sufficient conditions presented in
Lugosi and Nobel (1996) for the ln-based histogram based density estimation to be strongly consistent in the L1 sense.
The fact that more restriction are needed to get strong consistency for the information divergence functional agrees
with recent results by Piera and Parada (2009) showing that stronger conditions on the convergence of probability
measures (relative to the total variational distance (Devroye and Lugosi, 2001)) are needed to get convergence of the
information divergence under certain compactly supported considerations. Furthermore, this also agrees with the
results on the context of density estimation consistent in direct information divergence (Barron et al., 1992), where
this notion of consistency requires stronger conditions than the classical L1-consistency.

7.2. Gessaman’s Statistically Equivalent Partition for d

For the finite dimensional Euclidean space ( d,B( d)), we consider the particular type of statistically equivalent
partition proposed by Gessaman (1970). In this context, the partition rule considers Tn = �(n/ln)1/d� as the number

9



Figure 1: Range of parameters for consistent histogram-based estimators of the divergence adopting: statistically equivalent blocks and axis-parallel
tree-structured partitions.

Figure 2: A: Example of Gessaman’s statistically equivalent partition for a two dimensional bounded space. B: Example of a tree-structured
data dependent partition and its tree-indexed structure. Each internal node has a label indicating the spatial coordinate used to split its associated
rectangular set.
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of axis-paralled splits to be induced in any coordinate of the space. More precisely first, the i.i.d samples Y1, ..,Yn
associated with the reference measure Q are projected on to the first coordinate to create a statistically equivalent par-
tition: with Tn cells and using axis-parallel hyper-planes perpendicular to the first coordinate. Then for any resulting
rectangular cell, its respective sample points are projected on to the second coordinate and used to partition the cell in
Tn statistically equivalent sets, in this case by hyper-planes perpendicular to the second coordinate. By iterating this
process until the last coordinate, we have an adaptive partition scheme of exactly (Tn)d rectangular cells with at least
ln-sample points per cell, see Fig. 2 for an illustration3.

THEOREM 6. Adopting the Gessaman’s partition scheme for the divergence estimate in (8), if (ln) ≈ (n0.5+l/2),
(an) ≈ (n−p) and the design parameters belong to D =

�
(l, p) ∈ 2 : l ∈ (0, 1), p ∈ (0, l

2 ), 1 + 4p < 3l
�

(Fig. 1), then
Dπn(Yn

1 )(P∗n||Qn) is strongly consistent for any pair P and Q in Pλ( d) for which D(P||Q) < ∞.

This result is an important generalization of Theorem 5. The proof follows similar arguments as its counterpart
Theorem 5, however the technique used to prove the shrinking cell condition does not extend from the argument
proposed by Lugosi and Nobel (1996, Theorem 4) that was adopted for the scalar case. The details of this argument
and in particular the shrinking cell condition for the Gessaman’s partition scheme are presented in Appendix E.

8. Tree-Structured Partition Schemes

We start with some definitions and preliminaries to facilitate the exposition of the main result in Section 8.3.

8.1. Basic Notation and Terminology
Using the conventions of Breiman et al. (1984), a binary tree T is a collection of nodes with only one with degree

2 (the root node), and the remaining nodes with degree 3 (internal nodes) or degree 1 (leaf or terminal nodes) 4. Let
depth(t) denote the depth of t ∈ T — the number of arcs that connect t with the root of T , and L(T ) be the collection
of terminal nodes of T . We define the size of a tree T as the cardinality of L(T ) and denote it by |T |. If T̄ ⊂ T
and T̄ is a binary tree by itself, we say that T̄ is a subtree of T and moreover if both have the same root we say that
T̄ is a pruned version of T , denoted by T̄ � T . Finally, T r denotes the truncated version of T , formally given by
T r = {t ∈ T : depth(t) ≤ r} for all r > 0.

We will concentrate on the family of TSP induced by hyperplane cuts (Devroye et al., 1996). Following Nobel’s
conventions (Nobel, 2002, 1997), a tree-structured partition (TSP) can be represented by a pair (T, τ(·)), with T a
binary tree and τ(·) a function from T toH , the collection of closed halfspaces of the form

�
x : x†w ≥ α

�
, with w ∈ d

and α ∈ . Then for any t ∈ T , τ(t) corresponds to the closed halfspace that dichotomizes the cell associated with t,
denoted by Ut, in two components Ut ∩ τ(t) and Ut ∩ τ(t)c. These resulting cells are associated with the left and right
child of t, respectively, when t is not a terminal node of T . Then initializing the cell of the root node t0 with Ut0 =

d,
τ(·) provides a way to characterize Ut, ∀t ∈ T . In particular,

π(T ) ≡ {Ut : t ∈ L(T )} ⊂ B( d), (24)

is the TSP induced by (T, τ(·)). Because of this construction, the cell associated with a node of depth k is a convex
polytope of at most k faces5 — this property will turn out to be crucial to prove consistency. If (T, τ(·)) is a TSP and
T̄ � T , then there is a unique TSP associated with T̄ by restricting τ(·) to the domain of T̄ . Note that if T̄ � T then
π(T ) is a refinement of π(T̄ ), that we denote consistently by π(T̄ ) � π(T ). Finally, we will use the tree notation T to
refers to (T, τ(·)) or the partition π(T ) depending on the context.

3Note that the ln-spacing partition is a particular case of Gessaman’s partition scheme when d = 1.
4Formally a tree is a connected graph with no cycles. However, Breiman et al. (1984) propose a simplification where only the nodes are used to

represent trees, making implicit the arcs that connect them.
5A polytope refers to sets induced by finite intersections of closed or open halfspaces (Devroye et al., 1996).
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8.2. The Tree-Structured Data-Dependent Partitions
A n-sample TSP rule Tn is a function from the space of finite sequences d·n to the space of TSP presented above,

and the resulting partition scheme is the collection of TSP rules Π = {T1,T2, · · · }.
Here we focus on the general family of TSP rules induced by a local splitting and stopping criteria. LetU be the

collection of polytopes in d and P be the space of probability measures in ( d,B( d)). Then a local splitting rule
can be seen as a function Ψ : U × P → H , that for a given cell U ∈ U and probability measure P ∈ P it defines
a closed halfspace Ψ(U, P) ∈ H to partition U. Associated with Ψ we consider a local stopping criterion. This is a
binary function Φ : U × P × [0, 1] → {0, 1}, which for given U ∈ U and P ∈ P, indicates when to apply the local
splitting criteria Ψ(·) on the cell U. We consider stopping rules of the form,

Φ(U, P, p) =




1 if P(U ∩ Ψ(U, P)) > p and P(U ∩ Ψ(U, P)c) > p,
0 otherwise,

(25)

for U ∈ U, P ∈ P and p ∈ (0, 1).
Finally given Yn

1 = (Y1, ..,Yn) i.i.d. realizations of the reference measure Q, the corresponding empirical distribu-
tion Qn and a non-negative sequence (kn) ∈ , the n-sample partition rule π(Tn(Yn

1 )) is induced by

1. Initialization: Tn = {t0} (the root node), Ut0 =
d, π(Tn) =

�
Ut0
�

and τn(t0) = Ψ(Ut0 ,Qn)
2. Recursion: for all t ∈ L(Tn)

if Φ(Ut,Qn, kn/n) = 1, then consider t1 and t2 as the left and right extensions of t and update as follows:

• Tn = Tn ∪ {t1, t2},

• Ut1 = Ut ∩ τm(t), Ut2 = Ut ∩ τn(t)c

• τn(t1) = Ψ(Ut1 ,Qn), τn(t2) = Ψ(Ut2 ,Qn).

• π(Tn) = π(Tn) \ {Ut} ∪
�
Ut1 ,Ut2

�

3. Termination: Repeat 2), until Φ(Ut,Qn, kn/n) = 0, ∀t ∈ L(Tn).

Note that by construction Qn(Ut) ≥ kn/n, ∀t ∈ L(Tn(Yn
1 )), which is consistent with condition d) of Theorem 4. The

following result from Theorem 4 can be stated.

THEOREM 7. Let P, Q be two probability measures in Pλ( d) such that D(P||Q) < ∞. Let Π = {T1,T2, · · · } be a
TSP scheme driven by the empirical process Y1,Y2, · · · (with Yi ∼ Q, ∀i > 0) and the local stopping rule governed by
a sequence of non-negative numbers (kn)n∈ .

If (kn) ≈ (n0.5+l/2), (an) ≈ (n−p), (l, p) ∈ D =
�
(l�, p�) : l� ∈ (0, 1), p� ∈ (0, l�

2 ), 1 + 4p� < 3l�
�

(illustrated in Fig. 1)
and Π satisfies the shrinking cell condition in (14), then limn→∞ Dπn(Yn

1 )(P∗n||Qn) = D(P||Q), -almost surely.

Proof: We need to verify the conditions b) and c) of Theorem 4, because a) and d) are obtained from the
construction of the estimate and e) is assumed. By the stopping criterion

���Tn(yn
1)
��� ≤ n/kn, ∀yn

1 ∈
d·n. ThenM(An) ≤

n/kn and consequently,

(n−(l−2p)
M(An)) � (

n1−(l−2p)

kn
) ≈ (m0.5− 3

2 l+2p),

upper bound that tends to zero if 1 + 4p < 3l. Concerning condition c), we use the arguments proposed by Lugosi
and Nobel (1996), specifying that every polytope of π(Tn(yn

1)) is induced by at mostM(An) hyperplane splits. Each
binary split can dichotomize n ≥ 2 points in d in at most nd ways (Cover, 1965). Consequently, ∆∗n(An) ≤ (nd)n/kn ,
then,

(n−(l−2p) log∆∗n(An)) � (
n1−(l−2p)

kn
· d log n),

upper bound that again tends to zero as long as 1 + 4p < 3l.
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8.3. Statistically Equivalent Splitting Rule
Going one step further, in this section we consider a version of a balanced search tree (see Devroye et al., 1996,

Chapter 20.3). More precisely, given Y1,Y2, ..,Yn i.i.d. realizations of the reference measure Q we consider a splitting
rule Ψ(Ut,Qn) ∈ H that choses a dimension of the space sequentially, function of the depth of t — for instance
i = modd(depth(t)) — and the i axis-parallel halfspace by

Ψ(Ut,Qn) =
�
x ∈ d : x(i) ≤ Ȳ (�n̄/2�)(i)

�
, (26)

where Ȳ (1)(i) < Ȳ (2)(i) <, .., < Ȳ (n̄)(i) denotes the order statistics of the sampling points of interest
�
Ȳ1, .., Ȳn̄

�
=

{Y1, ..,Yn}∩Ut projected in the target dimension i. At the end Tn(Yn
1 ) can be seen as a statistically equivalent partition

of the space. However considering the stopping criterion in (25), it does not guarantee equal empirical mass on their
bins, neither to be a balanced tree (expect for the case when n is dyadic, i.e., n = 2k for some k ∈ ).

To prove that this TSP schemeΠ induces a strongly consistent KL divergence estimator, we just need to verify that
Π satisfies the shrinking cell condition, under the specific assumptions stated in Theorem 7. For that, some definitions
and a result will be needed.

Definition 4. Let T be a binary tree, we say that T is a balanced tree of height r if ∀t ∈ L(T ), depth(t) = r.

Definition 5. A TSP scheme Π = {T1,T2, · · · } is a uniform balanced tree-structure scheme, if each partition rule Tn(·)
forms a balanced tree of height dn (only function of n).

LEMMA 4. Let Π = {T1,T2, · · · } be a uniform balanced tree-structure scheme induced by the statistically equivalent
splitting rule (26) and with height sequence (dn)n∈ . Π satisfies the shrinking cell condition of Theorem 2, if there
exists a non-negative real sequence (qn) ≈ (nθ), for some θ > 0, such that

n
dn2dn

−
qn

dn
→ ∞ and dn → ∞, as n tends to infinity.

This result was derived from the ideas presented by Devroye et al. (1996, Theorem 20.2) where a weak version of our
shrinking cell condition was proved for a similar balanced tree-structured partition scheme. The proof of this stronger
result is presented in Appendix F.

Finally we have all the machinery to state our final result.

THEOREM 8. Let Π = {T1,T2, · · · } be a TSP scheme with the stopping and splitting rule presented in (25) and (26),
respectively. Under the problem statement and the parameter constraints imposed on the sequences (kn) and (an) in
Theorem 7, for any pair P and Q in Pλ( d) for which D(P||Q) < ∞, limn→∞ Dπn(Yn

1 )(P∗n||Qn) = D(P||Q) -almost
surely.

Proof: The proof reduces to verify the shrinking cell condition for Π. By the binary tree structure of Π and the
stopping rule, it is simple to show that, ∀yn

1 ∈
d·n,

r(n) ≡ �log2(n)� − �log2(kn)� ≤ min
t∈L(Tn(yn

1))
depth(t), (27)

and consequently T r(n)
n (Yn

1 ) is a balanced tree. Defining Π̄ =
�
T r(1)

1 ,T
r(2)
2 , · · ·

�
, it suffices to check the shrinking cell

condition on Π̄ 6. Given that Π̄ is a uniform balanced tree-structure scheme, we can check the sufficient condition
stated in Lemma 4. Let d̄n(= r(n)) denote the height of T r(n)

n . By construction d̄n ≥ log2(n/kn) − 2 and consequently
tends to infinity ((kn) ≈ (n0.5+l/2) with l < 1). On the other hand, if we consider an arbitrary non-negative sequence
(qn) ≈ (nθ) with θ ∈

�
0, 2

3

�
, then

n
d̄n2d̄n

−
qn

d̄n
≥

n
dn · 2log2(n/kn) −

qn

dn
=

kn − qn

dn
→ ∞ (28)

as n→ ∞, because (dn) � (log2(n)), (kn) ≈ (n0.5+l/2) and inD we have that l > 1/3, which proves the result.

6Π is a refinement of Π̄ in the sense that ∀n ∈ , ∀yn
1 ∈

d·n, T r(n)
n (yn

1) � Tn(ym
1 ), then by definition the shrinking cell condition of Π̄ implies

the property for Π.
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9. Final Remarks

The main result in Theorem 4 and its applications (Theorems 6 and 8) suggest that the information divergence
estimation problem put more restrictions in terms of data-driven design conditions when compared with the problem
of density estimation, in particular for the reference measure Q, consistent in the L1 sense (Lugosi and Nobel, 1996).
This conjecture agrees with findings on density-free estimation of information theoretic quantities (Györfi and van der
Meulen, 1987) and the convergence analysis of the Shannon differential entropy in (Piera and Parada, 2009).

Concerning the Barron’s density estimate adopted for estimating ∂P
∂Q (x), it is interesting to contrast its use here

from its original adoption in (Barron et al., 1992). The main difference is that in our problem both distributions need
to be estimated from data, while in the work of Barron et al. (1992) a sigma finite measure µ is assumed and used to
estimate a measure P (assuming that P � µ) from a smooth version of ∂Pn

∂µ , restricted to the sigma field induced by
sequence of µ-statistically equivalent partitions. This last point rises the other important difference from our problem,
which is the use of data-driven partitions. Consequently, in this work we demonstrated the utility of Barron’s density
estimate in a different learning context, as well as its adequate interaction with data-driven partition schemes.

Finally, the presented formulation offers the possibility of extending the role of data-driven histogram-based con-
struction to the estimation of other information theoretic quantities — like the Shannon mutual information (Shannon,
1948) and the general family of φ-divergence introduced by Csiszár (1967) (see also, Liese and Vajda (1987); Csiszár
and Shields (2004)), as well as using the rich machinery of statistical learning theory (see, eg., Vapnik (1998); Devroye
et al. (1996)) to explore for instance, distribution-free rate of convergence results.
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A. Proof of Lemma 2

Proof: Let us restrict to the case whenA is a collection of measurable events. It is simple to show that ∀a ∈ [0, 1],
�
sup
A∈A

���µa
n(A) − µa(A)

��� > �
�
≤

�
sup
A∈A
|Pn(A) − P(A)| + sup

A∈A
|Qn(A) − Q(A)| > �

�

≤

�
sup
A∈A
|Pn(A) − P(A)| >

�

2

�
+

�
sup
A∈A
|Qn(A) − Q(A)| >

�

2

�

≤ 8 · S2n(A) exp
−n�2
4·8 .

The last inequality is the classical VC inequality (Vapnik and Chervonenkis, 1971; Vapnik, 1999), where S 2n(A)
denotes the scatter coefficient7 of A. Finally, the proof of Lemma 2 follows from the arguments presented in Lugosi
and Nobel (1996, Lemma 1).

B. Proof of Theorem 1

Proof: Let us consider an arbitrary � > 0. Then, there exists a finite partition π(�/3), such that,

Dπ(�/3)(P||Q) > D(P||Q) − �/3. (29)

Considering that |π(�/3)| < ∞ and that x log x is a continuous real function, Dπ(�/3)(P||Q) is a continuous function
with respect to the total variational distance in the product space of probability measures on ( d,σ(π(�/3))) under

7The scatter coefficient of A is given by S n(A) = supxn
1∈X

n |{{x1, x2, .., xn} ∩ A : A ∈ A}| ≤ 2n. It is an indicator of the richness of A to
dichotomize a sequence of points in X (see, eg., Devroye et al. (1996); Vapnik and Chervonenkis (1971); Vapnik (1999)).
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some additional conditions. More precisely for �/3, ∃δ1 > 0 and δ2 > 0, such that if, supi=1,..,r

���P1(Ai) − P2(Ai)
��� < δ1,

supi=1,..,r

���Q1(Ai) − Q2(Ai)
��� < δ2, and P1 � Q1, P2 � Q2 then,

���Dπ(�/3)(P1
||Q1) − Dπ(�/3)(P2

||Q2)
��� < �/3.

Then a direct consequence of the hypotheses of the theorem is that for any typical sequence y1, y2, y3, y4 · · · (sequence
for which Π is simultaneously (P,Q)-approximating) there exists a sequence of measurable approximations of π(�/3),
denoted by

�
π∗n, n ∈

�
⊂ Q with π∗n ⊂ σ(πn(yn

1)), such that for �/3, ∃N < ∞ and ∀n > N,

Dπ∗n (P||Q) > Dπ(�/3)(P||Q) − �/3. (30)

Furthermore by construction,

sup
A∈π∗n

���P̃n(A) − P(A)
��� ≤ sup

A∈σ(πn(yn
1))

���P̃n(A) − P(A)
��� ≤ sup

A∈S

���P̃n(A) − P(A)
��� ≤ an,

with limn an = 0. Then from the continuity of x · log(x), for �/3 there exists N̄ > 0 such that ∀n > N̄,

Dπ∗n (P̃n||Q) > Dπ∗n (P||Q) − �/3. (31)

Finally, using the three previous inequalities and noting that πn(yn
1) is a refinement of π∗n, we have that for every typical

sequence Dπn(yn
1)(P̃n||Q) > D(P||Q) − �, eventually ∀� > 0. Then, ∀� > 0

lim inf
n→∞

Dπn(Yn
1 )(P̃n||Q) > D(P||Q) − �, -almost surely. (32)

On the other hand, for an arbitrary sequence y1, y2, · · · and ∀n > 0,

Dπn(yn
1)(P̃n||Q) ≤

�

A∈πn(yn
1)

�
(1 − an)log(P(A))P(A) + anlog(Q(A))Q(A)

�
−

�

A∈πn(yn
1)

log(Q(A)) [(1 − an)P(A) + anQ(A)]

= (1 − an)Dπn(yn
1)(P||Q) ≤ D(P||Q), (33)

this by the convexity of x · log(x), Jensen’s inequality (Cover and Thomas, 1991) and the fact that an ≤ 1. Finally,
from (32) and (33), limn→∞ Dπn(Yn

1 )(P̃n||Q) = D(P||Q) -almost surely.

C. Proof of Theorem 2

Let us first note that the shrinking cell condition of Q in (14) implies that the same property holds for the measure
P 8. Using the short-hand notation Ym

1 = Y1, ...,Ym, (14) is equivalent to

lim
m→∞

Q




�

A∈πm(Ym
1 )

diam(A)>γ

A



= 0, -almost surely ∀γ > 0. (34)

Proof: We will concentrate on showing the result for the measure Q. Let us consider an arbitrary partition
π = {A1, .., Ar} ∈ Q. Let

�
Bm

1 , .., B
m
r

�
be the covering of π induced by πm(Ym

1 ), i.e.,

Bm
j =

�

A∈πm(Ym
1 )

A∩Aj�∅

A, ∀ j ∈ {1, .., r} .

8This can be derived from the fact that P � Q and the dominated convergence theorem (Varadhan, 2001; Halmos, 1950).
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Based on
�
Bm

1 , .., B
m
r

�
, we can induce a partition π∗m =

�
Am

1 , .., A
m
r

�
⊂ σ(πm(Ym

1 )) that approximates π by the following
construction: Am

1 = Bm
1 , Am

2 = Bm
2 \ Bm

1 , · · · , Am
r = Bm

r \
�
∪r−1

j=1Bm
j

�
.

Let us consider an arbitrary δ > 0. Given that Q is absolutely continuous with respect to the Lebesgue measure
λ, there is a bounded measurable set B such that Q(B) > 1 − δ/2. Let us define π̄ =

�
Ā1, .., Ār

�
with Ā j = B ∩ Aj,

∀ j = 1, .., r and π̄∗m =
�
Ām

1 , .., Ā
m
r

�
as the partition of B induced by π and π∗m, respectively. Then for any Ai ∈ π,

���Q(Ai) − Q(Am
i )
��� <
���Q(Ai) − Q(Āi)

��� +
���Q(Āi) − Q(Ām

i )
��� +
���Q(Ām

i ) − Q(Am
i )
���

< δ +
���Q(Āi) − Q(Ām

i )
��� , ∀m ∈ , (35)

the last inequality from the construction of B.
In addition, for any measurable set A ∈ B( d) let us define its γ-open covering by Aγ+ ≡

�
x∈A B(x, γ), and its

γ-residue by δγ(A) ≡ Aγ+ \ A ∈ B( d), with B(x, γ) denoting the open ball of radius γ centered at x. Note that by
the continuity of λ under monotone set sequences (Halmos, 1950)9, ∀A ∈ B( d) and ∀� > 0, ∃γ > 0, such that
λ(δγ(A)) < �, where given that Q � λ, the same is true considering the measure Q. Hence, let us fix γ such that
Q(δγ(Āi) ∪ δγ((Āi)c)) < � uniformly ∀i ∈ {1, .., r}, and let us define the event S m

γ in B( d·m) by

S m
γ =
�
ym

1 ∈
d·m : diam(πm(ym

1 )) < γ
�
,

with diam(πm(ym
1 )) = maxA∈πm(ym

1 ) diam(A). Then,
���Q(Āi) − Q(Ām

i )
��� ≤ Q(Āi�Ām

i ) (36)

≤ Q(δγ(Āi) ∪ δγ((Āi)c) · S m
γ
(Ym

1 ) + [Q(δγ(Āi) ∪ δγ((Āi)c) + Q




�

A∈πm(Ym
1 )

diam(A)>γ

A



] · (S m

γ )c (Ym
1 ) (37)

≤ � + Q




�

A∈πm(Ym
1 )

diam(A)>γ

A



, ∀m ∈ , (38)

where (37) derives from the construction of Ām
i and the fact that conditioning to the event S m

γ , Āi�Ām
i = (Ām

i \ Āi) ∪
(Āi \ Ām

i ) ⊂ δγ(Āi) ∪ δγ((Āi)c), where more generally ∀γ > 0,

Āi�Ām
i ⊂ δγ(Āi) ∪ δγ((Āi)c) ∪ A∈πm(Ym

1 )
diam(A)>γ

A. (39)

Then, from the hypothesis in (34), (35) and (38),

lim sup
m→∞

���Q(Ai) − Q(Am
i )
��� < δ + �, -almost surely. (40)

Finally noting that this result is valid for any measurable event Ai ∈ π and that � can be chosen arbitrarily small, it
follows that,

lim sup
m→∞

sup
i∈{1,..,r}

���Q(Ai) − Q(Am
i )
��� < δ, -almost surely. (41)

The same partition sequence
�
π∗1, π

∗

2, · · ·
�

and arguments can be adopted to show the result for the measure P, which
proves the theorem.

9Note that for all A ∈ B( d), limn→∞ δ1/n(A) = ∅.
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D. Proof of Lemma 3

Proof: Let us focus on proving Eq. (17) and consequently in analyzing,

 sup

A∈πn(Yn
1 )

������
P̃n(A)
P∗n(A)

− 1
������ > �

 ≤


 sup

A∈πn(Yn
1 )

���P̃n(A) − P∗n(A)
��� > � · anbn




≤

�
sup
π∈An

sup
A∈π

���P̃n(A) − P∗n(A)
��� > � · an · bn

�

≤ 8∆∗2n(An)2M(An) exp−
n(�·an ·bn )2

128 , (42)

where the first inequality is by the hypothesis, i.e., P∗n(A) ≥ an · bn ∀A ∈ πn(Yn
1 ) with bn ≡

kn
n ∀n > 0, and the last from

the VC inequality for mixture distributions in Lemma 2. From (42) and the fact that (an) � (n−p) and (bn) � (nl/2−0.5)
(condition a)),

(n−τ log

 sup

A∈πn(Yn
1 )

������
P̃n(A)
P∗n(A)

− 1
������ > �

) � (−n1−τ (� · an · bn)2

128
) � (−�2 · n(l−2p)−τ), (43)

then it is clear that

lim
n→∞

n−τ log

 sup

A∈πn(Yn
1 )

������
P̃n(A)
P∗n(A)

− 1
������ > �

 < 0 or diverges to −∞,

where from the hypothesis τ > 0. Then Borel-Cantelli lemma proves the result.
The same arguments can be adopted to show Eq.(16) but in this case using the classical VC inequality in Lemma

1. In fact weaker conditions can be stated to prove that this term converges to zero almost surely. In that sense the
critical part was to bound the deviation of P∗n with respect to P̃n in (X,σ(πn(Yn

1 ))).

E. Proof of Theorem 6

Proof: The conditions a) and d) are satisfied by construction of the partition scheme. The argument for b) extends
from the proof of Theorem 5. Concerning c), using the same combinatorial argument, we have that ∆∗n(An) ≤

� Tn+n
n
�d.

Defining T̄n = �n/ln� ≥ Tn and h(·) the binary entropy function, we can use the derivations in (23) to show that,

n−(l−2p) log
�
∆∗n(An)

�
≤ n−(l−2p)d · log

� T̄n+n
n
�
≤ 2d · n1−(l−2p)

· h
�

1
ln

�
.

This last upper bound tends to zero as n goes to infinity because (ln) ≈ (n0.5+l/2) and 1 + 4p < 3l as shown in Theorem
5. To verify the shrinking cell condition, we follow the structure of the proof presented by Devroye et al. (1996,
Theorem 20.2). In particular, subsections E.1, E.2 and E.3 provide some preliminaries and subsection E.4 provides
the final argument.

E.1. Reducing the Problem to a Bounded Measurable Space
Note that the partition scheme Π is monotone transformation invariant (Devroye et al., 1996), in the sense that for

all πn ∈ Π, ∀x ∈ d, ∀yn
1 ∈

d·n,
πn(x|y1, ..yn) = πn(F(x)|F(y1), ..F(yn)),

where F : d → d is an arbitrary function that can be expressed by F(x) = ( f1(x(1)), · · · , fd(x(d))), for some col-
lection of strictly increasing real functions { fi(·) : i = 1, .., d}. In particular, we can consider fi(·) to be the distribution
function of the marginal probability Q, restricted to events on the i-coordinate ∀i ∈ {1, .., d}. Without loss of generality
we can restrict to the case when { fi(·) : i = 1, .., d} are strictly increasing. Consequently, the induced distributions of
the transform space, denoted by Q̄ and P̄ respectively, have support on [0, 1]d and satisfies that (Gray, 1990)

D(P||Q) = D(P̄||Q̄), (44)
17



because F(·) is one-to-one continuous mapping from d to [0, 1]d (more precisely
�
F−1(A) : A ∈ B([0, 1]d)

�
= B( d)).

Moreover, if we applyΠ in the transform domain, i.e., we estimate the empirical distributions using the transform i.i.d.
realizations F(X1), .., F(Xn) and F(Y1), .., F(Yn) — denoted by P̄∗n and Q̄n on σ(π(F(Y1), .., F(Yn))) — and estimate the
divergence by (8), it is simple to check that

Dπ(F(Y1),..,F(Yn)))(P̄∗n, Q̄n) = Dπ(Yn
1 )(P∗n,Qn). (45)

Then from (44) and (45), we can reduce the problem to checking the the shrinking cell condition for the case when Q
and P are defined on ([0, 1]d,B([0, 1]d).

E.2. Formulation of a Sufficient Condition
Given that πn(Yn

1 ) is induced by axis-parallel hyperplanes, every cell U ∈ πn(Yn
1 ) is a finite dimensional rectangle

of the form ⊗d
i=1[li, ui) (with the possible open and closed interval variations). In this scenario, ∀U ∈ πn(Yn

1 ),

diam(U) ≤
d�

i=1

lengthi(U), (46)

with lengthi(U) denoting the Lebesgue measure of the projection of U on the i-coordinate. Then from Markov’s
inequality, for proving the shrinking cell condition it suffices to show that (Devroye et al., 1996),

lim
n→∞

Q




d�

i=1

lengthi(πn(X|Yn
1 ))


 = lim

n→∞

�

[0,1]d

d�

i=1

lengthi(πn(x|Yn
1 ))∂Q(x) = 0, (47)

almost surely with respect to the process distribution of Y1,Y2 · · · .

E.3. �-Statistically Equivalent Partitions

Definition 6. Let A ⊂ [0, 1]d be a finite dimensional rectangle of the form
�d

i=1[li, ui) with li < ui. Let π j(A) be a
partition of A induced by axis parallel hyperplanes on the j coordinate. We say that π j(A) is �-statistically equivalent
with respect to a measure Q if,

max
B∈π j(A)

Q(B) ≤
Q(A)���π j(A)

���
·
√

1 + �, (48)

where in this case by construction,

�

B∈π j(A)

d�

i=1

lengthi(B) · Q(B) ≤ length j(A) ·
Q(A)

√
1 + ����π j(A)
���
+
�

i� j

lengthi(A) · Q(A). (49)

Note that our data-dependent construction can be seen as a concatenation of the type of axis parallel partition
presented in Definition 6. Then, the following result holds.

PROPOSITION 1. Let πn(Yn
1 ) be a data-dependent Gessaman’s partition of [0, 1]d with Tn splits per coordinate.

If during the construction of πn(Yn
1 ), all its axis-paralled partitions are �–statistically equivalent with respect to the

reference measure Q, then ∀n > 0,

Q




d�

i=1

lengthi(πn(X|Yn
1 ))


 ≤

d ·
√

1 + �.
Tn

. (50)

Proof: By construction, πn(Yn
1 ) can be seen as the concatenation of 1+Tn+T 2

n + · · · T d−1
n family of axis-paralled

partitions. Then the proof can be derived from a recursive application of (49).
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E.4. Final Argument
Let Bn(�) ⊂ B( d·n) be the set of realizations of the empirical process where πn(yn

1) is concatenation of �–
statistically equivalent partitions with respect to Q, then from (50)

Q




d�

i=1

lengthi(πn(X|Yn
1 ))


 ≤

d ·
√

1 + �.
Tn

· Bn(�)(Yn
1 ) + d · Tn · Bn(�)c (Yn

1 ). (51)

For proving (47), we are interested in the event

An(�) =


y

n
1 :

������� Q




d�

i=1

lengthi(πn(X|yn
1))




�������
> �


 ∈ B( d·n).

Note that fixing �0 > 0, ∀� > 0 we have that eventually An(�) ⊂ Bn(�0)c and consequently ( n(An(�)) � ( n(Bn(�0)c)),
where n denotes the probability measure on ( d·n,B( d·n)) induced by restricting the empirical process to the finite
block Yn

1 . In addition, by the sub-additivitive of n ,

n(Bn(�0)c) ≤
T d

n − 1
Tn − 1

n(Bo
n(�0)), (52)

where Bo
n(�0) ∈ B( d·n) denotes the event that one of the 1+ Tn + T 2

n + · · · T d−1
n axis-paralled partitions of πn(yn

1) is not
�0–statistically equivalent with respect to Q.

To find an expression for n(Bo
n(�0)), without loss of generality, let us consider A = [0, 1]d, a coordinate j ∈

{1, .., d} and π j(A) =
�
A1, .., ATn

�
a partition of A based on n̄ i.i.d. samples points projected on the j-coordinate, say

Ȳ1( j) < Ȳ2( j), · · · < Ȳn̄( j). If F(x) and F̂n̄(x) denote the j-marginal distribution function and its empirical counter-
part, respectively (associated with the reference measure Q), it is simple to show that if π j(A) is not �0–statistically
equivalent, then supx∈[0,1]

���F̂n̄(x) − F(x)
��� >

√
1+�0−1

Tn
(see Devroye et al., 1996, Chapter 20.3). Consequently,

n(Bo
n(�0)) ≤ n

��
sup

x∈[0,1]

���F̂n̄(x) − F(x)
��� >
√

1 + �0 − 1
Tn

��

≤ 2 · exp

−2 · n̄ ·

� √
1 + �0 − 1

Tn

�2

≤ 2 · exp

−2 · ln ·

� √
1 + �0 − 1

Tn

�2 , (53)

the second inequality is obtained from the large deviation result in (Devroye et al., 1996, Theorem 12.9), where the
last inequality is because ∀A ∈ πn(Yn

1 ), Qn(A) ≥ ln
n and n̄ ≥ ln. Then, from (52) and (53),

n(Bn(�0)c) ≤ 2 ·
T d

n − 1
Tn − 1

· exp

−2 · ln ·

� √
1 + �0 − 1

Tn

�2

≤ 2 · T d
n · exp

�
−2 ·

ln
�(n/ln)1/d�2

·
� �

1 + �0 − 1
�2
�

≤ 2 ·
n
ln
· exp

�
−2 ·

l2n
n
·
� �

1 + �0 − 1
�2
�
, (54)

where the third inequality uses that �(n/ln)1/d�2 ≤ �(n/ln)1/2�2 ≤ n/ln (considering d ≥ 2). Finally, noting that
(ln) ≈ (n0.5+l/2) with l ∈ (0, 1),

( n(Bn(�0)c))) � (n0.5−l/2
· exp

�
−2 · nl

· (
�

1 + �0 − 1)2
�
), (55)

then the Borel Cantelli lemma proves the result.
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F. Proof of Lemma 4

Proof: For the rest, let πn(Yn
1 ) = π(Tn(Yn

1 )) denote the n-sample partition rule of the TSP scheme Π. Note that Π
is monotone transformation invariant, then we can restrict to the case where P and Q are defined on ([0, 1]d,B([0, 1]d))
(see Appendix E.1). Also for proving the shrinking cell condition, this reduces to checking the condition presented in
Appendix E.2: i.e., limn→∞ Q

��d
i=1 lengthi(πn(X|Yn

1 ))
�
= 0, -almost surely.

F.1. Preliminaries: �-good median cuts
Let U = ⊗d

i=1[li, ui] be a rectangle in B([0, 1]d) and let
�
H0

0 ,H
1
0 ,H

1
1 , · · · ,H

d−1
0 , ..,H

d−1
2d−1−1

�
be a sequence of axis-

parallel hyperplanes used to recursively split U in every coordinate. This partitions U in 2d cells. More precisely, H0
0

parallel to the 1-coordinate splits U0
0 = U into two rectangles U1

0 , U1
1 , then H1

0 and H1
1 parallel to the 2-coordinate

split U1
0 and U1

1 into U2
0 , U2

1 , and U2
2 , U2

3 respectively, and inductively at the end of the process a TSP for U is created�
Ud

j : j = 0, .., 2d − 1
�
.

Definition 7. In the aforementioned construction, let pl
j = Q(Ul

j) be the probability of every induced rectangle, then
we say that

�
H0

0 ,H
1
0 ,H

1
1 , · · · ,H

d−1
0 , ..,H

d−1
2d−1−1

�
is a sequence of �-good median cuts for U if: ∀l ∈ {0, .., d − 1} and

j ∈
�
0, .., 2l − 1

�
,

max(pl+1
2 j , p

l+1
2 j+1) ≤

1
2

(1 + �)1/d
· pl

j. (56)

PROPOSITION 2. Let U be a finite dimensional rectangle in B([0, 1]d) with probability Q(U) = p > 0, and�
Ud

j : j = 0, .., 2d − 1
�

a partition of U induced by sequence of �-good median cuts. Then,

2d−1�

j=0

pd
j ·

d�

i=1

lengthi(Ud
j ) ≤

1 + �
2
· p ·

d�

i=1

lengthi(U). (57)

The proof is a simple consequence of (56).

F.2. Shrinking cell condition for balanced TSP
Let us focus on our balanced TSP Π = {T1,T2, · · · } of height (dn), i.e.

���πn(Yn
1 )
��� = 2dn , ∀n > 0. In addition, let

us consider Π̄ =
�
T̄1, T̄2, · · ·

�
, with partition rule π̄n(yn

1) ≡ π(T̄n(yn
1)), where T̄n(yn

1) ≡ T d̄n
n (yn

1) and d̄n = d · �dn/d�.
It is sufficient to prove the shrinking cell condition for the pruned balanced TSP Π̄. The reason for this reduction
is that by construction the height of T̄n(Yn

1 ) is power of d, and then we can recursively use Proposition 2 to bound
Q
��d

i=1 lengthi(π̄n(X|Yn
1 ))
�
. More precisely, if we condition to the event Bn(�) ∈ B( d·n), where all the axis-parallel

hyperplanes that induce T̄n(Yn
1 ) are �-good median cuts, from (57) we have the following bound,

Q




d�

i=1

lengthi(π̄n(X|Yn
1 ))


 ≤
�
1 + �

2

�rn

· d, (58)

with rn = �dn/d�. Let us choose �0 > 0 sufficiently small in order that 1 + �0 < 2. Then from (58) as rn → ∞

(when n → ∞), the event An(�) =
�
yn

1 ∈
d·n : Q

��d
i=1 lengthi(π̄n(X|yn

1))
�
> �
�
∈ B( d·n) is eventually contained in

Bn(�0)c, ∀� > 0. Consequently, let us focus on the analysis of n(Bn(�0)c). By definition Bn(�0)c is the event that one
of the cuts of T̄n(Yn

1 ) is not �0-median good. By construction the number of hyperplanes splitting T̄n(Yn
1 ) is given by

(1 + 2 + · · · + 2d̄n−1), then
n(Bn(�0)c) ≤ 2d̄n ·

n(Bo
n(�0)) (59)

with Bo
n(�0) denoting the event that one cut is not �0-median good. Devroye et al. (1996, Theorem 20.2) showed for

this case of balanced trees that,

n(Bo
n(�0)) ≤ 2 · exp

�
−

n
2d̄n+2

· ((1 + �0)1/d
− 1)2

�
, (60)
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for n sufficiently large. Consequently, from (59) and (60), there exists K > 0 such,

n(Bn(�0)c) ≤ K · exp
�
log(2) · d̄n −

n
2d̄n+2

· ((1 + �0)1/d
− 1)2

�
, (61)

∀n ∈ . From the definition of d̄n, we have that dn − d < d̄n ≤ dn, and consequently from the hypothesis, there exists
(an) ≈ np for some p > 0, such that

n
d̄n2d̄n

−
an

d̄n
→ ∞, (62)

which from (61) is sufficient to show that,
n(Bn(�0)c)

exp (−np)
→ 0 (63)

as n tends to infinity. Finally, lim supn An(�) ⊂ lim supn Bn(�0)c, ∀� > 0, then given that
�

n
n(Bn(�0)c) < ∞ from

(63), and the Borel-Cantelli lemma, Q
��d

i=1 lengthi(π̄n(X|Yn
1 ))
�

tends to zero with probability one.
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Wang, Q., Kulkarni, S. R., Verdú, S., 2009. Divergence estimation for multidimensional densities via k-nearest-neighbor distance. IEEE Transac-

tions on Information Theory 55 (5), 2392–2405.

22


