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INTRODUCTION 

Compared to many other learning technologies, intelligent tutoring systems (ITSs) have a distinct 
challenge: authoring an adaptive inner loop that provides pedagogical support on one or more learning 
tasks.  This coupling of tutoring behavior to student interaction with a learning task means that authoring 
tools need to reflect both the learning task and the ITS pedagogy.  To explore this issue, common learning 
activities in intelligent tutoring need to be categorized and analyzed for the information that is required to 
tutor each task.  The types of learning activities considered cover a large range: step-by-step problem 
solving, bug repair, building generative functions (e.g., computer code), structured argumentation, self-
reflection, short question answering, essay writing, classification, semantic matching, representation 
mapping (e.g., graph to equation), concept map revision, choice scenarios, simulated process scenarios, 
motor skills practice, collaborative discussion, collaborative design, and team coordination tasks.  These 
different tasks imply a need for different authoring tools and processes used to create tutoring systems for 
each task.  In this chapter, we consider three facets of authoring: 1) the minimum information required to 
create the task, 2) the minimum information needed to implement common pedagogical strategies, 3) the 
expertise required for each type of information.  The goal of this analysis is to present a roadmap of 
effective practices in authoring tool interfaces for each tutoring task considered. 
 
A long-term vision for ITSs is to have generalizable authoring tools, which could be used to rapidly create 
content for a variety of ITSs.  However, it is as-yet unclear if this goal is even attainable.  Authoring tools 
have a number of serious challenges, from the standpoint of generalizability.  These challenges include 
the domain, the data format, and the author.  First, different ITS domains require different sets of 
authoring tools, because they have different learning tasks.  Tools that are convenient for embedding 
tutoring in a 3D virtual world are completely different than ones that make it convenient to add tutoring to 
a system for practicing essay-writing, for example.  Second, the data produced by an authoring tool needs 
to be consumed by an ITS that will make pedagogical decisions.  As such, at least some of the data is 
specific to the pedagogy of the ITS, rather than directly reflecting domain content.  As a simple example, 
if an ITS uses text hints, those hints need to be authored, but some systems may just highlight errors 
rather than providing text hints. As such, the first system actually needs more content authored and 
represented as data. With that said, typical ITSs use a relatively small and uniform set of authored content 
to interact with learners, such as correctness feedback, corrections, and hints (VanLehn, 2006). Third, 
different authors may need different tools (Nye, Rahman, Yang, Hays, Cai, Graesser, & Hu, 2014).  This 
means that even the same content may need distinct authoring tools that match the expertise of different 
authors. 
 
In this chapter, we are focusing primarily on the first challenge: differences in domains.  In particular, our 
stance is that the “content domain” is too coarse-grained to allow much reuse between authoring tools.  
This is because, to a significant extent, content domains are simply names for related content.  However, 
the skills and pedagogy for the same domain can vary drastically across different topics and expertise 
levels.  For example, Algebra and Geometry are both high-school level math domains.  However, in 
geometry, graphical depictions (e.g., shapes, angles) are a central aspect of the pedagogy, while Algebra 
tends to use graphics very differently (e.g., coordinate plots).  As such, some learning tasks tend to be 
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shared between those subdomains (e.g., equation-solving) and other tasks are not (e.g., classifying 
shapes).   
 
This raises the central point of our paper: the learning tasks for a domain define how we author content 
for that domain.  For example, while Algebra does not involve recognizing many shapes, understanding 
the elements of architecture involves recognizing a variety of basic and advanced shapes and forms.  In 
total, this means that no single whole-cloth authoring tool will work well for any pair of Algebra, 
Geometry, and Architectural Forms.  However, it also implies that a reasonable number of task-specific 
tools for each learning task might allow authoring for all three domains.  To do this, we need to 
understand the common learning tasks for domains taught using ITS, and why those tasks are applied to 
those domains.  In the following sections, we identify and categorize common learning tasks for different 
ITS domains.  Then, we extract common principles for those learning tasks.  Finally, we suggest a set of 
general learning activities that might be used to tutor a large number of domains. 

WHAT IS A LEARNING TASK? 

Before we begin, it is important to define what we mean by a learning task.  Functionally-speaking, a 
learning task is an activity designed to help the participant(s) learn certain knowledge or skills.  Any 
learning task has a three essential parts:  
1) Task State (ST) - the context and status of the task,  
2) Task Interface (IT) - the representation used to present the 
task and its available actions,  
3) Task Goals (GT) - importance or value given to states or 
state trajectories, which may be stated in the task, given prior 
to the task (e.g., by a teacher), or chosen by the learner. 
 
A directed learning task, such as one run by a teacher or an 
ITS (as opposed to an undirected sandbox activity), also has 
complementary parts related to the instructor’s control over 
the system: 
 
1) Pedagogical State (SP) - the context and status relevant to 
pedagogical decision-making, 
2) Pedagogical Interface (IP) - the pedagogical actions 
available during a task, and 
3) Pedagogical Goals (GP) - importance or value given to 
reaching certain pedagogical states.  

Figure 1: Tasks & Pedagogy 

The relationships between these parts are noted in Figure 1.  From an ITS authoring standpoint, both the 
task and the pedagogical model need to be authored.  In this representation, the pedagogical state includes 
the task goals, task state, and the learner’s state (e.g., a student model).  In this respect, the pedagogical 
state is more complex than the task state.  However, excluding the learner’s internal state (which is only 
observable through the history of task interactions) and the task goals (which are typically not changed 
during a given task), the pedagogical state is by definition less complex than the task state. Considering a 
task as a Markov Decision Process, the pedagogical state trajectory SP cannot consider any more 
information from the task beyond its trajectory of task states (ST).  In most cases, the representation of the 
pedagogical state is far simpler and based on features sets such as classifying good/bad answers, 
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identifying specific misconceptions or bugs, and other assessments that reduce even rich environments 
(e.g., 3D simulators) into streams of simpler features that form the pedagogical state used for triggering 
interventions such as hints (Kim et al., 2009; Nye, Graesser, & Hu, 2014; VanLehn, 2006). 
 
This implies that ITS authoring should be greatly constrained by the learning task.  At face value, it seems 
like there might be exceptions: a tutor for metacognitive skills might need to know almost nothing about 
learner’s performance on their primary learning task, if it only suggests self-reflection and an unassessed 
summarization.  However, it can be argued that such a task-agnostic tutor has that capability only because 
it generates its own learning tasks (e.g., journals for summarization, delays for self-reflection).  This has 
two implications: 

1. First, it implies that all ITS authoring is tied to a specific set of tasks.  
2. Second, it implies that multiple learning tasks may be interleaved or even occurring 

simultaneously. 
In simulation-based training for complex tasks, such as flight simulators or cross-cultural competencies, 
working on multiple tasks simultaneously might even be a major part of the pedagogy (Silverman, 
Pietrocola, Nye, Weyer, Osin, Johnson, & Weaver, 2012).  So long as interactive feedback on each 
learning task is independent (i.e., feedback on one task does not directly impact the pedagogical state of 
other tasks), authoring for such tasks can typically be done independently as well. 
 
So then, this is what we mean by a learning task from an authoring standpoint: 1) a task with a distinct 
pedagogical state, 2) whose dynamics during that task are mainly or wholly derived from the task state, 
and 3) which includes the actions performed by the learner (or learners).  Moreover, as simplifying 
assumptions, we posit that the pedagogical goals and problem goals remain static for the typical ITS 
learning task.  For example, even in complex training environments, switching the task goals typically 
implies ending a task and starting a new one.  The counterexample to this case would be a learning task 
specifically targeting the learner’s skills at goal-setting or at adapting to changing task goals.  Such tasks 
are uncommon, and no major authoring tools target such tasks.  Finally, we assume that changes to the 
learner during an ITS task (e.g., learning, affect changes) are primarily influenced by and observable 
based on interactions with the task interface.  If they were not, this would be problematic: the ITS would 
have little ability to tell if its interventions are effective if some external factors are causing learning 
and/or task performance (e.g., a second user helping).  With that said, such confounds are possible, such 
as when multiple users share an ITS intended for one user (Ogan, Walker, Baker, Rebolledo Mendez, 
Jimenez Castro, Laurentino, & de Carvalho, 2012).  However, as no known authoring tools develop ITS 
content for such situations, these are also considered edge cases that we will exclude from this analysis 
authoring learning tasks for ITS. 
 
A REVIEW OF AUTHORING-RELEVANT CHARACTERISTICS OF LEARNING TASKS 
 
Significant literature focuses on taxonomies of learning tasks and the types of knowledge they are 
designed to convey to a learner.  Notable examples include Bloom’s Taxonomy and its revisions (Bloom, 
1956; Anderson, Krathwohl, Airasian, Cruikshank, Mayer, Pintrich, Raths, & Wittrock, 2000), guidelines 
for learning activities and resources (R. Clark, 2002; R. Clark & Mayer, 2011), and theories of different 
types of knowledge components involved in learning (Koedinger, Corbett, & Perfetti, 2012).  These three 
perspectives each look at a different facet of learning tasks: A) the task activity (Bloom, 1956), B) the 
pedagogical goals for the learning task (R. Clark, 2002), and 3) the knowledge components theorized to 
encode the knowledge (Koedinger et al., 2012).  Figure 2 shows different possible combinations of 
learning tasks and pedagogical goals. 
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Figure 2: Combinatorial Combinations for Learning Tasks and Pedagogical Goals 

 
Bloom’s taxonomy is the most widely used taxonomy to label learning tasks, and has undergone a 
number of revisions (D. Clark, 2014). Bloom’s revised taxonomy (2000) of cognitive knowledge 
considers six levels: remembering (e.g., list facts), understanding (e.g., summarize in own words), 
applying (e.g., solve a math problem), analyzing (e.g., identify a statistical trend), evaluating (e.g., select 
the best-value car for an average consumer), and creating (e.g., build a robot for some task out of parts).  
Ruth Clark (2002) presented a complementary taxonomy for different types of knowledge associated with 
pedagogical goals for learning tasks, which built on Merrill (1983).  Her categories included facts (unique 
instances), concepts (classes of instances), processes (representations of how a system works), procedures 
(steps to reach a task state), and principles (causal relationships and general dynamics).   
 
In addition to these pedagogical goals, metacognitive knowledge can also be a pedagogical goal: where 
the learner gains understanding or skills to monitor their own cognitive state or learning (Biswas, Jeong, 
Kinnebrew, Sulcer, & Roscoe, 2010; Azevedo, Johnson, Chauncey, & Burkett, 2010; Goldberg & Spain, 
2014).  While metacognitive knowledge may fall into other categories, it can involve learning to monitor 
an additional information channel other than the task state (i.e., their own mental state).  As such, at least 
some types of metacognitive learning are probably qualitatively different than other types of knowledge 
(possibly closer to affective or psychomotor skills).   
 
Koedinger et al. (2012) looked at the next step for learning activities, which was the cognitive 
components relevant to assessment and cognitive encoding of knowledge.  They considered four facets 
for encoding knowledge: the task feature dynamics (static vs. variable), the required learner response 
(static vs. variable), the relationship between task features (explicit vs. implicit), and the availability of a 
rationale (e.g., a “why” justification for the relationship between features).  These different 
categorizations determine when a learner would need to encode, such as a rule (e.g., y*x = x*y) or simply 
an association (e.g., x and y were observed together). 
 
Considering these approaches to categorizing learning activities, key facets emerge for different learning 
tasks.  These fall into three design concerns: pedagogical goals (what the student should learn), task 
design (the learning environment and its affordances), and task interface (how the task is represented and 
presented).  Together, these concerns constrain the pedagogical interface for how an ITS interacts with 
learners and what needs to be authored. 
 
Task Dynamics 
A major constraint on ITS authoring is the dynamics of the task state itself.  For example, some learning 
tasks are static and have no dynamic features (e.g., memorizing a shape or a fact).  Koedinger et al. 
(2012) highlighted the distinction between tasks whose features are static (e.g., the same across all 
instances) versus those that are variable (e.g., some features vary across instances, requiring the learner to 
generalize across them).  We further subdivide variable tasks into a few types, as shown in Figure 3.  In 
our conceptualization, three types of variation can occur in the state of a task.  The first type, which we 
call variable instance, is across presented tasks, such as presenting a series of pictures and requiring the 
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learner to identify which ones contain triangles.  Other variable tasks change during the process of 
solving the task. The second type, reactive, is a task whose state changes due to the learners’ actions 
(e.g., step-by-step equation solving).  In the third type, time-varying, the task state changes over time 
regardless of user input (e.g., a video or simulation that unfolds over time).  When the task is both time-
varying and reactive to user input, we consider it interactive (e.g., a 3D game world). 
 

 
Figure 3: Different Types of Task Variability 

 
These distinctions constrain authoring: static tasks are not typically taught by ITS at all, because many are 
rote learning that respond equally well to simpler drill-and-practice methods.  However, some intelligent 
systems, such as Pavlik et al.’s (2007) FaCT system, improve recall-type tasks by optimizing spacing 
effects and the sequence of instance presentations. Static tasks that do not change based on user input are 
limited to interventions such as highlighting salient features, demonstrating how to find the right solution, 
responding to a single answer from the learner, or presenting different tasks (e.g., learning prerequisites).  
It is still possible to adapt to the learner’s responses, such as with systems that provide hints and retry 
attempts in response to wrong answers on multiple choice questions (Conejo, Guzmán, de-la Cruz, & 
Millán, 2006).   However, most ITS tend to focus on reactive and interactive tasks, because learner 
actions during the task allow a greater ability to target feedback and hints. 
 
Task Assessment 
A second major constraint is how well can the ITS measure progress toward pedagogical goals.  Since 
tasks are used to assess learning, measuring progress toward pedagogical goals requires measuring 
progress toward task goals. In many ways, the ability to measure such progress distinguishes between 
well-defined and ill-defined domains (Fournier-Viger, Nkambou, & Nguifo, 2010; Nye, Bharathy,  
Silverman, & Eksin 2012).  Any task has two possible levels of introspection: the value for the task state 
and the value of learner actions. When the goals are known, it is often possible to infer the value of 
actions from the state if the outcomes are predictable, but this is not always (e.g., due to competing goals 
to choose between). Table 1 categorizes different combinations of knowing the value of states and the 
value of learner actions.  Knowing the value of states allows measuring good outcomes, while knowing 
the value of actions allows measuring good process. 
 

 
Table 1: Measures for Task Goal Progress 
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If a state utility function is available, all states and transitions between states have a known value.  For a 
completely measurable task, the relative value of actions is also known, such as a well-formed economics 
problem where some actions lead to more profit than others.  In other cases, the ultimate impact of actions 
is uncertain (e.g., a chaotic system like the stock market), but good outcomes can still be measured.  
Generative simulations with emergent behavior often have this quality (Nye et al., 2012).  
 
When an ITS can detect improvements between states but can’t evaluate states exactly, then state 
transition gradients are known.  So long as the relationship between learner actions and transitions is 
known (e.g., problem-solving in Algebra), formative assessments such as model tracing and example 
tracing can be used (Aleven et al., 2006).  When specific learner actions cannot be evaluated easily (e.g., 
editing a learner’s essay), ITS can still provide feedback on the task state.  Design-based ITS often use 
this approach, such as essay-writing ITS that can assess an essay and suggest guidelines to improve the 
state of the essay (Roscoe & McNamara, 2013). Likewise, when relative value of overall task states is 
unknown, it is sometimes still possible to assess learner actions. This approach to measurement considers 
the process, rather than the outcomes.  Constraint-based ITS are often applied to these kind of tasks 
(Mitrovic, 2003).  If it is impossible to assess the quality of either the task state or the learner’s actions, 
the task is ill-defined. 
 
In general, when considering Figure 2, higher levels of Bloom’s Taxonomy tend to involve tasks closer to 
the bottom and right of Table 1. The ability to measure progress on task goals is the first constraint on ITS 
authoring, since it directly constrains the types of feedback and interventions available to the ITS. If it is 
impossible to evaluate the quality of actions, it is impossible to provide a “correction” or suggest a 
concrete “next step” action.  As such, there is no need to author one.  As such, more complex tasks and 
generative models tend to offer fewer affordances for authoring traditional ITS content, and tend to rely 
on the natural dynamics of the simulation to provide reactive feedback (i.e., intelligent environments, 
rather than intelligent tutors). 
 
Task Interface 
The interface of the task consists of how it is presented to the learner and of how the learner presents 
input.  More generally, task interfaces are part of the communication module of a classical 4-component 
ITS diagram (Woolf, 2010).  They are the input and output with the learner for the learning task.  Typical 
inputs to an ITS include: discrete selections (e.g., multiple choice), continuous selections (e.g., 
manipulating sliders for a simulation), formal representations (e.g., math equations, graphs), freeform 
input (e.g., natural language, freehand sketches), and controlling an avatar (e.g., 3D worlds).  The 
modality of learner input is a further constraint on authoring: the pedagogical interface needs to turn input 
from the task into something actionable.  Ironically, this means that feature-rich inputs, such as natural 
language, are typically simplified into much simpler representations such as discrete selections (e.g., 
good/bad answers).  The representation of the user input is the final major constraint on authoring.  
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Figure 4: Common Interventions for an ITS 

 
Based on the pedagogical features extracted from the task state and user input, the ITS needs to author 
various interventions.  When extending an ITS to new learning tasks, these interventions are typically a 
major focus for authoring.  When, why, and how the ITS applies its pedagogical strategies and tactics is 
the main repository of an author’s domain pedagogy expertise.  Figure 4 displays a variety of options for 
an ITS to intervene during a task.  The most rudimentary of these is to recognize a difference between a 
detected state and some other state (e.g., “You seem to like chocolate ice cream more than the average 
learner.”). Since this response assigns no specific value judgment, it can be used for entirely ill-defined 
domains by using techniques such as novelty detection (Markou & Singh, 2003).  It is also possible to 
modify the task state or features even for tasks that lack clear assessments of state or action value, such 
as through random perturbations.  However, typically an ITS changes the state of a task to make it easier 
or harder (elastic difficulty).  This is done by reducing the degrees of freedom (less options), completing a 
task step, or increasing the salience of important task features (e.g., highlighting). Another approach is to 
react in response to user input.  Even if no assessment can be made for that input, their input can always 
be acknowledged (Ack.).  While this might seem like a weak tactic, it is often used to prompt learners to 
self-reflect, write in a journal, or mark the start or completion of other metacognitive activities. 
 
On well-defined tasks, ITS tactics often take the form of various types of feedback or modeling effective 
solution paths (VanLehn, 2006).  Feedback is a response to a user action that either presents an answer or 
otherwise modifies the task state.  Common methods of feedback include reacting to errors or good 
answers (binary assessments), scoring (continuous or ranked assessments), corrections (providing a fix to 
the answer), and explanations (stating why an answer is right or wrong).  Modeling a good answer or 
solution path is also common.  It can be used as feedback, or provided at some point during the task state 
(e.g., provide the worked solution if the user cannot solve the problem).  A few types of modeling are 
possible.  These include presenting the solution to a similar task example, providing the next step(s) to the 
current task, or providing a good final solution for the student to look at (e.g., a good essay on the same 
topic they are trying to write about).  If the full set of steps and the solution is provided, then the 
intervention was a worked solution.   
 
The authoring effort for these types of feedback varies significantly.  Meaningful corrections and 
explanations require a much deeper connection to domain pedagogy than simpler feedback such as 
detecting the existence of errors.  Likewise, adding explanations to modeling interventions greatly 
increases authoring effort, because it moves beyond simply assessing task performance and starts to 
model how a human teacher or instructor might correct student errors or explain the process of working 
on the task.  However, this authoring effort probably supports some of the most effective ITS tutoring 
behaviors, since it is ideally based on the expertise accumulated from hundreds of hours of human 
teaching interactions. 
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DISCUSSION: COMMON LEARNING TASKS AND TOOLS 
Based on these task features, it is possible to break down a variety of common ITS learning tasks and 
examine how their distinguishing characteristics are reflected in their authoring tools.  Three types of 
tasks can be considered: well-defined tasks (mostly reactive to user input, values for user actions can be 
known, user inputs are formal and decidable), less-defined tasks (highly interactive, freeform input, lack 
well-defined goals etc.), and task sandboxes (e.g., complex simulators used to build pedagogical tasks). 
 
Well-Defined Tasks 
Table 2 lists common well-defined learning tasks.  Two salient learning activities and pedagogical goals 
for each class of task are noted.  With that said, specific tutors may use different types of scaffolding to 
use the same task to focus on different pedagogical goals and activities, so there can be significant 
variation on these.   In terms of pedagogy, well-defined tasks probably allow the widest set of 
interventions: because the task state and user input allow clear assessments and have constrained solution 
paths, the ITS has a fairly clear view of the task and associated pedagogical state. 
 
The most established ITS tasks center on multi-step problem-solving, such as step-by-step math or 
physics (Ritter, Anderson, Koedinger, & Corbett, 2007; Aleven, McLaren, Sewall, & Koedinger, 2006; 
VanLehn et al., 2005), diagnosing systems and repairing them (Lajoie & Lesgold, 1989), and building 
dynamical system models (Biswas et al., 2010; Iwaniec, Childers, VanLehn, & Wiek, 2014). Step-by-step 
problem-solving tasks can also be presented in 2D or 3D worlds (Rowe, Shores,  Mott, & Lester, 2011). 
Step-by-step problem-solving ITSs tend to author hints and feedback that is conditional on the current 
task state and the current action (or actions). They also typically provide a full bottom-out worked 
solution when needed.  In-game worked solutions are not common for ITS with avatar input (e.g., 3D 
worlds), though sometimes recorded cut-screen/video solutions are available.  The specific ITS 
intervention content that is presented is typically tied to general rules that are shared across many task 
examples (e.g., hints related to the commutative property of addition).  As such, authoring these tasks 
tends to require authoring: 1) A well-defined state representation (e.g., a chess board), 2) a set of domain 
rules that transform state (e.g., piece move rules), 3) a goal state for the task, 4) a set of expert rules that 
rely on features of the task state, 5) sometimes buggy rules that represent specific misconceptions to 
remedy, and 6) templates for feedback and hints that are associated with certain task states or production 
sequences.  In some cases, authoring the task interface is also part of the ITS tool set. The Cognitive Tutor 
Authoring Tools (CTAT; Aleven et al., 2006) offers an example of fairly mature tools for problem-
solving tasks. 
 
Authoring tools for these tasks focus on defining ideal and buggy production rules that can be used to 
classify task states and learner behavior as they complete the task (Aleven et al., 2006).  Ideal production 
rules can be used to identify points for positive feedback on a good action, or can be used to provide hints 
about good next steps for a problem.  These ideal next steps are inferred by evaluating the chains of 
actions that are required to reach the task goal (i.e., solution).  Similarly, buggy rules can be used to detect 
specific misconceptions for the learner when they perform certain sequences of actions.  Instance-based 
authoring can be used to infer these rules instead of explicit authoring, through systems such as 
SimStudent (Matsuda, Cohen, & Koedinger, 2014).  Feedback and hints tend to be provided through 
parameterized templates that can refer to task features.  A simpler approach to authoring these tasks 
involves forcing the learner to stay on a linear or simple branching example-tracing approach, with hints 
that are specific to certain states or transitions in a problem template (Razzaq, Patvarczki, Almeida, 
Vartak, Feng, Heffernan, & Koedinger, 2009).  At least for certain mathematics topics, tutoring a single 
solution strategy (or even a single path) is nearly as effective as a more complex structure (Waalkens, 
Aleven, & Taatgen, 2013; Weitz, Salden, Kim, & Heffernan, 2010).   
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As such, two alternatives exist to rule authoring: 1) instance-based inference and 2) template-specific 
tutoring.  In the first case (e.g., SimStudent), rules are inferred from expert (and perhaps non-expert) 
solution paths.  This requires an authoring tool that shows a complete interface to the problem, as well as 
an external judgment of the user’s expertise level.  This allows skipping explicit rule authoring.  In the 
second case, task templates can be authored with tutoring associated with specific task paths.  This type of 
authoring is also used for other tasks (e.g., constrained choice dialogs with branching), so it is a valuable 
general-purpose authoring interface in its own right. Much like making inferences across multiple 
instances, an authoring tool for integrating tutoring templates with task paths also needs to give the author 
a good view of the task state that is similar to the student’s view. 
 

Task Activities 
(Top-2) 

Pedagogy 
Goal (Top-2) 

Variability State 
Values 

Action 
Values 

Task 
Inputs 

Interventions to 
Author 

Step-By- 
Step Math 

Apply, 
Understand 

Procedure, 
Principle Reactive Gradients/

Ranks Known Formal 
Expression 

Feedback (Any),  
Next Steps, 

Similar 
Example, 

Worked Solution 

Diagnosis  
& Repair 

Analyze, 
Apply 

Process, 
Procedure 

Reactive or 
Interactive 

Gradients/
Ranks Known Formal 

Model 

Feedback (Any), 
Next Steps, 

Similar 
Example, 

Worked Solution 

Dynamical 
Systems 

Create, 
Analyze 

Procedure, 
Process 

Reactive or 
Interactive 

Utility or 
Gradients Known Formal 

Model 

Feedback (Any), 
Next Steps, 

Similar 
Example, 

Worked Solution 

Classifying Understand, 
Analyze 

Concept, 
Process Static Category Known Discrete 

Selection 

Feedback (Error, 
Correct, Expl.), 

Similar Example 

Bug Detect Analyze, 
Understand 

Process, 
Concept Static Category Known 

Discrete/ 
Continuous 
Selection 

Feedback (Error, 
Correct, Expl.), 

Similar Example 

Represent- 
ation Map 

Understand, 
Apply 

Concept, 
Process Reactive Gradients/

Ranks Known Formal 
Models 

Feedback (Any),  
Next Steps, 

Worked Solution 

Concept 
Map Revise 

Understand, 
Analyze Concept Reactive Gradients/

Ranks Known Formal 
Model 

Feedback (Any),  
Next Steps, 

Worked Solution 

Constrained 
Choice 

Analyze, 
Evaluate 

Process, 
Principle 

Reactive or 
Interactive 

Utility or 
Gradients Known Discrete 

Choice Feedback (Any) 

Table 2: Common Well-Defined ITS Tasks 
 
A second major class of problems includes pattern matching and classification of examples, such as 
biological taxonomies (Olney et al., 2012) or identifying errors in a complex task, such as bugs in a 
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computer program (Carter & Blank, 2013).  These ITS tend to provide hints and feedback based on the 
difference in features between the chosen classification and the ideal one, with strong use of explanation 
but seldom presenting a step-by-step process. A third class of well-defined ITS tasks includes building 
formal semantic models from freeform representations (e.g., concept map revision) and converting 
between different well-defined representations, such as from a graph to an equation (Olney et al., 2012).  
These also tend to keep track of the difference in features between the current and ideal models, but can 
also suggest next-step changes because the model can be modified.   
 
Authoring tools for these tasks tend to rely on defining ontologies, concept maps, or other structures that 
define the features of classes and examples.  Each instance in a task can be authored by tagging its 
features or class memberships, after which hints, counter-examples, or other feedback need to be created.  
If the pedagogy goals also include following a certain step-by-step process to make classification 
distinctions, authoring may also require tutoring similar to branching example tracing.  Across these types 
of tasks, a simplified ontology class and instance editor could be quite effective, if it provided clear 
intervention templates to target differences or similarities between patterns. 
 
Finally, there are constrained choice problems, such as ITS-supported multiple choice or branching 
dialogs (Kim et al., 2009).  These can actually be quite varied, but tend to provide interventions that are 
either dependent only on the current state (e.g., a hint for choosing the wrong answer) or that are 
exhaustively defined by a branching state path.  This means that authoring such tasks tends to be easier 
up-front than a problem-solving ITS, but harder to reuse for related tasks. In general, authoring these 
tasks should be similar to linear example-tracing.  However, because the tasks may involve fewer general 
principles that repeat across examples, the authoring is likely to have more explanations and need fewer 
templates and parameters. 
 
Less Well-Defined Tasks 
Ill-defined and less well-defined tasks are presented in Table 3.  These tasks tend to be less-defined 
because either the goals are not fully-defined, the inputs require natural language processing or are 
otherwise not formally evaluatable, or the task requires the learner to produce a full artifact before it can 
be evaluated.  Structured argument tasks, such as those used for law (Pinkwart, Ashley, Lynch, & Aleven, 
2009) or policy (Easterday & Jo, 2014), work similarly to causal concept map tasks.  However, they differ 
because the goals for argumentation are not always well-defined (i.e., the learner must first choose what 
to argue).  As such, authoring typically requires generating an extensive formal model of free-text 
sources.  This model may be hand-authored or extracted from the associated reference texts.  Learners 
will then need to generate explanations that are logically or causally consistent with the underlying formal 
model, while supporting the argument goal that the learner has selected.  These ITS tend to also require a 
reusable set of hint and error-correction templates (e.g., for different logical inconsistencies).  For specific 
common misconceptions, rules or constraints may also be used to trigger explanations or modeling 
behavior (e.g., presenting an analogous case or example).  Case-based reasoning is one mechanism for 
identifying similar examples (Kolodner, Cox, & González-Calero, 2005), and can also be used as a 
pedagogical strategy for these domains. 
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The next category of tasks requires the user to create significant artifacts, such as essays or computer 
programs (Roscoe & McNamara, 2013; Kumar et al., 2013).  These ITS tend to calculate an overall 
quality score, based on a number of calculated features that it can highlight or give hints for improvement.  
However, unlike an ITS for Algebra, these tutors cannot explicitly correct most problems (e.g., a 
programming ITS typically cannot fix the learner’s code).  ITS authoring for these tasks requires defining 
a set of features that are used to determine quality of the task artifact. Typically, this training is done 
using supervised learning or hand-authoring.  Tutoring often focuses on feedback and hints related to 
specific features that need improvement for the artifact, as well as an overall quality score. 

Task Activities 
(Top-2) 

Pedagogy 
Goal (Top-2) 

Variability State 
Values 

Action 
Values 

Task 
Inputs 

Interventions to 
Author 

Structured 
Argument 

Evaluate, 
Analyze 

Principle, 
Concept Reactive Gradients

/Ranks Varies Formal 
Model 

Feedback (Error, 
Score, Explain), 
Similar Example 

Functional 
Coding 

Create, 
Understand 

Procedure, 
Concept Reactive Gradients

/Ranks 
Not 

Known 

Mixed 
Formal 

and 
Freeform 

Feedback (Error, 
Score, Explain), 
Similar Example  

Essay 
Writing 

Create, 
Analyze 

Procedure, 
Concept Reactive Gradients

/Ranks 
Not 

Known 
Freeform 

(NLP) 

Feedback (Score, 
Explain), 
 Similar 
Example 

Summaries Understand Concept, 
Process Reactive Gradients

/Ranks 
Not 

Known 
Freeform 

(NLP) 
Feedback (Score, 

Explain) 

Expectation 
Coverage 

Understand, 
Analyze 

Concept, 
Principle Interactive Gradients

/Ranks Known Freeform 
(NLP) 

Feedback (Any), 
Next Steps, 

Worked Solution 

Short 
Answer 

Understand, 
Analyze 

Concept, 
Fact 

Reactive/ 
Interactive 

Gradients
/Ranks Known Freeform 

(NLP) 
Feedback (Any), 
Similar Example  

Open Self- 
Reflection Understand Concept, 

Process Static Not 
Known 

Not 
Known Freeform 

Difference 
Recog., 

Acknowledge 

Choice 
Search 

Evaluate, 
Analyze 

Process, 
Principle Interactive Utility or 

Gradients 
Not 

Known 
Freeform 
or Avatar 

Feedback (Any), 
Similar Example 

Setting 
Goals and 
Priorities 

Evaluate, 
Analyze 

Principle, 
Process Interactive Not 

Known 
Not 

Known 

Varies 
(Formal or 
Freeform) 

Difference 
Recog., 
 Similar 
Example 

Table 3: Common Less-Defined ITS Tasks 

The next set of less well-defined ITS focus on helping the learner understand, analyze, and evaluate 
information. They include self-reflection, expectation coverage tasks (Graesser, Chipman, Haynes, & 
Olney, 2005), summarization and paraphrasing tasks (McNamara, Levinstein, & Boonthum, 2004), and 
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short-answer tasks.  All of these tasks focus on helping the learner understand semantic content and its 
relationships.  Open self-reflection tasks focus on the metacognitive practice of reflecting on the content.  
As such, in many cases the quality of content is not assessed (e.g., a journaling task).  Instead, ITS content 
focuses on encouraging the habit of self-reflection.  In general, many metacognitive tutors focus on 
building habits, such as encouraging question-asking or hint button use (Azevedo et al., 2010; Roll, 
Aleven, McLaren, & Koedinger, 2011).  Open self-reflection tasks and other content-agnostic tasks tend 
to require little content authoring, and often require only a set of simple prompt and acknowledgement 
templates.  These reflection prompts can be triggered by task events, or even by general timers. 

Expectation coverage tasks unfold over many dialog turns, which assume a part-whole relationship for 
multiple expectations as part of a full explanation. As such, these ITS must detect multiple related 
subtopics and provide feedback and hints on each one.  Short answer tasks are even more constrained, and 
their answers tend to be binned into good answers, specific misconceptions, or general bad answers.  
Expectation coverage tasks tend to contain short answer tasks inside of them, when specific knowledge 
needs to be assessed.  A variety of authoring representations exist for evaluating semantic statements, 
which fall into three main categories: instance-based authoring, feature authoring, and grammar-based 
authoring.  Instance-based authoring involves generating various classes of answers (i.e., good/bad), 
which are then used to match against using various algorithms. Feature-based authoring involves creating 
special features, such as regular expressions or keywords that capture key defining features between 
different types of answers.  Finally, grammar-based authoring involves developing domain-specific 
parsers that extract domain-relevant relationships from the text.   

In all cases, these techniques are used to bin learner answers into specific speech act categories, which 
can then be associated with feedback, hints, or modeling interventions. Summarization tasks work 
similarly, but require the learner to rephrase a passage.  A successful summary requires the answer to 
have similar semantics, but dissimilar surface features (i.e., it cannot be identical). These tend to focus on 
understanding the content, but their quality tends to be rated on a continuous scale, because there are 
competing feature sets.  In addition to assessments of learner input, rules are also required to allow the 
dialog to progress naturally.   In general, a limited set of templates can be sufficient to handle typical ITS 
tasks.  While there are some indications that different levels of knowledge might benefit from different 
dialog interactions (Nye et al., 2014), similar logical rules for managing dialog interactions can cover a 
variety of domains. 

Task Sandbox Environments 
As a final task category, open-ended searches and decision-points for choices are common, particularly in 
virtual worlds and scenario-based learning.  These include looking for a satisfactory or optimal set of 
actions to some learning task.  In many cases, the action sets vary by context and are not known apriori.  
If the quality of choices can be ranked or their component features ranked, the ITS can provide feedback, 
hints, and explanations about the quality of actions (Kim et al., 2009; Sottilare, Goldberg, Brawner, & 
Holden, 2012).  However, for a simulation, this information may only be available after the completion of 
a scenario.  The next level of complexity occurs when the task goals are not fully defined, but must be set 
or prioritized by the learner.  For subjective or “wicked” tasks where actions change how goals are 
understood, goal selection tasks are almost unavoidable (Nye et al., 2012). This tends to occur almost 
exclusively in simulations or design tasks, where defining and monitoring goals are a major part of the 
tasks and learning content.  These tasks tend to be very hard to tutor directly, and sometimes rely on 
detecting certain common or uncommon patterns, which are then brought to the attention of the learner. 

For complex simulations, many current pedagogical methodologies focus on after-action review 
procedures. These tend to include a mixture of artifact evaluation (i.e., considering metrics collected from 
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a simulation run) and self-reflection. After-action reviews have historically been facilitated by a human-
in-the-loop and are geared towards focused reflection and knowledge elicitation. The underlying task 
consists of a series of choices and decision points in a specific scenario, which are translated to 
overarching learning objectives.   These choices are then considered similarly to other types of learning 
tasks, such as following procedural rules while receiving feedback about deviations from desired 
performance.  

Rather than being more complicated to author, the pedagogy for complex choice tasks is often as simple 
(or simpler) than highly constrained domains such as mathematics.  This is because well-defined domains 
give many opportunities for clear pedagogical interventions: the state of the task is fully known, 
completely based on the learner’s inputs, and allows immediate feedback. By comparison, a game-based 
task requires game messages that are sent to assessment models that infer the pedagogical state. As a 
result, ITS authoring is limited to the data made available by a task interface that was not originally 
intended to offer pedagogically-useful assessments (e.g., a 3D game engine). As such, an additional 
authoring layer needs to convert the raw task state into much a pedagogical state. This requires an 
operational task analysis and authoring tools that transform various task events into pedagogically-useful 
assessments.  This extra assessment layer makes complex environments more difficult to author, and 
which ultimately limits the interventions that can be authored (e.g., hints and feedback). 

While serious games and simulation-based training environments can alleviate this problem in the 
development phase, many do not. In fact, simulation-based training solutions have increasingly moved 
toward commercial and open-source game engines to reduce production costs, such as Virtual Battle 
Space 3 (VBS3), Unity, and the Unreal Game Engine. These sandbox authoring environments enable 
developers to build complex task scenarios for both individuals and for collaborative/team-based 
interactions. However, the data generated by these systems follows generic protocols for distributed 
delivery, such as Distributed Interactive Simulation (DIS) and High-Level Architecture (HLA) that lack 
any concept of pedagogy or semantics (Hofer & Loper, 1995; Kuhl, Dahmann, & Weatherly, 2000). 

The best solution so far to this problem has been to explicitly build a layer of metrics onto the task 
environment, which are then consumed by the ITS as its pedagogical state. Basically, a simpler task state 
is constructed from features in the task sandbox, which is then linked to assessments. For example, GIFT 
provides a generalized architecture that can consume game-message traffic and use this to infer 
pedagogical conditions linked to a concept hierarchy (Sottilare et. al., 2012). Much of the data captured 
associates with entity state (i.e., avatars, non-player characters, weapons, machines, vehicles, etc.) 
location, movement, and action.  In short, much of the task state is too low-level or downright irrelevant 
to ITS behavior. A subset of this data is continuously communicated to GIFT and routed to the Domain 
Knowledge File (DKF) for managing assessment practices. The DKF is where an author structures: the 
concept hierarchy associated with a set of tasks, how data is integrated into a concept assessment, and 
how that data is managed at runtime. Assessments can be authored directly within a DKF or it can be 
supported by an external assessment engine, such as the Student Information Models for Intelligent 
Learning Environments (SIMILE; Goldberg, 2013), where the DKF acts by routing data to the 
appropriate concept assessments (see Figure 5). 
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Figure 5. SIMILE Workbench with Authored Assessments for vMedic 

However, the reverse direction (i.e., offering specific interventions) has the same complications. 
Conditions need to consider both the real-time performance and user intention, as well as the possible 
actions that are available to the user (which must also be relayed to the ITS, to enable suggestions). In 
GIFT’s current use-cases, this information includes tagged locations for the user’s position in the 
environment, the set of entities and objects that are around the user, what entities the user can currently 
observe, the actions available, and the timers related to task execution.   

For example, consider the task of ‘maintaining cover’ while patrolling a compound, which requires time, 
location, and entity state data. Waypoints and areas of interest are defined around the compound wall so 
that the player can be tracked to monitor patrol progress. An author can then define assessments based on 
if the user has reached certain waypoints within a specific timeframe. In addition, if a scenario author 
determines that a user should adjust their entity’s state within specific areas of interest, such as adjusting 
their stance from standing to kneeling due to a wall being low, then the author can associate assessments 
to inform student action in relation to performance criteria.  By knowing this context, it is also possible to 
deliver real-time feedback based on the actions and current assessment information. 

To further complicate the issue, these types of interactive environments are excellent for collaborative and 
team-based learning events. From the ITS perspective, this requires additional modeling dependencies 
that associate interaction and intention with team oriented skills and attributes. While there is extensive 
literature on what makes effective teams and effective team training approaches (Salas et al., 2008), how 
to establish these practices in an automated fashion is a challenge. Beyond modeling individualized tasks 
and how interaction in a virtual environment can infer competencies, additional assessments must analyze 
group-level data that is aggregated across a set of users. These assessments include team cohesion, trust, 
communication, and shared cognition. While this field is a wide-open research area, architecture’s like 
GIFT must be designed to facilitate the type of modeling techniques that are based on trends across users 
rather than within users. In terms of authoring, the challenge is taking available data and translating it to 
team-based inferences that can designate performance across a set of concepts. In addition, how to react 
to these assessments needs to be explored, such as how interventions are handled and how they are 
communicated to a team. 
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RECOMMENDATIONS AND FUTURE RESEARCH 

Across this book, examples and lessons learned for authoring each type of learning task are discussed.  By 
identifying common learning tasks in ITSs, it should be possible to develop general authoring interfaces 
that make authoring for each type of task intuitive and effective.  In some cases, highly effective 
authoring models already exist and might serve as exemplars for task-specific authoring tools in 
generalized ITSs such as GIFT. Ideally, these authoring tools should collect information in ways that are 
familiar to instructors and other domain pedagogy experts.  Form-based authoring, example-based 
authoring, and supervised tagging are all reasonable approaches that are particularly attractive. 
 
However, there are also learning tasks that do not yet have well-established techniques that allow non-
technical domain experts to easily author content.  For example, authoring real-time assessments for 
complex tasks remains more of an art than a science. At least some of this authoring involves mapping 
simulation or virtual world events to pedagogical features.  For this type of authoring, even if game 
worlds had integrated pedagogical tools, a tool to easily map raw simulation data to metrics may be hard 
to use by the domain experts, even if it is well-designed.  Similarly, authoring for ITS tasks with multiple 
learners is a poorly understood area.  For example, team-based tutoring requires assessment and 
intervention at multiple levels (e.g., individual and group).  Further research on such tasks and exploration 
of different types of authoring approaches may be needed before good examples of such authoring tools 
become clear. 
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