
 
 

 
 

 

  
   

  
        

    
    

 

        
     

      
 

   
    

      
 

     

 

     
      

       
       

     
      

     
       

   
     

    
     

       
      

   

   

      

        

To appear in Proceedings of the First International Conference on Biologically Inspired 
Cognitive Architectures (BICA), 2010. 

Implementing First-Order Variables in a 
Graphical Cognitive Architecture 

Paul ROSENBLOOM 
Department of Computer Science and Institute for Creative Technologies 

University of Southern California 
12015 Waterfront Dr., Playa Vista, CA 90094 

Rosenbloom@usc.edu 

Abstract. Graphical cognitive architectures implement their functionality through 
localized message passing among computationally limited nodes.  First-order 
variables – particularly universally quantified ones  – while critical for some 
potential architectural mechanisms, can be quite difficult to implement in such 
architectures. A new implementation strategy based on message decomposition in 
graphical models is presented that  yields tractability  while preserving key 
symmetries in the graphs concerning how quantified variables are represented and 
how symbols, probabilities and signals are processed. 
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Introduction 

In logic, variables lift sentences from propositional to first order,  influencing their 
truth-values when combined with existential and universal  quantifiers. In cognitive 
architectures, variables enhance the generality of long-term memory by leaving aspects 
unspecified at storage time. Variables are bound at access time, via match to working 
memory, with their reuse enabling value propagation while ensuring binding 
consistency.  Quantification occurs, but rather than affecting truth-values, it modulates 
binding generation; existential yields one binding while universal yields all bindings. 

Although implementation of first-order variables is easy in traditional symbolic 
architectures, it is quite challenging in graphical architectures that are characterized by 
restricting architectural representation and reasoning to networks of simple locally  
connected units. Conventional neural networks, for example, limit inter-unit messages 
to numbers, while units compute outputs that are simple nonlinear transformations of 
their inputs. This article presents a new approach to implementing first-order variables 
in graphical cognitive architectures that  takes inspiration from the Rete match  
algorithm [1] to combine tractability with preservation of key architectural symmetries. 

1. Graphical Cognitive Architectures 

Graphical cognitive architectures are of great interest for at least two reasons: (1) they 
provide a path for grounding cognitive behavior in the network structure of the brain [2, 
3]; and (2) they provide the hope of uniformly implementing and integrating state-of-
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the-art symbol, probability and signal processing to enable, for example, abstract 
reasoning in uncertain situations and  tight coupling of cognition with perception and 
motor control [4]. The first reason is well understood in the cognitive architecture 
community, and is part of the core motivation for  work on biologically inspired 
cognitive architectures. The second reason has been less well understood on the whole, 
although fragments of it have been accreting over time.  Signal processing has, for  
example, long been a forte of neural networks [5], while some models can also be 
related to probability and symbol processing [6, 7]. 

In general, neural networks are aimed directly at the first motivation, while 
progressively being extended towards the second.  In contrast,  the distinct-but-
overlapping class of graphical models is aimed directly at the second motivation, while 
extending towards the first. Rather than focusing on neurological analogies, graphical 
models emphasize efficient computation with complex multivariate functions, by  
factoring them into products of simpler subfunctions – based on forms of independence 
among the variables – and then mapping these products into graphs that  compute 
marginals of variables (i.e., distributions over the values of variables) and the most 
probable explanation, or MPE (i.e., the optimal combination of values over all of the 
variables). Bayesian networks are graphical models  that provide state-of-the-art 
techniques for probabilistic reasoning [8]. Markov random fields and hidden Markov 
models are graphical models that provide state-of-the-art techniques for perception [9].  
Graphical models are also making increasing inroads into symbol processing, where the 
challenge of lifting them to incorporate first-order variables is an active research topic, 
e.g. [10]. What is most compelling  about graphical models from an architectural 
perspective is the potential for identifying a single generic flavor, with a single 
processing algorithm, that will uniformly yield effective and efficient behavior across 
signal, probability and symbol processing. The hope for neural grounding ultimately 
stems from the fact that a number of neural network models  – such as radial basis  
functions and supervised Boltzmann machines – already map directly onto them [6]. 

Drawn by this potential, I have  been rethinking cognitive architectures from the  
ground up based on graphical models. This has involved, for example, reconsidering 
the kinds of mechanisms in Soar 9 [11] and ACT-R [2], and whether it is possible to 
broaden their overall functionality and coverage  while increasing their simplicity and 
uniformity. What is currently implemented falls short of a complete architecture, but it 
does provide a hybrid (discrete and continuous) mixed (Boolean and Bayesian) memory 
architecture embodying a rule-based procedural memory, semantic and episodic 
declarative memories, and a constraint memory [12]. Work is also in progress on such 
additional capabilities as decision making, spatial imagery, and learning. 

This implementation is based on factor graphs, a flavor of graphical model that  
stems from coding theory, plus the summary product algorithm [13]. Factor graphs can 
decompose general multivariate functions, rather than just the probability distributions 
dealt with by Bayesian networks.  They are undirected bipartite graphs  composed of 
nodes for both variables and factors.  A variable links to a factor if the variable is used 
in the factor’s subfunction. The summary product algorithm passes messages among 
nodes to compute marginals and MPEs. A message between a variable and a factor 
specifies a distribution over the possible values of the variable. For now, just think of a 
probability distribution over the domain of the variable. Messages arriving at variables 
are combined into output messages via a pointwise product, which is like an inner 
product – where values of corresponding elements are multiplied – but with the result 
remaining a vector/distribution rather than being reduced to a single value. Each factor 



    
      

 
      

        
     

   
         

        
   

       
          

         
     

    
 

   

       
         

      
    

          
           
         

     
          

      
      

    
      

     
        

         
    

      
 

   
   

  
      

     
        

         
   

   
     

also defines  a subfunction that is included in  the pointwise product  of its input  
messages before all of the variables not in the output message are  summarized out, 
either by summation (for marginals) or maximization (for MPE). 

In implementing the memory architecture, the question of how to deal with first-
order variables turned out to be central. Existential variables that return the single best 
value are critical for cue-based retrieval of the best answers from  the semantic and 
episodic memories. Universal variables are essential to the workings of the rule 
memory, which follows Soar’s strategy of determining all legal combinations of 
variable bindings rather than ACT-R’s strategy of limiting rule match to one 
combination.  Universal variables are also needed for the constraint memory to return 
all consistent bindings, and can play useful roles in declarative memory; for example, 
in retrieving attribute and category information from semantic memory in parallel for 
multiple objects in working memory. Although the focus in the remainder of this article 
is on implementing first-order variables in cognitive architectures based on graphical  
models, given the overlap between graphical models and neural networks it is hoped 
that these results will ultimately prove useful more broadly as well. 

2. Implementing First-Order Variables 

Let’s begin with the simple case of existential variables that return the single best value, 
and then shift to  the much harder one of  universal variables. In factor graphs, 
existential variables map  directly onto variable nodes.  Each message to such a node 
specifies a distribution over the possible values of the variable.  If maximization is used 
to summarize out variables that are unneeded in  the outputs of factor nodes, then the 
MPE – i.e., the single combination of bindings to the variables with the highest  joint 
value – is computed. This is used in episodic memory to retrieve the stored episode  
that best combines recency – based on an exponentially decaying temporal variable – 
with match to the cues. If summation is used instead, marginal distributions over the 
individual variables are computed. This is used in semantic memory to predict the 
categorization given the cues and to retrieve the best values for all uncued attributes. 

Universal variables are the core hard aspect of implementing first-order variables 
in graphical architectures. Consider all-binding rule match, as in Soar. Instead of 
messages delineating whether  individual domain elements yield the best value,  
messages must now convey information about which sets of domain elements may be 
legal. Thus, the domain of  the corresponding variable consists of subsets of the  
quantified variable’s domain elements rather than individual such elements. For 
example, if the domain of a quantified variable is <A, B>, then the domain of the 
variable node is <{}, {A}, {B}, {A B}>. A message to such a node would be a  
distribution over these four elements, such as <.4, .2, .1, .3>. Although such an  
approach is correct, it requires quite a different representation for  universal variables  
from that used for existential variables.  Even worse, it is computationally intractable; if 
the quantified variable’s domain is of size N, the variable node’s domain is of size 2N. 

The obvious response to this intractability is to seek a decomposition strategy that 
avoids the combinatorics. In Markov logic, a mix of first-order logic and probabilities 
[10], the combinatoric variable node is decomposed into N Boolean variable nodes, one 
for each of the N domain elements of the quantified variable. By propositionalizing 
both the variable and the graph, each variable node and message now reflects the  
probability that one original domain element is bound to the quantified variable.  To 



    
    

     
  

       
  

     

    
       

        
    

     
   

      
   

      
             

    
  

  
       

     
      

  
     

     
 
 

      
        

          
    

       
         

     
 

          
   

     
     

     
      

         
   

  
       

     
 

continue with our simple example, there are now two variables, A and B, each with two 
domain elements: <T, F>. Messages are distributions over these variable domains, 
such as A:<.2, .8> and B:<.4, .6>. Such an approach reduces the number of elements 
of concern from 2N to 2N in general.  However, interactions among values of multiple 
variables must also be instantiated as further Boolean nodes; so, if there were a second 
quantified variable with the domain <C, D> that interacts with  the first,  nodes would 
need to be added for A&C, B&C,  A&D and B&D. This effectively performs key 
aspects of symbol processing – such as the determination of partial instantiations in rule 
match – during graph compilation, while propagating the effects of propositionalization 
to combinations of values. In the process it reintroduces the issue of lifting, although 
now for efficiency rather than expressibility. The approach also breaks two key forms 
of symmetry: (1) between existential and universal quantifiers, with the former 
remaining first order while  the latter are propositionalized; and  (2) between the 
processing of symbols and the processing of signals and probabilities, with (much of) 
the former occurring during graph construction and the latter occurring during message 
passing in the constructed graph. 

The alternative decomposition strategy presented here preserves these symmetries, 
but at the cost of introducing other forms of complexity. It was inspired by the Rete 
match algorithm for rules. Rete is a message passing algorithm that uses a  
discrimination network to determine which working memory elements match  
individual rule conditions, plus a join network to determine which combinations of  
these elements match particular combinations of conditions. Rete’s messages represent 
partial instantiations of rules, but they can  be stripped down to just the variable 
bindings they embody without loss of information. Rather than specifying a vector of 
probabilities over a variable’s domain elements, such a message specifies a Boolean  
vector. Each value in the vector acts  a bit like its own  Boolean variable over an 
individual domain element, and each  message says something about all possible 
bindings of the quantified variable.  For our simple example, the domain of the variable 
node is now just <A, B>, with a typical message being <1, 0>, saying that A is a  
possible value but B is not. In general, this approach thus uses only a single variable 
node with a domain of size N to implement a universal variable. However, when 
multiple variables interact, variable nodes in the join network must now represent their 
combination, yielding domains that are cross products of the individual variable 
domains. For the two-variable example above, there is now a single 2D variable node 
with a 2x2 domain covering combinations of the two variables’ domain elements. 

This approach enables retaining first-order universal variables in the graph because 
decomposing the domains and messages enables the nodes themselves to remain 
unitary. To avoid total message propositionalization – where all (combinations of) 
variable values are listed explicitly – and to maintain the symmetry with probability 
and signal processing, all messages are  actually represented as N dimensional 
continuous functions that are approximated in a piecewise-linear fashion [12]. For the 
current Boolean case, this means that regions of the function that are a constant (either 
0 or 1) remain undifferentiated.  Arbitrary continuous functions are more complex in  
general than the single-valued messages typical in neural networks, but they are 
consistent with the overall expressibility of messages in graphical models and may 
perhaps ultimately be related to something appropriate over populations of neurons. 

This approach to decomposition is provably correct for the special case of 
functions with a Boolean (0/1) range, as are used here. The proof depends on mapping 
between this factored representation and the original combinatoric representation; in 



        
            

     
  

      
   
     

      
   

       
             

   
  

     
        

      
          

        
    

       
  

       
           

     
 

    
       

 
     

       
    

      
         

        
       

       
  

   
     
       

        
     

    
     

  
      

   
    

    

particular, a message with 1s for a set of elements in the factored representation maps 
to  a combinatoric message in which all subsets of these elements are 1. To yield 
correct results, product and summarization must compute equivalent values when  
applied to both the factored representation and its corresponding combinatoric 
representation. Pointwise product of factored vectors yields 1s only where all inputs 
are 1s,  computing the intersection of the legal elements in the inputs. Pointwise 
product of combinatoric vectors performs essentially the same computation by 
generating 1s for those subsets of values legal in all inputs.  So, mapping factored  
vectors to combinatoric vectors, computing their pointwise product, and then mapping 
them back yields the same result as is computed directly on factored vectors.  The same 
is also true for maximization; the result is a 1 in both cases if there is at least one legal 
binding in a vector.  Summation, however, does yield different results, with factored 
vectors yielding the number of possible bindings and combinatoric vectors yielding the 
number of subsets of bindings. Fortunately summation isn’t needed with Boolean 
vectors, since all that really matters is whether there is at least one possible binding. 

Correct results are not, however, guaranteed when probabilities over individual  
elements are used rather than Boolean values. Product still yields the correct values, 
but neither sum nor max does. Thus, with this factoring strategy, probabilities can be 
used for existential variables but not for universal ones.  The latter must be Boolean. 

In addition to ensuring the correctness  of the summary product algorithm, an 
equally important question is whether the necessary subfunctions can be implemented 
as factors in the decomposed representation. In rule match, the subfunctions of interest 
are filters. A constant test eliminates elements that might otherwise match a condition. 
A join node eliminates  partial instantiations  lacking compatible variable bindings.  
Such filters are many-one functions that can be expressed directly in the combinatoric 
representation, with a value of 1 for all pairings of the filter’s input and output values 
that meet the criteria. For a forward message through a filter, the output receives all  
subsets of values of the input variable compatible with the filter.  In the reverse  
direction, indeterminacy results for all  values that might have been filtered out  when 
going forward. In the decomposed representation, the forward direction is implemented 
via a factor function  containing a 1 for anything that  passes the filter  and a 0 for  
everything else. However, a backwards message through such a function does the same 
filtering rather than generating the expected ambiguity. In rule systems, messages only 
proceed in one direction – from working memory through conditions to actions – and 
thus this inverse function is not relevant, but were it needed, the summary product  
algorithm could be extended to use a different function for  each output of a factor in 
service of preserving the intended decompositional semantics of the graph. 

Beyond filters, there are  subfunctions that cannot be expressed as decomposed 
factor functions for computation via summary product.  For these cases, special-
purpose one-way code is used that, when applied to the factored representation, yields 
the result that would be obtained from the combinatoric representation. Computing the 
inverse of a variable, as occurs in implementing negated conditions, is a simple  
example. Given a Boolean message about the elements of a variable, it should generate 
an inverse message with 1s replaced by 0s and 0s by 1s.  The true factor function 
should have a 1 wherever the input and output messages are inverses and a 0 otherwise.  
This is easy to specify in the  combinatoric representation, but not in the decomposed 
representation. Instead, inversion is implemented by  special-purpose code that  
bypasses summary product within the node to directly generate the inverse output from 
the input.  This code works the same in both directions here, but in other cases – such 



      
   

   

  

           
            

      
    

       
   

        
   

  

 

         
         

      
    

 

           
  

              
  

           
  

      
 

      
 

         
     

         
          

   
        
            
          

   
          

    
       

   
            

 

as when computing  disjunction over messages  – different code is required for each 
output.  The overall network still computes the same value as would summary product 
on the combinatoric representation, but special purpose code is used for tractability. 

3. Conclusion 

Graphical cognitive architectures provide hope of grounding their mechanisms in the 
workings of the brain while yielding a uniform and tightly integrated combination of 
state-of-the-art capabilities across symbols, probabilities and signals. This article has 
presented a new approach to  handling a key  yet challenging capability in such 
architectures: first-order variables. The result involves some complexity, and requires 
special-purpose optimizations for some aspects, but in turn it enables coping with such 
variables – even when universally quantified – in first-order graphs, while keeping the 
processing of symbols aligned with that of signals and probabilities.  This approach has 
been successfully applied to implement a hybrid mixed memory architecture [12]. 
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