
To appear in Proceedings of the Fourth Conference on Artificial General Intelligence (AGI),
2011. The original publication is available at www.springerlink.com.

From Memory to Problem Solving: Mechanism Reuse
in a Graphical Cognitive Architecture

Paul S. Rosenbloom

Department of Computer Science & Institute for Creative Technologies

University of Southern California
12015 Waterfront Drive, Playa Vista, CA 90094

rosenbloom@usc.edu

Abstract. This article describes the extension of a memory architecture that is
implemented via graphical models to include core aspects of problem solving.
By extensive reuse of the general graphical mechanisms originally developed to
support memory, this demonstrates how a theoretically elegant implementation
level can enable increasingly broad architectures without compromising overall
simplicity and uniformity. In the process, it bolsters the potential of such an
approach for developing the more complete architectures that will ultimately be
necessary to support autonomous general intelligence.

Keywords: Cognitive architecture, graphical models, memory, problem
solving.

1 Introduction

A cognitive architecture is a hypothesis about: (1) the fixed mechanisms underlying
intelligent behavior, and (2) how they integrate together in support of autonomous
general intelligence. The ideal cognitive architecture would combine broad
applicability – whether in terms of the span of natural phenomena covered or the
range of artificial functionality produced – with theoretical elegance (uniformity and
simplicity). But there is an inherent tension between these two characteristics; the
former favors mechanism proliferation while the latter discourages it. The resulting
diversity dilemma is one of the central issues in architectures [1]. How researchers
respond to it determines much about the nature of the architectures they produce;
consider, for example, the contrast between the eclectic approach in OpenCogPrime
[2] and the more theoretically elegant approach in AIXI [3].

One recent approach seeks to build a diversity of architectural capabilities – for
memory, decisions, learning, etc. – from the interactions among a small set of general
mechanisms at the implementation level beneath the architecture [1]. Broad
applicability at the architecture level is thus joined with theoretical elegance at the
implementation level. Graphical models [4] were proposed as a basis for the
implementation level because they yield state-of-the-art algorithms across symbol,
probability and signal processing from a uniform representation and reasoning

algorithm. They raise the possibility of uniformly implemented and tightly integrated
architectures capable of spanning from perception to cognition and back to action.

An initial fragment of this potential was realized with the implementation of a
graphical memory architecture that combined rule-based procedural knowledge,
semantic and episodic declarative knowledge, and constraint knowledge (which
blends aspects of both procedural and declarative knowledge) [5]. The first three
were modeled on memories in the Soar architecture [6] and ideas from the ACT-R
community [7]. The fourth was added simply because it came along essentially for
free. This graphical memory architecture exploited the uniform combination of
symbolic and probabilistic reasoning enabled by graphical models, and that is now at
the core of the burgeoning subfield of statistical relational AI. It also supported
continuous quantities, although performing no actual signal processing.

Ongoing work is extending this partial architecture to include problem solving,
reflection, learning, and mental imagery; all in service of a medium-term goal of a
uniformly implemented hybrid (discrete + continuous) mixed (symbolic +
probabilistic) variant of Soar, and a long-term goal of theoretically elegant yet broadly
applicable architectures. This article presents results from extending the memory
architecture to incorporate basic internal problem-solving capabilities, based on Soar,
with a particular emphasis on how such problem solving is supported by general
mechanisms already implemented in service of the memory architecture. The
resulting contributions are fourfold: (1) the extension of the graphical memory
architecture to problem solving; (2) an evaluation of the generality of the graphical
implementation mechanisms with respect to how well they extend from memory to
problem solving; (3) presentation of heretofore unpublished aspects of the graphical
memory architecture and its implementation that are important for understanding the
first two contributions; and (4) an approximate reimplementation of key aspects of the
Soar architecture with enhanced uniformity and elegance at the implementation level.

2 Problem Solving in Soar

The heart of problem solving is the selection and application of operators that
perform internal actions and control or simulate external actions. Selection requires
generation and comparison of candidate operators and then a choice among them. For
both internal actions and simulations of external actions, application requires
changing the internal state to correspond to the operator’s effects. Control of external
actions requires both perception and motor control. As perception and motor control
are beyond the scope of this article, the focus here is restricted to internal problem
solving via internal actions and simulations of external actions.

Soar represents the state of problem solving in a symbolic working memory (WM).
Generation of candidate operators occurs via retrieval from long-term memory (LTM)
into WM, as cued by the contents of the state (including any current goals). Then,
based on the state and the proposed operators, preference information respecting
operator selection – whether symbolic or numeric – is also retrieved from LTM.
Except for acceptable preferences, which propose operators for selection, retrieved
preferences are maintained outside of WM, in a separate preference memory (PM).

Preference memory is normally omitted from descriptions of Soar, as it is considered
an implementation detail rather than part of the theory, yet it is an important and
distinct form of memory that was added specifically in support of problem solving.
Operator selection is based on the contents of PM plus a separately encoded decision
procedure. Once an operator is selected, state changes are retrieved from LTM –
based on the operator and the state – engendering modifications to working memory.
This combination of capabilities for operator selection and application comprises
what can be called base-level problem solving in Soar. Soar can also engage in meta-
level problem solving, where the inability to select a new operator yields an impasse
plus a meta-level state in which the impasse can be resolved via reflection [8].
However, reflection is a large enough topic in its own right that discussion of its
graphical implementation has been deferred to a follow on article.

Base-level problem solving in Soar is normally viewed as occurring via two nested
loops: (1) the elaboration cycle, in which all legal instantiations of all rules fire
(logically) in parallel, yielding one round of changes to working memory; and (2) the
decision cycle, comprising an elaboration phase during which elaboration cycles
repeat until quiescence – i.e., until no further rules can fire – followed by a call to the
decision procedure and the resulting selection of an operator in working memory.
However, there is actually one additional cycle that is nested within the elaboration
cycle: (0) the match cycle, in which tokens representing intermediate match results are
passed around within the Rete network [9]. As with preference memory, this is
considered an implementation detail in Soar rather than as part of the theory.

Retrievals from long-term memory for operator selection remain active – in WM
or PM – only while their triggering conditions are valid. Thus, as the state changes,
candidate operators and preferences automatically retract – in a manner akin to truth-
maintenance systems – when they become inapplicable. In contrast, retrievals from
long-term memory for operator application remain active until explicitly removed.
This provides an implicit frame axiom, retaining all aspects of the state not explicitly
changed. The distinction between selection and application knowledge effectively
yields a problem-solving-driven partitioning of Soar’s single rule memory into two
procedural memories that differ both in when they are used during problem solving
and in how their results are maintained over time.

Memory plays a critical role in Soar’s problem solving, through storing, retrieving
and maintaining states, operators and preferences. This amounts to a significant bit of
architectural capability reuse, from WM and LTM to problem solving, and is the kind
of gain Soar has long featured from integration across its capabilities. But there is no
finer-grained sharing of mechanisms at the implementation level. For example, the
Rete match mechanism at the heart of Soar’s procedural memory is not reused in its
declarative memories. Nor is it leveraged to implement the PM or decision procedure
necessary for problem solving. It simply isn’t a general enough implementation
mechanism to do more than the one job it currently does extremely well.

If Soar’s procedural memory were partitioned into two rule-based memories, by
when and how the knowledge is used in problem solving, Rete could theoretically be
reused across these two memories. But that would still be about it. Disjoint code
implements memory (WM and LTM) versus problem solving (PM and the decision
procedure); and, even within LTM, disjoint code implements rule, semantic and
episodic memories. The latter disjointness was addressed earlier via general graphical

implementation mechanisms that supported a unified long-term memory containing
both procedural and declarative knowledge. Here, we further build upon these same
mechanisms to address the disjointness between memory and problem solving.

3 The Graphical Memory Architecture

The graphical memory architecture is based on running the summary product
algorithm over factor graphs [10]. Factor graphs are similar to Bayesian and Markov
networks, except that: unlike Bayesian networks, but like Markov networks, they
employ bidirectional links between nodes; and, unlike both forms of networks, factor
graphs explicitly include not only variable nodes but also factor nodes for functions
over sets of variables. Factor graphs enable efficient computation with complex
multivariate functions – whether representing probability distributions or arbitrary
functions – by decomposing them into products of simpler functions and then
mapping these decompositions onto graphs. By passing messages between variable
and factor nodes concerning the possible values of variables, the summary product
algorithm computes marginals on the variables (when using sum as the summarization
operator), as well as computing more global properties such as maximum a posteriori
(MAP) probabilities (when using max as the summarization operator).

Knowledge in long-term memory consists of generalized conditionals that can
embody conditions, actions, condacts and functions. Figs. 1 and 2 show two
examples. The first
combines conditions
and actions in a rule
that avoids Eight
Puzzle operators
that move tiles from
their goal locations.
The second is a
fragment of
semantic memory that combines conditions, condacts and a function to represent the
conditional probability of an object’s weight given its concept.

Conditions and actions
are just like in traditional
rules; conditions match to
working memory elements
and actions modify them.
Condacts are hybrids that
match and modify WM.
Messages pass in one
direction for conditions
and actions but in both
directions for condacts.
Procedural knowledge is
encoded via conditions

CONDITIONAL GoalReject
 Conditions: (Operator id:o state:s x:x y:y)
 (Goal state:s x:x y:y tile:t)

 (Board state:s x:x y:y tile:t)
 Actions: (Selected - state:s operator:o)

Fig. 1: Eight Puzzle heuristic that rejects from consideration
operators that move tiles out of place.

CONDITIONAL ConceptWeight
 Conditions: (Object state:s object:o)
 Condacts: (Concept object:o concept:c)
 (Weight object:o weight:w)

w\c Walker Table …
[1,10> .01w .001w …
[10,20> .2-.01w “ …
[20,50> 0 .025-

.00025w
…

[50,100> “ “ …

Fig. 2: Conditional probability of weight given
concept. Only a fragment of the function is shown.

and actions. Unidirectional message passing – from WM, through conditions, on to
actions, and finally back to WM – provides the forward impetus that is at the heart of
the procedural use of rule memories. Declarative knowledge is encoded via condacts.
Bidirectional message passing among condacts enables the kind of partial match that
is at the heart of the declarative use of semantic and episodic memories.

The functions in conditionals enable encoding probability distributions, as in the
fragment of semantic memory above. They also enable, for example, encoding the
symbolic incompatibility knowledge used in constraint memory. These functions are
multidimensional and are represented in a piecewise linear manner. There is one
dimension per variable, with slices across the dimensions delimiting rectilinear
regions over which a single linear function is adequate. The function in Fig. 2, for
example, has two dimensions – for weight and concept – with slices occurring
between concepts along one dimension and between segments of weights along the
other. Each resulting region has its own linear function (in terms of just weight here).

 This representation enables approximating continuous functions as closely as
desired – for perceptual signal processing – but it also enables representing both
discrete probability distributions and symbolic structures, through restrictions on
function domains and ranges. It thus proffers a broad-spectrum hybrid mixed
representation useable not only for this aspect of long-term memory but also for the
messages at the core of the summary product algorithm. In Fig. 2, the concept is
symbolic, the weight is continuous, and the value of the function is probabilistic.

The same function representation also works for working memory. Working
memory is based on predicates – such as Object, Concept and Weight in Fig. 2 – that
are defined in terms of a name plus named-and-typed arguments. Weight, for
example, has two arguments: object, over symbolic identifiers; and weight, over a
segment of the continuous line. Each predicate induces a WM factor node with its
own function that specifies which of its regions are present. Predicates, and thus WM
functions, can combine any number of discrete and continuous dimensions, but the
ranges of WM functions are limited to Boolean values. In other words, every possible
element is either in working memory or not; they can’t be in at some probability.
This is consistent with how working memory works in Soar and with the mapping of
working memory onto evidence at peripheral nodes in standard probabilistic graphical
models [1]. However, it does differ from Soar’s approach in explicitly representing –
with a value of 0 – regions not present in working memory. This increases overall
uniformity, but can also increase the number of regions to be processed.

Conditions, actions and condacts are specified as patterns on predicates, each of
which also comprises a predicate name plus zero or more arguments. Each argument
in a pattern has a name plus a value that is either a constant or a variable. In Figs. 1
and 2 all of the arguments are specified via variables (lower-case italicized symbols).
Predicates can be negated to yield negated conditions and deletion actions; the action
in Fig. 1, for example, is negated. Each pattern compiles into a subgraph that
determines its correspondence to WM regions via messages possessing one dimension
per argument. If there are constants in the pattern, an additional factor node is
included to check their values. If the pattern is negated, an additional factor node is
included to invert the message – positive values become 0 and 0s become 1.

Fig. 3 shows the factor graph for the conditional in Fig. 1, albeit with less
important nodes omitted and the full subgraph for the Selected action deferred

until Fig. 4. As shown, link
direction in pattern subgraphs
is determined by whether
they implement conditions or
actions (or condacts,
although not shown here).
The subgraphs for all
patterns within a conditional
are then connected via a
bidirectional join network.
The resulting graph, when
restricted to conditions, is
similar to the combination of
Rete’s discrimination and
join networks, including storage of intermediate match results. Rete uses alpha and
beta memories to store condition matches and their combinations. In the graphical
architecture, the latest message is automatically cached along each link, yielding a set
of implementation-level link memories; where links at the end of pattern subgraphs
act as alpha memories and links within the join network act as beta memories.

This graphical match algorithm goes beyond Rete in efficiency by bounding the
cost for condition match by the tree width rather than the number of conditions [1].
However, Rete’s sharing optimizations – of tests across subgraphs within an
elaboration cycle and of intermediate results across elaboration cycles – have not yet
been implemented. Both of these optimizations appear feasible within the
unidirectional condition subgraphs – and within those segments of the join network
that only combine conditions – in a manner much like that in Rete. However, it is less
clear whether this will work in bidirectional subgraphs where feedback becomes key.

The bigger gain though with the graphical approach is that the generality of the
resulting mechanism yields a capability that is considerably beyond just rule match
and intermediate result storage. Messages are now multidimensional continuous
functions rather than partial rule matches, and they can flow not just away from
working memory, but also towards it. This broadening enables a single graphical
mechanism to handle conditions, actions, condacts and functions; and thus to provide
a shared implementation across Soar’s multiple long-term memories. As is discussed
in the next section, it also yields base-level internal problem solving.

Aside from Soar’s call to the decision procedure in the uppermost (decision) cycle,
its three nested loops are essentially all about memory access. In the graphical
memory architecture, this functionality compresses down to two nested loops: the
message cycle, where messages pass along links in the graph; and the graph cycle,
where message cycles repeat until quiescence and then working memory is updated.
The message cycle corresponds to Soar’s match cycle. The graph cycle hybridizes
Soar’s elaboration cycle with the elaboration-phase portion of its decision cycle.

To understand this hybridization, it is first necessary to grasp the distinction
introduced in the graphical architecture between open-world and closed-world
predicates, concerning whether regions not explicitly in working memory are assumed
unknown or false. A region that is false – i.e., 0 – at the beginning of a graph cycle
cannot become true during the cycle, increasing processing efficiency by removing

Fig. 3: Factor graph for heuristic conditional in
Fig. 1. Boxes are factor nodes while circles are
variable nodes.

many regions from consideration; but since false can’t become true without a change
to working memory, chaining across such conditionals can only happen across graph
cycles. Normal rules depend on closed-world predicates to keep working memory
small and to implement negated conditions, implying only one cycle of rule firing per
graph cycle, and thus a mapping to Soar’s elaboration cycle. Semantic, episodic and
constraint memory depend on open-world predicates so that values initially unknown
can be determined by bidirectional processing during the graph cycle. This enables
within-cycle chaining across conditionals and a full settling of the graph for access to
declarative memory, indicating a mapping of the graph cycle onto Soar’s elaboration
phase. Muddying things even further, when rules work on open-world predicates –
thus taking on a declarative aspect – it becomes possible to chain across sequences of
them within a single graph cycle, again akin to Soar’s elaboration phase.

The difference in chaining between closed-world and open-world predicates is
implemented by chaining for a closed-world action through its WM factor node – the
rightmost node in Fig. 3 – necessitating changes in working memory and a new graph
cycle before results of actions in one conditional can be used in conditions of another;
while chaining for an open-world predicate through the WM variable node – just to
the left of the WM factor node in Fig. 3 – enabling chaining across conditionals
without going through the factor node or changing working memory.

Changes to working memory occur via an action subgraph like the one shown in
Fig. 4 for the Selected predicate. The top portion implements the negated action in
Fig. 1, with the portion below it implementing a positive action from a different
conditional. If there were additional positive actions, their subgraphs would all join at
the positive-changes (+) factor node, while additional negative actions would join at
the negative-changes (–) factor node. To deal with the disjunctive semantics that
exists across rule actions, both
of these are special function-
composition factor nodes that
sum their inputs rather than
computing their product. As
shown in the figure, a revised
positive-changes message is
then computed by using
standard product computations
to eliminate from it all regions marked for deletion in the negative message.

Given the aggregate positive and negative messages, the actual changes occur by
altering the function stored in the WM factor node. This is a process that has much in
common with learning – being an extra-graph process that modifies graph structure –
although it modifies only a subset of factor node functions via a limited change-
determination algorithm. Everything in the negative message is first deleted from
working memory and then everything in the revised positive message is added.
Closed-world modifications of working memory remain in effect until they are
explicitly undone by later changes, while open-world modifications remain only as
long as they are supported by conditionals in long-term memory.

Beyond the two memory distinctions already mentioned – i.e., direction of message
passing and the values of unspecified regions – a third distinction has also been
drawn, concerning whether variables in conditionals yield all legal values – universal

Fig. 4: Action graph for Selected predicate.

variables – or a distribution over the best possible value – unique variables. The
former are essential for memories that need all exact matches, while the latter – which
correspond to normal variables in probabilistic graphical models – are needed for
memories that require the single best partial match. In the memory architecture, rule
and constraint memory require all exact matches while semantic and episodic memory
rely on distributions over the best partial match. Soar has no general distinction
between universal and unique variables, but instead effectively implements universal
variables in procedural memory and unique variables in both declarative memories.

The details concerning how the more general distinction is implemented within the
graphical memory architecture can be found in [11]. The critical aspect for our
purposes here though is that when bindings are generated during a graph cycle for an
action containing a unique variable, only a single element – one with the highest value
– is added to working memory (assuming there is not already one there), and all
others are deleted. This is the sole locus uncovered so far where an architectural
distinction is necessary between discrete and continuous arguments. If, for example,
an entire region [0,3) shares the maximum value, it is necessary to distinguish
whether there are three discrete alternatives competing – [0,1), [1,2) and [2,3) – or an
(effectively) infinite number of continuous alternatives (which becomes a large
number of ε-width segments). This is extra-graph selection code in support of
changing working memory, rather than part of the summary product algorithm itself.
But it is still a concrete situation in which the difference between discrete and
continuous dimensions is not just in the eye of the beholder.

4 Extension to Problem Solving

The overall graphical memory capability that has just been described can be reused in
service of problem solving, just as memory is reused in Soar. This means that long-
term memory encodes both candidate operators and preferences among them for use
in operator selection, plus operator applications that change the state and state
elaborations that amplify these changes (but which can be lumped in with operator
selection for the rest of this discussion). Candidate operators are added via open-
world predicates so that they automatically retract when no longer valid for the state,
and so that preference generation can chain on them during a single graph cycle.
Preferences are generated by actions for the predefined closed-world Selected
predicate, which includes a universal discrete numeric state argument and a unique
symbolic operator argument to denote that there should be one operator per state.

There are two forms of symbolic preferences, acceptable and reject, which just
amount to positive and negated Selected actions within functionless conditionals.
The negated action in Fig. 1, for example, rejects any operator that moves a tile out of
position. All regions matching an action receive values of 1 or 0, depending on
whether the action is positive or negated. All relative preferences are then encoded
numerically, by including functions expressing arbitrary non-negative values in
conditionals that have Selected actions. No extensions are thus required to
represent either symbolic or numeric preferences due to the multidimensional mixed
nature of the function representation employed in the factor graphs.

Rather than requiring a separate preference memory, the link memories mentioned
earlier automatically handle the retention of preferences. Although descriptions of
Soar’s memories usually omit both Rete’s memories and preference memory, viewing
them as implementation details, they are critical in the overall processing scheme.
Here they become unified across the memory and problem solving capabilities via the
generality of the graphical mechanisms originally implemented for memory; in
particular, both of these varieties of implementation-level Soar memory map onto link
memories at the graphical implementation level. Because preferences are maintained
in link memories, they retract automatically when state changes make them invalid.

The processing of preferences for operator selection occurs via the implementation
mechanisms introduced earlier for unique variables in memory. As mentioned in
Section 3, Soar implements a form of unique variable in each declarative memory, but
they are special purpose variants that only work there. Operator selection must
instead occur via the separate decision procedure. In the graphical implementation
level, these distinct aspects of Soar’s use of unique variables are merged into a single
more general implementation mechanism. As implied by the earlier discussion, all of
the preferences get combined to yield a distribution over the operators for each region
of states in the WM-change messages. The extra-graph code already in place for
changing working memory then determines which operator to add for each region.

Once an operator is selected, it is applied by conditionals with closed-world actions
so as to modify the state in working memory. Because of this use of closed-world
predicates, only one round of operator application occurs per graph cycle, but all of
the resulting changes then remain in working memory until explicitly removed. The
different levels of persistence for operator selection versus operator application thus
arise directly from the distinctions already existing in the memory architecture, rather
than requiring additional memory distinctions in service of problem solving.
Operator selection uses open-world predicates plus preferences in link memories,
while operator application uses closed-world predicates. This brings a declarative
aspect to operator selection – enabling openness and chaining within a single graph
cycle – whether encoded in rules (with open-world actions) or in more traditional
declarative forms. Operator application is purely procedural, which makes sense
given that it is the core source of action and change in problem solving.

This problem solving capability has been tested in a version of the Eight Puzzle
that uses continuous mental imagery to represent the board and tiles. The code
consists of 18 conditionals, which compile down to a graph with 349 variable nodes,
292 factor nodes, and 718 links. The resulting graph successfully solves Eight Puzzle
instances via sequences of operator selections and applications.

5 Conclusion

By exploiting the generality of the graphical implementation mechanisms previously
developed in support of a broad yet theoretically elegant memory architecture, Soar-
like base-level problem solving capabilities have been demonstrated. Although an
architecturally defined Selected predicate was added in the process, the remaining
functionality all grounds directly in mechanisms developed for the memory

architecture. Mechanisms reused include: factor graphs and conditionals to represent
knowledge; the summary product algorithm to drive processing; the mixed function
representation to represent both symbolic and numeric preferences; within-graph link
memories to maintain generated preferences; the open-world versus closed-world
distinction to maintain selection versus application knowledge; and the universal
versus unique variables distinction to generate arbitrary candidate operators while
selecting just the best.

A complete Soar-like problem solving capability also demands both reflection and
external action, but the former is already shaping up well in separate work (while
revealing unanticipated mechanism sharing with episodic memory and the nascent
mental imagery capability). In general, the large amount of reuse found here augurs
well as more capabilities get added towards a full implementation of a hybrid mixed
variant of Soar, and as more novel architectures for autonomous general intelligence
are sought that combine even broader applicability with theoretical elegance.

Acknowledgments. This effort has been sponsored by: the USC Institute for Creative
Technologies; the U.S. Army Research, Development, and Engineering Command
(RDECOM); and the Air Force Office of Scientific Research, Asian Office of
Aerospace Research and Development (AFOSR/AOARD). Statements and opinions
expressed do not necessarily reflect the position or the policy of the United States
Government, and no official endorsement should be inferred. I would like to thank
John Laird for helpful comments on a draft of this article.

References

1. Rosenbloom, P.S.: Rethinking Cognitive Architecture via Graphical Models. Cognitive
Systems Research (In press)

2. Goertzel, B.: OpenCogPrime: A cognitive synergy based architecture for artificial general
intelligence. In: 8th IEEE International Conference on Cognitive Informatics (2009)

3. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic
Probability. Springer-Verlag, Berlin (2005)

4. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT
Press, Cambridge (2009)

5. Rosenbloom, P.S.: Combining Procedural and Declarative Knowledge in a Graphical
Architecture. In: 10th International Conference on Cognitive Modeling (2010)

6. Laird, J.E.: Extending the Soar Cognitive Architecture. In: Artificial General Intelligence
2008: Proceedings of the First AGI Conference. Arlington, IOS Press (2008)

7. Anderson, J.R.: The Adaptive Character of Thought. Erlbaum, Hillsdale (1990)
8. Rosenbloom, P.S., Laird, J.E., Newell, A.: Meta-levels in Soar. In: Maes, P., Nardi, D. (eds.)

Meta-Level Architectures and Reflection, pp. 227-240. North Holland, Amsterdam (1988)
9. Forgy, C. L.: Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match

Problem. Artificial Intelligence. 19, 17–37 (1982)
10. Kschischang, F. R., Frey, B. J., Loeliger, H.: Factor Graphs and the Sum-Product

Algorithm. IEEE Transactions on Information Theory. 47, 498-519 (2001)
11. Rosenbloom, P. S.: Implementing First-Order Variables in a Graphical Cognitive

Architecture. In: Biologically Inspired Cognitive Architectures 2010: Proceedings of the
First Annual Meeting of the BICA Society. IOS Press, Arlington (2010)

