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Abstract. This article describes the extension of a memory architecture that is 
implemented via graphical models to include core aspects of problem solving.  
By extensive reuse of the general graphical mechanisms originally developed to 
support memory, this demonstrates how a theoretically elegant implementation 
level can enable increasingly broad architectures without compromising overall 
simplicity and uniformity.  In the process, it bolsters the potential of such an 
approach for developing the more complete architectures that will ultimately be 
necessary to support autonomous general intelligence. 
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1   Introduction 

A cognitive architecture is a hypothesis about: (1) the fixed mechanisms underlying 
intelligent behavior, and (2) how they integrate together in support of autonomous 
general intelligence. The ideal cognitive architecture would combine broad 
applicability – whether in terms of the span of natural phenomena covered or the 
range of artificial functionality produced – with theoretical elegance (uniformity and 
simplicity). But there is an inherent tension between these two characteristics; the 
former favors mechanism proliferation while the latter discourages it.  The resulting 
diversity dilemma is one of the central issues in architectures [1].  How researchers 
respond to it determines much about the nature of the architectures they produce; 
consider, for example, the contrast between the eclectic approach in OpenCogPrime 
[2] and the more theoretically elegant approach in AIXI [3]. 

One recent approach seeks to build a diversity of architectural capabilities – for 
memory, decisions, learning, etc. – from the interactions among a small set of general 
mechanisms at the implementation level beneath the architecture [1].  Broad 
applicability at the architecture level is thus joined with theoretical elegance at the 
implementation level.  Graphical models [4] were proposed as a basis for the 
implementation level because they yield state-of-the-art algorithms across symbol, 
probability and signal processing from a uniform representation and reasoning 



algorithm.  They raise the possibility of uniformly implemented and tightly integrated 
architectures capable of spanning from perception to cognition and back to action. 

An initial fragment of this potential was realized with the implementation of a 
graphical memory architecture that combined rule-based procedural knowledge, 
semantic and episodic declarative knowledge, and constraint knowledge (which 
blends aspects of both procedural and declarative knowledge) [5].  The first three 
were modeled on memories in the Soar architecture [6] and ideas from the ACT-R 
community [7].  The fourth was added simply because it came along essentially for 
free.  This graphical memory architecture exploited the uniform combination of 
symbolic and probabilistic reasoning enabled by graphical models, and that is now at 
the core of the burgeoning subfield of statistical relational AI.  It also supported 
continuous quantities, although performing no actual signal processing. 

Ongoing work is extending this partial architecture to include problem solving, 
reflection, learning, and mental imagery; all in service of a medium-term goal of a 
uniformly implemented hybrid (discrete + continuous) mixed (symbolic + 
probabilistic) variant of Soar, and a long-term goal of theoretically elegant yet broadly 
applicable architectures.  This article presents results from extending the memory 
architecture to incorporate basic internal problem-solving capabilities, based on Soar, 
with a particular emphasis on how such problem solving is supported by general 
mechanisms already implemented in service of the memory architecture.  The 
resulting contributions are fourfold: (1) the extension of the graphical memory 
architecture to problem solving; (2) an evaluation of the generality of the graphical 
implementation mechanisms with respect to how well they extend from memory to 
problem solving; (3) presentation of heretofore unpublished aspects of the graphical 
memory architecture and its implementation that are important for understanding the 
first two contributions; and (4) an approximate reimplementation of key aspects of the 
Soar architecture with enhanced uniformity and elegance at the implementation level. 

2   Problem Solving in Soar 

The heart of problem solving is the selection and application of operators that 
perform internal actions and control or simulate external actions. Selection requires 
generation and comparison of candidate operators and then a choice among them.  For 
both internal actions and simulations of external actions, application requires 
changing the internal state to correspond to the operator’s effects.  Control of external 
actions requires both perception and motor control.  As perception and motor control 
are beyond the scope of this article, the focus here is restricted to internal problem 
solving via internal actions and simulations of external actions. 

Soar represents the state of problem solving in a symbolic working memory (WM).  
Generation of candidate operators occurs via retrieval from long-term memory (LTM) 
into WM, as cued by the contents of the state (including any current goals). Then, 
based on the state and the proposed operators, preference information respecting 
operator selection – whether symbolic or numeric – is also retrieved from LTM.  
Except for acceptable preferences, which propose operators for selection, retrieved 
preferences are maintained outside of WM, in a separate preference memory (PM).  



Preference memory is normally omitted from descriptions of Soar, as it is considered 
an implementation detail rather than part of the theory, yet it is an important and 
distinct form of memory that was added specifically in support of problem solving.  
Operator selection is based on the contents of PM plus a separately encoded decision 
procedure.  Once an operator is selected, state changes are retrieved from LTM – 
based on the operator and the state – engendering modifications to working memory.  
This combination of capabilities for operator selection and application comprises 
what can be called base-level problem solving in Soar.  Soar can also engage in meta-
level problem solving, where the inability to select a new operator yields an impasse 
plus a meta-level state in which the impasse can be resolved via reflection [8].  
However, reflection is a large enough topic in its own right that discussion of its 
graphical implementation has been deferred to a follow on article.   

Base-level problem solving in Soar is normally viewed as occurring via two nested 
loops: (1) the elaboration cycle, in which all legal instantiations of all rules fire 
(logically) in parallel, yielding one round of changes to working memory; and (2) the 
decision cycle, comprising an elaboration phase during which elaboration cycles 
repeat until quiescence – i.e., until no further rules can fire – followed by a call to the 
decision procedure and the resulting selection of an operator in working memory.  
However, there is actually one additional cycle that is nested within the elaboration 
cycle: (0) the match cycle, in which tokens representing intermediate match results are 
passed around within the Rete network [9].  As with preference memory, this is 
considered an implementation detail in Soar rather than as part of the theory. 

Retrievals from long-term memory for operator selection remain active – in WM 
or PM – only while their triggering conditions are valid.  Thus, as the state changes, 
candidate operators and preferences automatically retract – in a manner akin to truth-
maintenance systems – when they become inapplicable.  In contrast, retrievals from 
long-term memory for operator application remain active until explicitly removed.  
This provides an implicit frame axiom, retaining all aspects of the state not explicitly 
changed.  The distinction between selection and application knowledge effectively 
yields a problem-solving-driven partitioning of Soar’s single rule memory into two 
procedural memories that differ both in when they are used during problem solving 
and in how their results are maintained over time. 

Memory plays a critical role in Soar’s problem solving, through storing, retrieving 
and maintaining states, operators and preferences.  This amounts to a significant bit of 
architectural capability reuse, from WM and LTM to problem solving, and is the kind 
of gain Soar has long featured from integration across its capabilities.  But there is no 
finer-grained sharing of mechanisms at the implementation level.  For example, the 
Rete match mechanism at the heart of Soar’s procedural memory is not reused in its 
declarative memories.  Nor is it leveraged to implement the PM or decision procedure 
necessary for problem solving.  It simply isn’t a general enough implementation 
mechanism to do more than the one job it currently does extremely well. 

If Soar’s procedural memory were partitioned into two rule-based memories, by 
when and how the knowledge is used in problem solving, Rete could theoretically be 
reused across these two memories. But that would still be about it. Disjoint code 
implements memory (WM and LTM) versus problem solving (PM and the decision 
procedure); and, even within LTM, disjoint code implements rule, semantic and 
episodic memories. The latter disjointness was addressed earlier via general graphical 



implementation mechanisms that supported a unified long-term memory containing 
both procedural and declarative knowledge.  Here, we further build upon these same 
mechanisms to address the disjointness between memory and problem solving. 

3   The Graphical Memory Architecture 

The graphical memory architecture is based on running the summary product 
algorithm over factor graphs [10].  Factor graphs are similar to Bayesian and Markov 
networks, except that: unlike Bayesian networks, but like Markov networks, they 
employ bidirectional links between nodes; and, unlike both forms of networks, factor 
graphs explicitly include not only variable nodes but also factor nodes for functions 
over sets of variables.  Factor graphs enable efficient computation with complex 
multivariate functions – whether representing probability distributions or arbitrary 
functions – by decomposing them into products of simpler functions and then 
mapping these decompositions onto graphs. By passing messages between variable 
and factor nodes concerning the possible values of variables, the summary product 
algorithm computes marginals on the variables (when using sum as the summarization 
operator), as well as computing more global properties such as maximum a posteriori 
(MAP) probabilities (when using max as the summarization operator). 

Knowledge in long-term memory consists of generalized conditionals that can 
embody conditions, actions, condacts and functions.  Figs. 1 and 2 show two 
examples.  The first 
combines conditions 
and actions in a rule 
that avoids Eight 
Puzzle operators 
that move tiles from 
their goal locations.  
The second is a 
fragment of 
semantic memory that combines conditions, condacts and a function to represent the 
conditional probability of an object’s weight given its concept. 

Conditions and actions 
are just like in traditional 
rules; conditions match to 
working memory elements 
and actions modify them.  
Condacts are hybrids that 
match and modify WM.  
Messages pass in one 
direction for conditions 
and actions but in both 
directions for condacts.  
Procedural knowledge is 
encoded via conditions 

CONDITIONAL GoalReject 
 Conditions: (Operator id:o state:s x:x y:y) 
             (Goal state:s x:x y:y tile:t) 

               (Board state:s x:x y:y tile:t) 
 Actions: (Selected - state:s operator:o) 
 

Fig. 1: Eight Puzzle heuristic that rejects from consideration 
operators that move tiles out of place. 

CONDITIONAL ConceptWeight 
 Conditions: (Object state:s object:o) 
 Condacts: (Concept object:o concept:c) 
           (Weight object:o weight:w) 

w\c Walker Table … 
[1,10> .01w .001w … 
[10,20> .2-.01w “ … 
[20,50> 0 .025-

.00025w 
… 

[50,100> “ “ … 
 

Fig. 2: Conditional probability of weight given 
concept.  Only a fragment of the function is shown. 



and actions.  Unidirectional message passing – from WM, through conditions, on to 
actions, and finally back to WM – provides the forward impetus that is at the heart of 
the procedural use of rule memories.  Declarative knowledge is encoded via condacts.  
Bidirectional message passing among condacts enables the kind of partial match that 
is at the heart of the declarative use of semantic and episodic memories. 

The functions in conditionals enable encoding probability distributions, as in the 
fragment of semantic memory above.  They also enable, for example, encoding the 
symbolic incompatibility knowledge used in constraint memory.  These functions are 
multidimensional and are represented in a piecewise linear manner.  There is one 
dimension per variable, with slices across the dimensions delimiting rectilinear 
regions over which a single linear function is adequate.  The function in Fig. 2, for 
example, has two dimensions – for weight and concept – with slices occurring 
between concepts along one dimension and between segments of weights along the 
other.  Each resulting region has its own linear function (in terms of just weight here). 

 This representation enables approximating continuous functions as closely as 
desired – for perceptual signal processing – but it also enables representing both 
discrete probability distributions and symbolic structures, through restrictions on 
function domains and ranges.  It thus proffers a broad-spectrum hybrid mixed 
representation useable not only for this aspect of long-term memory but also for the 
messages at the core of the summary product algorithm.  In Fig. 2, the concept is 
symbolic, the weight is continuous, and the value of the function is probabilistic. 

The same function representation also works for working memory. Working 
memory is based on predicates – such as Object, Concept and Weight in Fig. 2 – that 
are defined in terms of a name plus named-and-typed arguments.  Weight, for 
example, has two arguments: object, over symbolic identifiers; and weight, over a 
segment of the continuous line.  Each predicate induces a WM factor node with its 
own function that specifies which of its regions are present.  Predicates, and thus WM 
functions, can combine any number of discrete and continuous dimensions, but the 
ranges of WM functions are limited to Boolean values.  In other words, every possible 
element is either in working memory or not; they can’t be in at some probability.  
This is consistent with how working memory works in Soar and with the mapping of 
working memory onto evidence at peripheral nodes in standard probabilistic graphical 
models [1].  However, it does differ from Soar’s approach in explicitly representing – 
with a value of 0 – regions not present in working memory.  This increases overall 
uniformity, but can also increase the number of regions to be processed. 

Conditions, actions and condacts are specified as patterns on predicates, each of 
which also comprises a predicate name plus zero or more arguments.  Each argument 
in a pattern has a name plus a value that is either a constant or a variable.  In Figs. 1 
and 2 all of the arguments are specified via variables (lower-case italicized symbols).  
Predicates can be negated to yield negated conditions and deletion actions; the action 
in Fig. 1, for example, is negated.  Each pattern compiles into a subgraph that 
determines its correspondence to WM regions via messages possessing one dimension 
per argument.  If there are constants in the pattern, an additional factor node is 
included to check their values.  If the pattern is negated, an additional factor node is 
included to invert the message – positive values become 0 and 0s become 1. 

Fig. 3 shows the factor graph for the conditional in Fig. 1, albeit with less 
important nodes omitted and the full subgraph for the Selected action deferred 



until Fig. 4.  As shown, link 
direction in pattern subgraphs 
is determined by whether 
they implement conditions or 
actions (or condacts, 
although not shown here).  
The subgraphs for all 
patterns within a conditional 
are then connected via a 
bidirectional join network.  
The resulting graph, when 
restricted to conditions, is 
similar to the combination of 
Rete’s discrimination and 
join networks, including storage of intermediate match results.  Rete uses alpha and 
beta memories to store condition matches and their combinations.  In the graphical 
architecture, the latest message is automatically cached along each link, yielding a set 
of implementation-level link memories; where links at the end of pattern subgraphs 
act as alpha memories and links within the join network act as beta memories. 

This graphical match algorithm goes beyond Rete in efficiency by bounding the 
cost for condition match by the tree width rather than the number of conditions [1].  
However, Rete’s sharing optimizations – of tests across subgraphs within an 
elaboration cycle and of intermediate results across elaboration cycles – have not yet 
been implemented.  Both of these optimizations appear feasible within the 
unidirectional condition subgraphs – and within those segments of the join network 
that only combine conditions – in a manner much like that in Rete.  However, it is less 
clear whether this will work in bidirectional subgraphs where feedback becomes key.   

The bigger gain though with the graphical approach is that the generality of the 
resulting mechanism yields a capability that is considerably beyond just rule match 
and intermediate result storage.  Messages are now multidimensional continuous 
functions rather than partial rule matches, and they can flow not just away from 
working memory, but also towards it.  This broadening enables a single graphical 
mechanism to handle conditions, actions, condacts and functions; and thus to provide 
a shared implementation across Soar’s multiple long-term memories.  As is discussed 
in the next section, it also yields base-level internal problem solving. 

Aside from Soar’s call to the decision procedure in the uppermost (decision) cycle, 
its three nested loops are essentially all about memory access.  In the graphical 
memory architecture, this functionality compresses down to two nested loops: the 
message cycle, where messages pass along links in the graph; and the graph cycle, 
where message cycles repeat until quiescence and then working memory is updated.  
The message cycle corresponds to Soar’s match cycle.  The graph cycle hybridizes 
Soar’s elaboration cycle with the elaboration-phase portion of its decision cycle. 

To understand this hybridization, it is first necessary to grasp the distinction 
introduced in the graphical architecture between open-world and closed-world 
predicates, concerning whether regions not explicitly in working memory are assumed 
unknown or false.  A region that is false – i.e., 0 – at the beginning of a graph cycle 
cannot become true during the cycle, increasing processing efficiency by removing 

Fig. 3: Factor graph for heuristic conditional in 
Fig. 1.  Boxes are factor nodes while circles are 
variable nodes. 



many regions from consideration; but since false can’t become true without a change 
to working memory, chaining across such conditionals can only happen across graph 
cycles.  Normal rules depend on closed-world predicates to keep working memory 
small and to implement negated conditions, implying only one cycle of rule firing per 
graph cycle, and thus a mapping to Soar’s elaboration cycle.  Semantic, episodic and 
constraint memory depend on open-world predicates so that values initially unknown 
can be determined by bidirectional processing during the graph cycle.  This enables 
within-cycle chaining across conditionals and a full settling of the graph for access to 
declarative memory, indicating a mapping of the graph cycle onto Soar’s elaboration 
phase.  Muddying things even further, when rules work on open-world predicates – 
thus taking on a declarative aspect – it becomes possible to chain across sequences of 
them within a single graph cycle, again akin to Soar’s elaboration phase.    

The difference in chaining between closed-world and open-world predicates is 
implemented by chaining for a closed-world action through its WM factor node – the 
rightmost node in Fig. 3 – necessitating changes in working memory and a new graph 
cycle before results of actions in one conditional can be used in conditions of another; 
while chaining for an open-world predicate through the WM variable node – just to 
the left of the WM factor node in Fig. 3 – enabling chaining across conditionals 
without going through the factor node or changing working memory. 

Changes to working memory occur via an action subgraph like the one shown in 
Fig. 4 for the Selected predicate.  The top portion implements the negated action in 
Fig. 1, with the portion below it implementing a positive action from a different 
conditional.  If there were additional positive actions, their subgraphs would all join at 
the positive-changes (+) factor node, while additional negative actions would join at 
the negative-changes (–) factor node.  To deal with the disjunctive semantics that 
exists across rule actions, both 
of these are special function-
composition factor nodes that 
sum their inputs rather than 
computing their product.  As 
shown in the figure, a revised 
positive-changes message is 
then computed by using 
standard product computations 
to eliminate from it all regions marked for deletion in the negative message. 

Given the aggregate positive and negative messages, the actual changes occur by 
altering the function stored in the WM factor node.  This is a process that has much in 
common with learning – being an extra-graph process that modifies graph structure – 
although it modifies only a subset of factor node functions via a limited change-
determination algorithm.  Everything in the negative message is first deleted from 
working memory and then everything in the revised positive message is added.  
Closed-world modifications of working memory remain in effect until they are 
explicitly undone by later changes, while open-world modifications remain only as 
long as they are supported by conditionals in long-term memory. 

Beyond the two memory distinctions already mentioned – i.e., direction of message 
passing and the values of unspecified regions – a third distinction has also been 
drawn, concerning whether variables in conditionals yield all legal values – universal 

Fig. 4: Action graph for Selected predicate. 



variables – or a distribution over the best possible value – unique variables.  The 
former are essential for memories that need all exact matches, while the latter – which 
correspond to normal variables in probabilistic graphical models – are needed for 
memories that require the single best partial match.  In the memory architecture, rule 
and constraint memory require all exact matches while semantic and episodic memory 
rely on distributions over the best partial match.  Soar has no general distinction 
between universal and unique variables, but instead effectively implements universal 
variables in procedural memory and unique variables in both declarative memories. 

The details concerning how the more general distinction is implemented within the 
graphical memory architecture can be found in [11].  The critical aspect for our 
purposes here though is that when bindings are generated during a graph cycle for an 
action containing a unique variable, only a single element – one with the highest value 
– is added to working memory (assuming there is not already one there), and all 
others are deleted.  This is the sole locus uncovered so far where an architectural 
distinction is necessary between discrete and continuous arguments. If, for example, 
an entire region [0,3) shares the maximum value, it is necessary to distinguish 
whether there are three discrete alternatives competing – [0,1), [1,2) and [2,3) – or an 
(effectively) infinite number of continuous alternatives (which becomes a large 
number of ε-width segments).  This is extra-graph selection code in support of 
changing working memory, rather than part of the summary product algorithm itself.  
But it is still a concrete situation in which the difference between discrete and 
continuous dimensions is not just in the eye of the beholder. 

4   Extension to Problem Solving 

The overall graphical memory capability that has just been described can be reused in 
service of problem solving, just as memory is reused in Soar.  This means that long-
term memory encodes both candidate operators and preferences among them for use 
in operator selection, plus operator applications that change the state and state 
elaborations that amplify these changes (but which can be lumped in with operator 
selection for the rest of this discussion).  Candidate operators are added via open-
world predicates so that they automatically retract when no longer valid for the state, 
and so that preference generation can chain on them during a single graph cycle.  
Preferences are generated by actions for the predefined closed-world Selected 
predicate, which includes a universal discrete numeric state argument and a unique 
symbolic operator argument to denote that there should be one operator per state. 

There are two forms of symbolic preferences, acceptable and reject, which just 
amount to positive and negated Selected actions within functionless conditionals.  
The negated action in Fig. 1, for example, rejects any operator that moves a tile out of 
position.  All regions matching an action receive values of 1 or 0, depending on 
whether the action is positive or negated.  All relative preferences are then encoded 
numerically, by including functions expressing arbitrary non-negative values in 
conditionals that have Selected actions.  No extensions are thus required to 
represent either symbolic or numeric preferences due to the multidimensional mixed 
nature of the function representation employed in the factor graphs.  



Rather than requiring a separate preference memory, the link memories mentioned 
earlier automatically handle the retention of preferences.  Although descriptions of 
Soar’s memories usually omit both Rete’s memories and preference memory, viewing 
them as implementation details, they are critical in the overall processing scheme.  
Here they become unified across the memory and problem solving capabilities via the 
generality of the graphical mechanisms originally implemented for memory; in 
particular, both of these varieties of implementation-level Soar memory map onto link 
memories at the graphical implementation level.  Because preferences are maintained 
in link memories, they retract automatically when state changes make them invalid. 

The processing of preferences for operator selection occurs via the implementation 
mechanisms introduced earlier for unique variables in memory.  As mentioned in 
Section 3, Soar implements a form of unique variable in each declarative memory, but 
they are special purpose variants that only work there.  Operator selection must 
instead occur via the separate decision procedure.  In the graphical implementation 
level, these distinct aspects of Soar’s use of unique variables are merged into a single 
more general implementation mechanism.  As implied by the earlier discussion, all of 
the preferences get combined to yield a distribution over the operators for each region 
of states in the WM-change messages.  The extra-graph code already in place for 
changing working memory then determines which operator to add for each region.   

Once an operator is selected, it is applied by conditionals with closed-world actions 
so as to modify the state in working memory.  Because of this use of closed-world 
predicates, only one round of operator application occurs per graph cycle, but all of 
the resulting changes then remain in working memory until explicitly removed.  The 
different levels of persistence for operator selection versus operator application thus 
arise directly from the distinctions already existing in the memory architecture, rather 
than requiring additional memory distinctions in service of problem solving.  
Operator selection uses open-world predicates plus preferences in link memories, 
while operator application uses closed-world predicates.  This brings a declarative 
aspect to operator selection – enabling openness and chaining within a single graph 
cycle – whether encoded in rules (with open-world actions) or in more traditional 
declarative forms.  Operator application is purely procedural, which makes sense 
given that it is the core source of action and change in problem solving. 

This problem solving capability has been tested in a version of the Eight Puzzle 
that uses continuous mental imagery to represent the board and tiles.  The code 
consists of 18 conditionals, which compile down to a graph with 349 variable nodes, 
292 factor nodes, and 718 links.  The resulting graph successfully solves Eight Puzzle 
instances via sequences of operator selections and applications. 

5   Conclusion 

By exploiting the generality of the graphical implementation mechanisms previously 
developed in support of a broad yet theoretically elegant memory architecture, Soar-
like base-level problem solving capabilities have been demonstrated.  Although an 
architecturally defined Selected predicate was added in the process, the remaining 
functionality all grounds directly in mechanisms developed for the memory 



architecture.  Mechanisms reused include: factor graphs and conditionals to represent 
knowledge; the summary product algorithm to drive processing; the mixed function 
representation to represent both symbolic and numeric preferences; within-graph link 
memories to maintain generated preferences; the open-world versus closed-world 
distinction to maintain selection versus application knowledge; and the universal 
versus unique variables distinction to generate arbitrary candidate operators while 
selecting just the best. 

A complete Soar-like problem solving capability also demands both reflection and 
external action, but the former is already shaping up well in separate work (while 
revealing unanticipated mechanism sharing with episodic memory and the nascent 
mental imagery capability).  In general, the large amount of reuse found here augurs 
well as more capabilities get added towards a full implementation of a hybrid mixed 
variant of Soar, and as more novel architectures for autonomous general intelligence 
are sought that combine even broader applicability with theoretical elegance. 
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