In G. Lakemeyer and B. Nebel (Eds.), Exploring Artificial Intelligence

in the New Millennium.

San Francisco: Morgan Kaufmann Publishers,

2002.

Extending Virtual Humans to Support Team
Training in Virtual Reality

1

Jeff Rickel and W. Lewis Johnson
Information Sciences Institute & Computer Science Department
University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292-6695
rickel@isi.edu, johnson@isi.edu
http://www.isi.edu/isd/carte

Abstract

This paper describes the use of virtual humans and distributed virtual reality
to support team training, where students must learn their individual role in the
team as well as how to coordinate their actions with their teammates. Students,
instructors, and virtual humans cohabit a three-dimensional, interactive, simu-
lated mock-up of their work environment, where they can practice together in
realistic situations. The virtual humans can serve as instructors for individual
students, and they can substitute for missing team members, allowing students
to practice team tasks when some or all human instructors and teammates are
unavailable. The paper describes our learning environment, the issues that arise
in developing virtual humans for team training, and our design for the virtual
humans, which is an extension of our Steve agent previously used for one-on-one
tutoring.

INTRODUCTION

Complex tasks often require the coordinated actions of multiple team members. Team
tasks are ubiquitous in today’s society. For example, teamwork is critical in manufacturing,
in an emergency room, and in rescue operations. To perform effectively in a team, each
member must master their individual role and learn to coordinate their actions with
their teammates. There is no substitute for hands-on experience under a wide range of



situations, yet such experience is often difficult to acquire; required equipment may be
unavailable for training, important training situations may be difficult to reproduce, and
mistakes in the real world may be expensive or hazardous.

In such cases, distributed virtual reality (Durlach and Mavor 1995) provides a promising
alternative to real world training. Students, possibly at different locations, cohabit a
three-dimensional, interactive, simulated mock-up of their work environment, where they
can practice together in realistic situations. Empirical results have demonstrated the
effectiveness of virtual reality for training in areas as diverse as harbor navigation for
submarine commanders (Hays et al. 1998), repair of the Hubble Space Telescope (Loftin
and Kenney 1995), and therapy for fear of flying (Hodges et al. 1996). Nonetheless, the full
potential of distributed virtual environments for education and training has only begun
to be explored.

The availability of a realistic virtual environment is not sufficient to ensure effective
learning. Instructors are needed to demonstrate correct performance, guide students past
impasses, and point out errors that students might miss. Yet requiring instructors to
continually monitor student activities places a heavy burden on their time, and may
severely limit students’ training time. In addition, team training requires the availability
of all appropriate team members, and may require adversaries as well. Thus, while virtual
environments allow students to practice scenarios anywhere and anytime, the need for
instructors and a full set of teammates and adversaries can provide a serious training
bottleneck.

One solution to this problem is to complement the use of human instructors and teammates
with intelligent agents that can take their place when they are unavailable. The agents
cohabit the virtual world with human students and collaborate (or compete) with them
on training scenarios. Intelligent agents have already proven valuable in this role as fighter
pilots in large battlefield simulations (Hill et al. 1997; Jones et al. 1998), but such agents
have a limited ability to interact with students. Our work focuses on a different sort
of intelligent agent: a virtual human that interacts with students through face-to-face
collaboration in the virtual world, either as an instructor or a teammate (Johnson et al.
2000). We call our agent Steve (Soar Training Expert for Virtual Environments).

Our prior work focused on Steve’s ability to provide one-on-one tutoring to students for
individual tasks (Rickel and Johnson 1997; Rickel and Johnson 1999; Rickel and Johnson
2000). Steve has a variety of pedagogical capabilities one would expect of an intelligent
tutoring system. For example, he can point out student errors and answer questions such
as “What should I do next?” and “Why?”. However, because he has an animated body,
and cohabits the virtual world with his student, he can provide more human-like assistance
than previous disembodied tutors can. For example, he can demonstrate actions, use gaze
and gestures to direct the student’s attention, and guide the student around the virtual
world. This makes Steve particularly valuable for teaching tasks that require interaction
with the physical world. Johnson, Rickel, and Lester (2000) discuss these and other
advantages of animated pedagogical agents.

This paper describes our extensions to Steve to support team training. Steve agents can
play two valuable roles: they can serve as a tutor for an individual human team member,
and they can substitute for missing team members, allowing students to practice team
tasks without requiring all their human teammates. Steve’s prior skills provided a solid



foundation for his roles in team training, but several new issues had to be addressed. Each
agent must be able to track the actions of multiple other agents and people, understand
the role of each team member as well as the interdependencies, and communicate with
both human and agent teammates for task coordination. In the remaining sections, we
describe our learning environment for team training, present our solutions to these new
issues, and discuss related and future work.

2 RELATED WORK

Although several recent systems have applied intelligent tutoring methods to team train-
ing, none of them provide embodied virtual humans like Steve that can work with students
in a three-dimensional, simulated mock-up. The PuppetMaster (Marsella and Johnson
1998) serves as an automated assistant to a human instructor for large-scale simulation-
based training. It monitors the activities of synthetic agents and human teams, providing
high-level interpretation and assessment to guide the instructor’s interventions. It mod-
els team tasks at a coarser level than Steve, and is particularly suited to tracking large
teams in very dynamic situations. AETS (Zachary et al. 1998) monitors a team of human
students as they run through a mission simulation using the actual tactical workstations
aboard a ship, rather than a virtual mock-up. AETS employs detailed cognitive models
of each team member (including eye movements, individual keystrokes, and speech) to
track and remediate their performance. However, the system does not use these models to
provide surrogate team members, and the automated tutor provides feedback to students
only through a limited display window and by highlighting of console display elements.
AVATAR (Connolly et al. 1998) provides simulation-based training for air traffic con-
trollers. It monitors and remediates their verbal commands to simulated pilots and their
console panel actions. However, the automated tutor and pilots have no planning capabil-
ities, so scenarios must be more tightly scripted than in our approach. Perhaps the closest
work to ours is the Cardiac Tutor (Eliot and Woolf 1995), which trains a medical student
to lead cardiac resuscitation teams. The system includes a simulation of the patient, as well
as simulated doctors, nurses and technicians that play designated team roles. However,
these teammates do not appear as virtual humans; they are heard but not seen. Medical
protocols, expressed as linear sequences of actions, play the role of the task knowledge
that guides our agents, and the system has some abilities to dynamically adapt protocols
to the stochastic simulation and to errors by the student. However, the representation of
task knowledge appears less general than ours, since it is tailored particularly to trauma
care. Unlike our system, where any team member could be a student or agent, their system
is limited to a single student playing the role of the team leader.

Our work is also closely related to other research on embodied conversational agents
(Cassell et al. 2000) and, more specifically, animated pedagogical agents (Johnson et al.
2000). Cassell and her colleagues have built several sophisticated systems that support
face-to-face conversations between a pair of virtual humans (Cassell et al. 1994) and
between a human user and a virtual human (Cassell and Thérisson 1999; Cassell et al.
2000). However, their work does not allow multiple agents and people to collaborate on
tasks in a 3D virtual world, and they do not address any pedagogical issues. Lester and his
colleagues have built two animated agents that can tutor students through tasks (Lester
et al. 1999; Lester et al. 1999). However, their agents do not support team training, and
they only appear as 2D characters in a 2D virtual world. More recently, they built a 3D



pedagogical agent that performs tasks in a 3D virtual world (Lester et al. 1999). However,
the agent does not collaborate with students on tasks; the student specifies high-level
tasks via menus, and the agent carries them out. André et al. (2000) developed multiple
animated agents that collaborate to present information to a user. The domain knowledge
they give to agents is similar to our approach in representing roles and communication
among agents playing different roles, but their agents do not collaborate with humans on
tasks, and they do not address pedagogical issues. Bindiganavale et al. (2000) developed
a training system that allows multiple virtual humans to collaborate on tasks in a virtual
world. However, in their system, the student learns by giving natural language instructions
(task knowledge) to the agents and viewing the consequences; he can’t participate in the
scenario directly, and the virtual humans do not include any tutoring capabilities.

3 THE LEARNING ENVIRONMENT

Our learning environment is designed to mimic the approach used at the naval training
facility in Great Lakes, Illinois, where we observed team training exercises. The team
to be trained is presented with a scenario, such as a loss of fuel oil pressure in one of
the gas turbine engines that propels the ship. The team must work together, guided by
standard procedures, to handle the casualty. At Great Lakes, the team trains on real,
operational equipment. Because the equipment is in operation, the trainers have limited
ability to simulate ship casualties. For example, they mark gauges with grease pencils
to indicate hypothetical readings, and they use cardboard cutouts to indicate fires. In
our learning environment, the team, consisting of any combination of Steve agents and
human students, is immersed in a simulated mock-up of the ship; the simulator creates
the scenario conditions. As at Great Lakes, an instructor (human or agent) accompanies
each student to coach them on their role.

Each student gets a three-dimensional view of the virtual world through a head-mounted
display (HMD) and interacts with the world via data gloves, as shown in Figure 1.
Lockheed Martin’s Vista Viewer software (Stiles et al. 1995) uses data from a position
and orientation sensor on the HMD to update the student’s view as she moves around.
Additional sensors on the gloves keep track of the student’s hands, and Vista sends out
messages when the student touches virtual objects. These messages are received and
handled by the simulator, which controls the behavior of the virtual world. Our current
implementation uses VIVIDS (Munro et al. 1997; Munro and Surmon 1997), developed
at the USC Behavioral Technology Laboratories (BTL), for simulation authoring and
execution. Separate audio software broadcasts environmental noises through headphones
on the HMD based on the student’s proximity to their source in the virtual world. Our
current training environment simulates the interior of a ship, complete with gas turbine
engines, a variety of consoles, and their surrounding pipes, platforms, stairs and walls. A
course author can create a new environment by creating new graphical models, a simulation
model, and the audio files for environmental sounds.

Our architecture for creating virtual worlds (Johnson et al. 1998), developed in collabora-
tion with our colleagues from Lockheed Martin and BTL, allows any number of humans
and agents to cohabit the virtual world. While a single simulator controls the behavior of
the world, each person interacts with the world through their own copy of Vista and the
audio software, and each agent runs as a separate process. The separate software com-



Figure 1 Two students interacting with a virtual ship via head-mounted displays
and data gloves. Despite their physical proximity to one another, they are operating in
completely different parts of the virtual ship.

ponents communicate by passing messages via a central message dispatcher; our current
implementation uses Sun’s ToolTalk as the message dispatcher.

This distributed architecture has several important advantages. First, since each software
component runs as a separate process, the various processes can run on different machines,
possibly at different locations. Second, this modular approach makes it easy to replace any
of the software components with new alternatives that satisfy the same external interface.
For example, VIVIDS and Vista could be replaced by a commercial product that supports
the creation of interactive virtual mock-ups. Finally, the approach is extensible. Since
components communicate via the message dispatcher rather than by sending messages to
one another directly, one component need not know which other components are expecting
its messages. This approach greatly facilitates team training, where arbitrary combinations
of people and agents must cohabit the virtual world. Our extension to team training would
have been more difficult had we originally designed a more monolithic system geared
towards a single student and tutor.

Humans and agents communicate through spoken dialogue. An agent speaks to a person
(teammate or student) by sending a message to the person’s text-to-speech software, which
broadcasts the utterance through the person’s headphones. Our current implementation
uses Entropic’s TrueTalk for speech synthesis. When a person speaks, a microphone
on their HMD sends their utterance to speech recognition software, which broadcasts
a semantic representation of the utterance to all the agents. The person activates speech
recognition prior to each utterance by touching their two index fingers together; Vista
detects the signal from the gloves and sends a message to activate that person’s speech
recognition software. Our current implementation uses Entropic’s GrapHvite for speech
recognition. Currently, Vista provides no direct support for human-to-human conversation;
if the humans are not located in the same room, they must use telephone or radio to hear
one another.



Figure 2 Steve describing an indicator light

For team training, teammates and instructors must be able to track each other’s activities.
Each person sees each other person in the virtual world as a head and two hands. The
head is simply a graphical model, so each person can have a distinct appearance, possibly
with his or her own face texture-mapped onto the graphical head. Each Vista tracks the
position and orientation of its person’s head and hands via the sensors, and it broadcasts
the information to agents and the other Vistas. Each agent appears as a human upper
body, as shown in Figure 2. To distinguish different agents, each agent can be configured
with its own shirt, hair, eye, and skin color. Its voice can be made distinct by setting its
speech rate, baseline pitch, and vocal tract size; these parameters are supported by the
TrueTalk software. The agents, of course, do not need audio or visual cues to distinguish
other agents and humans; each Vista and speech recognizer indicates in its messages which
person it is tracking, and agents send out similar messages about their activities.

4 EXAMPLE

To illustrate our learning environment and Steve’s current capabilities, consider a training
scenario in which two human students, Jack and Jill, are learning their roles in handling a
loss of fuel oil pressure in one of the gas turbine engines aboard a ship. Jack is serving as
the Propulsion and Auxiliary Control Console (PACC) operator, and Jill is in the engine
room. Each student is assigned a Steve agent as their tutor. In addition, three other
Steve agents serve as their teammates: one serves as the Engineering Officer of the Watch
(EOOW), one serves as the Electrical Plant Control Console (EPCC) operator, and one
serves as the Shaft Control Unit (SCU) operator.

Jack’s tutor looks at him and introduces the scenario: “Let me show you how to handle a
loss of fuel oil pressure. First, when you detect it, inform the EOOW.” Looking over at the



EOOW, the tutor continues, “We have a loss of fuel oil pressure in engine room one.” The
EOOW nods in acknowledgment and passes the message on to the engine room. Jack’s
tutor leads him over to the normal stop button, points at it, and says, “First, press the
normal stop button to stop the turbine.” The tutor presses the button, and Jack watches
its indicator light up and the engine’s power lever angle go to idle. “I will now transfer
thrust control to the central control station,” the tutor informs Jack. Jack, believing that
he remembers the procedure, says, “Let me finish.” “Okay, you finish,” replies the tutor,
who shifts to monitoring Jack’s performance of the task.

Jack steps forward to the console and presses the wrong button. “No,” the tutor comments
while shaking his head. Jack, suddenly less sure of himself, asks, “What should I do?” The
tutor replies, “I suggest that you press the CCS button to initiate the transfer.” Jack
presses the button and his tutor nods approvingly. As a result of Jack’s action, the CCS
button blinks on both the PACC and the SCU. The SCU operator, in the engine room,
presses the blinking CCS button on his console to complete the transfer, and the button
stops blinking and remains illuminated on both consoles.

Jack looks over at the EOOW and says, “Thrust control is now at the central control
station.” The EOOW nods in acknowledgment and instructs the EPCC operator to switch
to generator one. Jack watches as the agent operator pushes a series of buttons and informs
the EOOW when the switch is complete. Now the EOOW commands the engine room to
investigate the cause of the casualty.

Upon receiving the command, Jill's agent says, “Let me show you how to check for the
cause of the loss of fuel oil pressure. First, check that all suction valves are wide open.
A partially closed valve in the suction line can increase the suction lift above the pump’s
capabilities.” The agent guides Jill around the engine room and shows her the location of
the valves. They check each one, but all are already wide open.

Next, the agent leads Jill over to the relief valve. As she gets close, she can hear the sound
of the oil passing through the valve. Her tutor continues, “Next, check the relief valve
set pressure. As you can hear from the sound of the oil passing through the valve, the
set pressure is too low, causing the loss of fuel oil pressure.” The agent shows Jill how to
reset the relief valve lifting pressure, then reports back to the EOOW, “The cause of the
casualty has been determined and corrected.”

Although this scenario does not illustrate all of the capabilities of our learning environ-
ment, it highlights some of the most important. Jack and Jill cohabit a virtual mock-up of
their work environment, along with Steve agents that serve as their tutors and teammates.
They can navigate around the environment to learn the location of relevant equipment,
often under the guidance of their agent tutor. Agents and students can manipulate objects
in the virtual world and see their visual and auditory effects. Finally, students can col-
laborate with each other, as well as their agent tutor and teammates, to practice realistic
training scenarios.



5 AGENT DESIGN

5.1 ARCHITECTURE

To collaborate with students and other agents in a virtual world, Steve must be able to
perceive the state of the world, choose appropriate actions, and execute those actions to
change the state of the world. Thus, as shown in Figure 3, each Steve agent consists of
three main modules: perception, cognition, and motor control (Rickel and Johnson 1999).
The perception module monitors messages from other software components, identifies
relevant events, and maintains a snapshot of the state of the world. It tracks the following
information: the simulation state (in terms of objects and their attributes), actions taken
by students and other agents, the location of each student and agent, and human and
agent speech (separate messages indicate the beginning of speech, the end, and a semantic
representation of its content). In addition, if the agent is tutoring a student, it keeps track
of the student’s field of view; messages from the student’s Vista indicate when objects
enter or leave the field of view. The cognition module, implemented in Soar (Laird et al.
1987; Newell 1990), interprets the input it receives from the perception module, chooses
appropriate goals, constructs and executes plans to achieve those goals, and sends out
motor commands to the motor control module. Steve’s cognition module can typically
react to new perceptual input in a fraction of a second, so it is very responsive (Rickel and
Johnson 2000). The motor control module accepts the following types of commands: move
to an object, point at an object, manipulate an object (about ten types of manipulation
are currently supported), look at someone or something, change facial expression, nod or
shake the head, and speak. The motor control module decomposes these motor commands
into a sequence of lower-level messages that are sent to the other software components
(simulator, Vista Viewers, speech synthesizers, and other agents) to realize the desired
effects. See Rickel and Johnson (1999) for more details on this architecture.

To allow Steve to operate in a variety of domains, his architecture has a clean separation
between domain-independent capabilities and domain-specific knowledge. The code in the
perception, cognition, and motor control modules provides a general set of capabilities
that are independent of any particular domain. These capabilities include planning,
replanning, and plan execution; mixed-initiative dialogue; assessment of student actions;
question answering (“What should I do next?” and “Why?”); episodic memory; path
planning; communication with teammates; and control of the agent’s body (Rickel and
Johnson 1999). To allow Steve to operate in a new domain, a course author simply
specifies the appropriate domain knowledge in a declarative language. (Recent work has
focused on acquiring the knowledge from an author’s demonstrations and the agent’s
experimentation (Angros 2000; Angros et al. 2002)). The knowledge falls in two categories:
perceptual knowledge (knowledge about objects in the virtual world, their relevant
simulator attributes, and their spatial properties) and task knowledge (procedures for
accomplishing domain tasks and text fragments for talking about them). For details about
Steve’s perceptual knowledge, see Rickel and Johnson (1999); the remainder of the paper
will focus on Steve’s representation and use of task knowledge.

Low-level animation of Steve’s body runs as software that is linked into the Vista Viewers
rather than into Steve. Before each graphical frame is rendered (about 15 to 30 times per
second), Vista calls the animation code to update Steve's body position. The animation
code is controlled by messages it receives from Steve’s motor control module. Because the



Cognition
Steve g
Domain knowledge
General capabilities
Motor commay ‘wrrent state
Translate into Filter, assemble
Motor movements, speech into coherent view Perception
Conirol Broadcast to Wikt ovehic
environment

Co andsin Event notifications

environment

h 4

Yirtual Environment

Figure 3 Steve’s three main modules (perception, cognition, and motor control) and
the types of information they send and receive.

animation code controls the dynamics of all body motions, the motor control module need
only specify the type of motion it wants. The animation code generates all movements
dynamically; there are no keyframes or canned animations. Movements involving different
parts of the body can be performed simultaneously, and a new command to a body part
interrupts any existing motion for that part. Steve’s motor control module isolates the
details of how to control the animation code, allowing the cognition module to send higher-
level motor commands that do not depend on those details. This approach makes it easy
to replace Steve’s current body with a new one, such as a commercial product for human
figure animation.

5.2 REPRESENTING TASK KNOWLEDGE

Most of Steve’s abilities to collaborate with students on tasks, either as a teammate or
tutor, stem from his understanding of those tasks. As the scenario unfolds, Steve must
always know which steps are required, how they contribute to the task goals, and who
is responsible for their execution. In order to handle dynamic environments containing
other people and agents, he must understand the tasks well enough to adapt them to
unexpected events; he cannot assume that the task will follow a pre-specified sequence of
steps. Moreover, our goal was to support a declarative representation that would allow
course authors to easily specify task knowledge and update it when necessary (Rickel and
Johnson 1997).

Our representation for individual tasks, used in our previous work for one-on-one tutoring,
satisfies these design criteria. The course author describes each task using a standard plan
representation (Russell and Norvig 1995). First, each task consists of a set of steps, each of
which is either a primitive action (e.g., press a button) or a composite action (i.e., itself a



Task transfer-thrust-control-ccs
Steps press-pacc-ccs, press-scu-ccs
Causal links
press-pacc-ccs achieves ccs-blinking for press-scu-ccs
press-scu-ccs achieves thrust-at-ccs for end-task
Ordering press-pacc-ccs before press-scu-ccs
Roles pacc: press-pacc-ccs; scu: press-scu-ccs

Figure 4 An example team task description

task). Composite actions give tasks a hierarchical structure. Second, there may be ordering
constraints among the steps; these constraints define a partial order over the steps. Finally,
the role of the steps in the task is represented by a set of causal links (McAllester and
Rosenblitt 1991). Each causal link specifies that one step in the plan achieves a particular
goal that is a precondition for another step in the plan or for termination of the task. For
example, pulling out a dipstick achieves the goal of exposing the level indicator, which is
a precondition for checking the oil level.

This task representation is suitable for structured tasks based on standard procedures.
It would not be suitable for tasks that require creative problem solving, such as design
tasks. Fortunately, many tasks in industry and the military have this type of structure,
including operation and maintenance of equipment, trauma care (Eliot and Woolf 1995),
and surgical procedures (Billinghurst and Savage 1996). Moreover, this representation
need not be viewed as a fixed sequence of steps. Rather, it is a general causal network of
steps and goals, and can be used by a planning algorithm to dynamically order the steps
even in the face of unexpected events, as described in the next subsection (Using Task
Knowledge).

To extend Steve to team training, we had to decide how to assign team members to
task steps. Much of the research on multi-agent teams has addressed methods by which
teammates dynamically negotiate responsibility for task steps. However, supporting such
negotiation among a team of agents and people would require more sophisticated natural
language dialogue capabilities than Steve currently has. Fortunately, many team tasks
have well-defined roles that are maintained throughout task execution. We focus on this
class of tasks.

Extending Steve to support such team tasks required one addition to each task description:
a mapping of task steps to team roles. For example, Figure 4 shows a simplified task model
for transferring thrust control to the central control station of a ship. Two roles must be
filled: one operator mans the propulsion and auxiliary control console (PACC) in the
central control station (CCS), and another operator mans the shaft control unit console
(SCU) in the engine room. The PACC operator requests the transfer by pressing the
CCS button on her console, which results in the CCS button blinking on both consoles.
When the CCS button is blinking on the SCU, the SCU operator presses it to finalize the
transfer. This last action achieves the end goal of the task, which is indicated in the task
description by specifying its effect as a precondition of the dummy step “end-task.” This
representation for end goals is standard in AI planners (Russell and Norvig 1995).



Task loss-of-fuel-oil-pressure

Steps transfer-thrust-control-ccs, ...

Causal links ...

Ordering ...

Roles
eoow: (transfer-thrust-control-ccs pacc), ... ;
engrm: (transfer-thrust-control-ccs scu), ...

Figure 5 Specifying roles for a subtask

If a step in the task is itself a team task, it will have its own roles to be filled, and these
may differ from the roles in the parent task. Therefore, the parent task specifies which of
its roles plays each role in the subtask. For example, Figure 5 shows a partial description
of a task for which the task in Figure 4 is a subtask. This task description calls for the
engineering officer of the watch (EOOW) to play the role of the PACC operator and for
the engine room officer (ENGRM) to play the role of the SCU operator for the transfer of
thrust control.

Task descriptions (e.g., Figures 4 and 5) specify the structure of tasks, but they leave the
goals (e.g., ccs-blinking) and primitive steps (e.g., press-pacc-ccs) undefined. The course
author defines each primitive step as an instance of some action in Steve’s extensible
action library. For example, the step press-pacc-ccs would be defined as an instance of
press-button in which the particular button to be pressed is pacc-ccs, the name of an
object in the virtual world. The course author defines each goal by the conditions in the
simulated world under which it is satisfied. For example, ccs-blinking is satisfied when the
simulator attribute scu-ccs-state has the value “blinking.” Thus, Steve is able to relate his
task knowledge to objects and attributes in the virtual world.

5.3 USING TASK KNOWLEDGE

Any combination of human students, agent teammates, and human and agent instructors
can participate in a training scenario. A request for a new scenario can come from a
variety of sources, such as a human instructor or student (via a graphical user interface)
or a curriculum sequencing software component. Regardless of the source, the request is
sent to each Steve agent as a message. The message specifies the name of the task to
be performed (e.g., transfer-thrust-control-ccs or loss-of-fuel-oil-pressure) and assigns a
student or agent to each role in that task. If an agent was previously assigned a student
to tutor, and the agent or student is assigned a role in the team task, the agent coaches
the student on that role. If an agent has not been assigned a student to tutor, and is given
a role in the task, the agent simply serves as the missing teammate. Currently, a single
Steve agent cannot work with multiple students and cannot play one role while tutoring
a student on another role. However, anyone (student or agent) can play multiple roles in
a task; if an agent tutor or its student is assigned multiple roles, they work together on
all those roles.

Given a request for a team task, each Steve agent involved in the task as a team member
or instructor uses its task knowledge to construct a complete task model. Starting with the



task description for the specified task, each agent recursively expands any composite step
with its task description, until the agent has a fully decomposed, hierarchical task model.
Role assignments in the request are propagated down to subtasks until the task model
specifies which team member is responsible for each step. For example, if the task is loss-of-
fuel-oil-pressure (Figure 5), with Joe as the EOOW, then Joe will play the role of the PACC
for the subtask transfer-thrust-control-ccs (Figure 4), and hence he is responsible for the
step press-pacc-ccs. Typically, all agents have the same task knowledge, so each agent will
construct the same hierarchical task model with the same assignment of responsibilities.
(Although our approach would permit different agents to have different knowledge.)

For simulation-based training, especially for team tasks, agents must be able to robustly
handle unexpected events. Scripting an agent’s behavior for all possible contingencies in
a dynamic virtual world is difficult enough, but the problem is compounded when each
agent must be scripted to handle unexpected actions by any human team member. One
option is simply to prevent human students from deviating from standard procedures, but
this robs the team of any ability to learn about the consequences of mistakes and how to
recover from them. Instead, we have designed Steve to use his task knowledge to adapt
task execution to the unfolding scenario.

To do this, each agent maintains a plan for how to complete the task from the current
state of the world. The task model specifies all steps that might be required to complete
the task; it can be viewed as a worst-case plan. Agents continually monitor the state of
the virtual world, identify which goals in the task model are already satisfied, and use a
partial-order planning algorithm to construct a plan for completing the task (Rickel and
Johnson 1999). This plan is a subset of the task model, consisting of the steps relevant
to completing the task, the ordering constraints among them, and the causal links that
indicate the role of each step in achieving the end goals. In our prior work, this plan
would specify how an agent intended to complete a task. For team training, the plan
specifies how the agent intends for the team to collectively complete the task, with some
causal links specifying the interdependencies among team members (i.e., how one team
member’s action depends on a precondition that must be achieved by a teammate). Thus,
agents dynamically interleave construction, revision, and execution of plans to adapt to
the unfolding scenario.

The evolving task context (task model and current plan for completing it) guides the
behavior of the agents. If an agent is serving only as a missing team member, it simply
performs its role in the task, waiting when appropriate for the actions of its teammates, and
communicating with them when necessary. In contrast, an agent serving as an instructor
for a human student interacts with that student in a manner similar to one-on-one tutoring.
The agent can demonstrate the student’s role in the task, explaining each action it takes, or
it can monitor the student as she performs the task, providing feedback on the student’s
actions and answering questions (“What next?” and “Why?”) when the student needs
help. Moreover, the agent instructor can easily shift between these two modes as the
task proceeds; the student can always interrupt the agent’s demonstration and ask to
finish the task herself, and she can always ask the agent to demonstrate a step when
she gets stuck. An agent instructor is responsible for handling student errors; currently,
agent teammates do not provide any pedagogical feedback. The tutorial interactions
between an agent instructor and its student arise from the agent’s domain-independent
capabilities for one-on-one instruction, detailed in our earlier papers (Rickel and Johnson



1999; Rickel and Johnson 2000), operating over the representation of the current team task
context (described above) and the state of the dialogue between the agent and student
(as described in the earlier papers). These tutorial capabilities only had to be extended to
handle several new cases, such as students requesting help when they are not responsible
for the next step.

5.4 TEAM COMMUNICATION

In team tasks, coordination among team members is critical. Although team members can
sometimes coordinate their actions by simply observing the actions of their teammates,
spoken communication is typically required. Team leaders need to issue commands. Team
members often need to inform their teammates when a goal has been achieved, when
they are starting an activity, and when they detect an abnormal condition. Because team
communication is so important, it must be taught and practiced in team training.

To allow agents to communicate with their teammates and teach appropriate communica-
tion to their students, they must have a model of the appropriate communication. Agents
must know what to communicate, when to say it, and how to say it. When a teammate says
something, they must know how to interpret it and how it relates to the task. Addressing
these issues required extensions to Steve’s prior abilities.

We model team communication as explicit speech acts in the task descriptions. For the sort
of structured tasks we have studied, this is natural; all the documented team procedures
given to us specified when one team member should say something to another and how it
should be said. To support this, we extended Steve’s action library to include a new type
of action: a speech act from one team member to another. Each speech act appears as a
primitive action in the task description. This allows us to explicitly model its relationship
to the task, including the role responsible for performing it, ordering constraints on when
it should be said, and causal links that specify how its effect contributes to completing
the task (i.e., which other steps depend on that result).

The definition of a particular speech act includes five components:

e It specifies the name of the attribute being communicated. For example, for a speech
act informing the EOOW that thrust control has been transferred to the central
control station, the attribute being communicated is thrust-location. The attribute
may or may not be an actual simulator attribute.

e It specifies the value being communicated for that attribute. In the example above,
the value is ccs (i.e., central control station).

e It specifies the appropriate text string. For the example above, the appropriate phrase
might be “Thrust control is now at the central control station.” Note that we do not
want to leave this text string up to a natural language generator, because there is
often a precise utterance that should be used.

e It specifies the semantic representation that will be returned by a student’s speech
recognizer when she says the utterance or some acceptable variant of it. Our speech
recognition software currently maps each path through its grammar to a symbol that
represents its content, but a more structured representation could also be used.



e It specifies the name of the task role to which the speech act is directed (e.g., EOOW).
Recall that the task description containing the speech act specifies the role responsible
for performing the speech act, so together these two pieces of information fully specify
the appropriate speaker and hearer.

Given this representation for team communication, Steve agents can both generate
and comprehend such utterances during task execution. When an agent’s plan calls
for it to execute one of these speech acts, it sends the text string to appropriate
speech synthesizers for its human teammates to hear, and it broadcasts the semantic
representation of the speech act for its agent teammates to “hear.” When a human says
the appropriate utterance, her speech recognizer identifies it as a path through its domain-
specific grammar, maps it to an appropriate semantic representation, and broadcasts it
to the agents. When an agent receives such a message from a person or another agent, it
checks its plan to see if it expects such a speech act from that teammate at that time.
If so, it updates the specified attribute in its mental state with the specified value, and
it nods to the speaker in acknowledgment. If a speech recognizer fails to understand a
student’s utterance, or the utterance is not appropriate at the current time, the student’s
instructor agent is responsible for giving the student appropriate feedback.

There are several important points about this approach. First, it only applies to structured
tasks for which the required team communications can be specified in the task description;
it will not suffice for tasks that require more arbitrary communication. Fortunately, many
well-structured team tasks, particularly in the military, include such a prescribed set of
utterances. Second, since Steve does not include any natural language understanding
abilities, all valid variations of the utterances must be added to the grammar for the
speech recognizer. Again, this is reasonable for tasks with prescribed utterances. Third,
note the difference between our approach and communication messages in a purely multi-
agent system; a speech recognizer cannot tell to whom an utterance is intended, so agents
must use the task model to determine whether the speaker is addressing them. Finally,
each agent must treat a human student and their instructor as jointly performing a role;
if either of them generates the speech act, it must be treated as coming from that role.

Although spoken communication is typically required for team tasks, nonverbal commu-
nication is also important. Human students can observe the actions of their nearby agent
and human teammates, which is often required for proper team coordination. Agents look
at a teammate when expecting them to do something, which can cue a student that she
is responsible for the next step. Agents look at the teammate to whom they are speaking
(Figure 6), allowing students to follow the flow of communication and recognize when they
are being addressed. Finally, agents react to their teammates’ actions; they look at objects
being manipulated by teammates (Figure 7), and they nod in acknowledgment when they
understand something a teammate says to them. All these nonverbal acts are generated
from the agents’ domain-independent capabilities (Rickel and Johnson 2000); they need
not be included in task models. For tasks that require face-to-face collaboration among
team members, such nonverbal communication is critical.



Figure 6 One Steve agent speaking to another

6 DISCUSSION

6.1 STATUS

Steve has been tested on a variety of naval operating procedures. In our most complicated
team scenario, five team members must work together to handle a loss of fuel oil pressure
in one of the gas turbine engines. This task involves a number of subtasks, some of which
are individual tasks while others involve subteams. All together, the task consists of about
three dozen actions by the various team members. Steve agents can perform this task
themselves as well as in concert with human team members. All of Steve’s algorithms were
designed for efficient real-time performance; there are no noticeable delays in the agents’
behavior, even when running several agents on the same computer. However, the Vista
Viewer software requires a high-end Silicon Graphics computer to achieve a reasonable
frame rate given the complexity of the 3D ship model and the number of agents it must
animate. We have not yet evaluated the training effectiveness of our system for team
training, but we hope to perform a formal evaluation with actual naval personnel in the
future.

7 FUTURE WORK

Some important limitations in our system could be alleviated by incorporating recent
research results from related areas. To go beyond tasks with prescribed utterances, we
could leverage ongoing research on robust spoken dialogue (Allen et al. 1996; Smith and
Hipp 1994). To handle tasks with shifting roles and unstructured communication among
teammates, we could incorporate a more general theory of teamwork (Jennings 1995;
Levesque et al. 1990; Tambe 1997). To handle tasks that involve simultaneous physical



Figure 7 One Steve agent watching another

collaboration (e.g., two people jointly lifting a heavy object), we will need a tighter coupling
of Steve’s perception and body control (Badler et al. 1993). Although research in these
areas is still incomplete, many useful methods have been developed.

Steve agents serving as instructors should provide more information on team activities
than they currently do. They should provide running commentary on relevant actions of
teammates, which can be difficult because it requires the ability to synchronize verbal
descriptions with real-time events in the virtual world (André et al. 2000). They should
indicate perceptual cues that can help the student track teammates’ actions. They should
interleave their demonstrations of the student’s role with descriptions of how and why the
student’s actions are needed by teammates and vice versa. Our representation of team
tasks should support all these capabilities, but they have not yet been added to Steve’s
tutorial repertoire.

Another limitation in Steve agents is that they never make mistakes. This issue was raised
by trainers at the Great Lakes naval training facility, who emphasized the importance of
learning to recognize and recover from mistakes by teammates. Our approach of allowing
students to make mistakes so that the team can learn their consequences and how to
recover from them is consistent with this learning objective. However, a student can
currently only learn from her own mistakes and those of her human teammates. To better
support this learning objective, we must incorporate an appropriate model of task errors
into Steve agents. For example, we might generate errors automatically by degrading an
agent’s perception (e.g., it fails to notice something in the virtual world) or task knowledge.

There is a growing understanding of the principles behind effective team training (Blick-
ensderfer et al. 1997; Burns et al. 1993; Smith-Jentsch et al. 1998; Swezey and Salas 1992).
Empirical experiments are beginning to tease out the skills that make teams effective (e.g.,



Figure 8 An interactive peacekeeping scenario featuring (left to right) a sergeant, a
mother, and a medic

task skills vs. team skills), the basis for team cohesion (e.g., shared mental models), the
best types of feedback (e.g., outcome vs. process), and the best sources of feedback (e.g.,
instructor vs. teammate). Because our approach allows us to model face-to-face interac-
tion among human instructors and students and their agent counterparts, we are now in
an excellent position to incorporate and experiment with a variety of these new ideas in
team training.

We are currently addressing many of the issues discussed above in an ambitious new
project (Rickel et al. 2001; Swartout et al. 2001). In contrast to our prior work, which
focused on teaching well-defined tasks, our new project focuses on leadership training and
decision making in stressful situations. Figure 8 shows a screen shot from a prototype
implementation of an example application, in which a young lieutenant (human user) is
being trained for a peacekeeping mission. In the current implementation, there are three
Steve agents that interact with the lieutenant: a medic (front right) that serves as his
teammate, a Bosnian mother (front center) whose boy has been accidentally injured by
one of the lieutenant’s vehicles, and a sergeant (front left) who serves as both a teammate
and mentor. All other characters (soldiers and an angry crowd of locals) are simple scripted
agents.

This new type of team training exploits all of Steve’s prior capabilities, but it is pushing
us in several new directions. First, we are aiming for more realism in the graphical bodies;
in our latest implementation, shown in Figure 8, the bodies and animation algorithms
for all the Steve agents and scripted characters were developed by Boston Dynamics
Incorporated. Second, since the human user must collaborate with his agent teammates
to formulate novel plans, rather than simply execute well-defined procedures, we are
integrating state-of-the-art natural language understanding and generation algorithms
into Steve, as well as extending those algorithms to handle multi-party conversations
in immersive virtual worlds (Traum and Rickel 2002). Third, to model the behavior
of teammates in stressful situations, as well as create virtual humans that can induce
stress in the human user by reacting emotionally, we have integrated a computational
model of emotions into Steve (Gratch and Marsella 2001). For example, the mother in our



peacekeeping scenario becomes increasingly angry at the lieutenant if his decisions thwart
her goal of getting assistance for her boy. Our challenge as we integrate these extensions
into Steve is to maintain the efficient real-time performance and ease of authoring of the
approach described in this paper.

8 CONCLUSION

This paper has described a new approach to team training based on virtual humans
in distributed virtual reality. The approach builds on our learning environment and
Steve agent developed for one-on-one tutoring of individual tasks. In our new learning
environment, any combination of human students, agent teammates, and human and agent
instructors can cohabit a three-dimensional, interactive, simulated mock-up to practice
team tasks. To support such training scenarios, Steve was extended in several ways. Rather
than tracking the activities of a single student, Steve now tracks the actions of multiple
other agents and people. Steve’s representation for task knowledge was extended to include
a representation for team roles, allowing each agent to understand the role of each team
member as well as the interdependencies. Agents use their task knowledge to dynamically
maintain a plan specifying how the team can collectively complete their task from the
current situation. Because communication is essential for team coordination, we model
such communication as explicit speech acts in the agents’ task knowledge, allowing them
to understand what to communicate, when and how to say it, and how the communication
facilitates completion of their task. In addition, our use of embodied virtual humans
supports the many types of nonverbal communication that are essential for face-to-face
collaboration. Virtual humans and distributed virtual reality provide students the ability
to practice team tasks in realistic scenarios anywhere and anytime, providing a training
environment that is safer, cheaper, and more flexible than physical alternatives.

9 ACKNOWLEDGMENTS

This work was funded by the Office of Naval Research under grant N00014-95-C-0179 and
AASERT grant N00014-97-1-0598. We are grateful to our collaborators who developed
the other software components on which Steve relies. Randy Stiles and his colleagues at
Lockheed Martin developed the visual interface software (Vista Viewer). Allen Munro
and his colleagues at the Behavioral Technology Laboratories developed the simulator
(VIVIDS). Ben Moore at ISI developed the speech recognition and audio components.
Finally, Marcus Thiébaux at ISI developed the 3D model of Steve’s body and the code in
the visual interface software that controls its animation. Our new work is funded by the
Army Research Office through the USC Institute for Creative Technologies under contract
DAAD19-99-C-0046.

References

Allen, J. F., B. W. Miller, E. K. Ringger, and T. Sikorski (1996). Robust understanding
in a dialogue system. In Proceedings of the 34th Annual Meeting of the Association for
Computational Linguistics, San Francisco, CA, pp. 62-70. Morgan Kaufmann.

André, E., T. Rist, S. van Mulken, M. Klesen, and S. Baldes (2000). The automated design
of believable dialogues for animated presentation teams. In J. Cassell, J. Sullivan,



S. Prevost, and E. Churchill (Eds.), Embodied Conversational Agents. Cambridge, MA:
MIT Press.

Angros, Jr., R. (2000). Learning What to Instruct: Acquiring Knowledge from Demonstra-
tions and Focussed Ezperimentation. Ph. D. thesis, Department of Computer Science,
University of Southern California, Los Angeles, CA.

Angros, Jr., R., W. L. Johnson, J. Rickel, and A. Scholer (2002). Learning domain
knowledge for teaching procedural tasks. In Proceedings of the First International Joint
Conference on Autonomous Agents and Multi-Agent Systems, New York. ACM Press.
Forthcoming.

Badler, N. I., C. B. Phillips, and B. L. Webber (1993). Simulating Humans. New York:
Oxford University Press.

Billinghurst, M. and J. Savage (1996). Adding intelligence to the interface. In Proceedings
of the IEEE Virtual Reality Annual International Symposium (VRAIS ’96), Los
Alamitos, CA, pp. 168-175. IEEE Computer Society Press.

Bindiganavale, R., W. Schuler, J. M. Allbeck, N. I. Badler, A. K. Joshi, and M. Palmer
(2000). Dynamically altering agent behaviors using natural language instructions. In
Proceedings of the Fourth International Conference on Autonomous Agents, New York,
pp- 293-300. ACM Press.

Blickensderfer, E., J. A. Cannon-Bowers, and E. Salas (1997). Theoretical bases for team
self-correction: Fostering shared mental models. Advances in Interdisciplinary Studies
of Work Teams 4, 249-279.

Burns, J. J., E. Salas, and J. A. Cannon-Bowers (1993). Team training, mental models,
and the team model trainer. In Proceedings of Advancement in Integrated Delivery
Technologies, Denver, CO.

Cassell, J., T. Bickmore, L. Campbell, H. Vilhjilmsson, and H. Yan (2000). Conversation
as a system framework: Designing embodied conversational agents. In J. Cassell,
J. Sullivan, S. Prevost, and E. Churchill (Eds.), Embodied Conversational Agents.
Cambridge, MA: MIT Press.

Cassell, J., C. Pelachaud, N. Badler, M. Steedman, B. Achorn, T. Becket, B. Douville,
S. Prevost, and M. Stone (1994). Animated conversation: Rule-based generation of
facial expression, gesture and spoken intonation for multiple conversational agents. In
Proceedings of ACM SIGGRAPH 94, Reading, MA, pp. 413-420. Addison-Wesley.

Cassell, J., J. Sullivan, S. Prevost, and E. Churchill (Eds.) (2000). Embodied Conversa-
tional Agents. Cambridge, MA: MIT Press.

Cassell, J. and K. R. Thérisson (1999). The power of a nod and a glance: Envelope vs. emo-
tional feedback in animated conversational agents. Applied Artificial Intelligence 13,
519-538.

Connolly, C. A., J. Johnson, and C. Lexa (1998). AVATAR: An intelligent air traffic
control simulator and trainer. In Proceedings of the Fourth International Conference
on Intelligent Tutoring Systems (ITS ’98), Number 1452 in Lecture Notes in Computer
Science, Berlin, pp. 534-543. Springer.

Durlach, N. I. and A. S. Mavor (Eds.) (1995). Virtual Reality: Scientific and Technological
Challenges. Washington, D.C.: National Academy Press.

Eliot, C. and B. P. Woolf (1995). An adaptive student centered curriculum for an intelligent
training system. User Modeling and User-Adapted Instruction 5, 67-86.



Gratch, J. and S. Marsella (2001). Tears and fears: Modeling emotions and emotional
behaviors in synthetic agents. In Proceedings of the Fifth International Conference on
Autonomous Agents, New York, pp. 278-285. ACM Press.

Hays, R. T., D. A. Vincenzi, A. G. Seamon, and S. K. Bradley (1998). Training effectiveness
evaluation of the VESUB technology demonstration system. Technical Report 98-003,
Naval Air Warfare Center Training Systems Division, Orlando, FL.

Hill, Jr., R. W., J. Chen, J. Gratch, P. Rosenbloom, and M. Tambe (1997). Intelligent
agents for the synthetic battlefield: A company of rotary wing aircraft. In Proceedings
of the Ninth Conference on Innovative Applications of Artificial Intelligence (IAAI-97),
Menlo Park, CA, pp. 1006-1012. AAAT Press.

Hodges, L. F., B. O. Rothbaum, B. Watson, G. D. Kessler, and D. Opdyke (1996). A
virtual airplane for fear of flying therapy. In Proceedings of the IEEE Virtual Reality
Annual International Symposium (VRAIS ’96), Los Alamitos, CA, pp. 86-93. IEEE
Computer Society Press.

Jennings, N. (1995). Controlling cooperative problem solving in industrial multi-agent
systems using joint intentions. Artificial Intelligence 75.

Johnson, W. L., J. Rickel, R. Stiles, and A. Munro (1998, December). Integrating
pedagogical agents into virtual environments. Presence: Teleoperators and Virtual
Environments 7(6), 523-546.

Johnson, W. L., J. W. Rickel, and J. C. Lester (2000). Animated pedagogical agents:
Face-to-face interaction in interactive learning environments. International Journal of
Artificial Intelligence in Education 11, 47-78.

Jones, R. M., J. E. Laird, and P. E. Nielsen (1998). Automated intelligent pilots for combat
flight simulation. In Proceedings of the Tenth Conference on Innovative Applications
of Artificial Intelligence (IAAI-98), Menlo Park, CA, pp. 1047-1054. AAAT Press.

Laird, J. E., A. Newell, and P. S. Rosenbloom (1987). Soar: An architecture for general
intelligence. Artificial Intelligence 33(1), 1-64.

Lester, J. C., B. A. Stone, and G. D. Stelling (1999). Lifelike pedagogical agents for mixed-
initiative problem solving in constructivist learning environments. User Modeling and
User-Adapted Interaction 9, 1-44.

Lester, J. C., J. L. Voerman, S. G. Towns, and C. B. Callaway (1999). Deictic believability:
Coordinating gesture, locomotion, and speech in lifelike pedagogical agents. Applied
Artificial Intelligence 13, 383-414.

Lester, J. C., L. S. Zettlemoyer, J. Gregoire, and W. H. Bares (1999). Explanatory lifelike
avatars: Performing user-designed tasks in 3d learning environments. In Proceedings of
the Third International Conference on Autonomous Agents, New York. ACM Press.

Levesque, H. J., P. R. Cohen, and J. H. T. Nunes (1990). On acting together. In Proceedings
of the Eighth National Conference on Artificial Intelligence (AAAI-90), Los Altos, CA,
pp- 94-99. Morgan Kaufmann.

Loftin, R. and P. Kenney (1995). Training the hubble space telescope flight team. IEEE
Computer Graphics and Applications 15(5), 31-37.

Marsella, S. C. and W. L. Johnson (1998). An instructor’s assistant for team-training
in dynamic multi-agent virtual worlds. In Proceedings of the Fourth International
Conference on Intelligent Tutoring Systems (ITS ’98), Number 1452 in Lecture Notes
in Computer Science, Berlin, pp. 464-473. Springer.



McAllester, D. and D. Rosenblitt (1991). Systematic nonlinear planning. In Proceedings of
the Ninth National Conference on Artificial Intelligence (AAAI-91), Menlo Park, CA,
pp. 634-639. AAAT Press.

Munro, A., M. Johnson, Q. Pizzini, D. Surmon, and D. Towne (1997). Authoring
simulation-centered tutors with RIDES. International Journal of Artificial Intelligence
in Education 8, 284-316.

Munro, A. and D. Surmon (1997). Primitive simulation-centered tutor services. In Pro-
ceedings of the AI-ED Workshop on Architectures for Intelligent Simulation-Based
Learning Environments, Kobe, Japan.

Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Harvard University
Press.

Rickel, J., J. Gratch, R. Hill, S. Marsella, and W. Swartout (2001, March). Steve goes
to Bosnia: Towards a new generation of virtual humans for interactive experiences. In
AAAT Spring Symposium on Artificial Intelligence and Interactive Entertainment.

Rickel, J. and W. L. Johnson (1997). Intelligent tutoring in virtual reality: A preliminary
report. In Proceedings of the Eighth World Conference on Artificial Intelligence in
Education, pp. 294-301. IOS Press.

Rickel, J. and W. L. Johnson (1999). Animated agents for procedural training in virtual
reality: Perception, cognition, and motor control. Applied Artificial Intelligence 13,
343-382.

Rickel, J. and W. L. Johnson (2000). Task-oriented collaboration with embodied agents in
virtual worlds. In J. Cassell, J. Sullivan, S. Prevost, and E. Churchill (Eds.), Embodied
Conversational Agents. Cambridge, MA: MIT Press.

Russell, S. and P. Norvig (1995). Artificial Intelligence: A Modern Approach. Englewood
Cliffs, NJ: Prentice Hall.

Smith, R. W. and D. R. Hipp (1994). Spoken Natural Language Dialog Systems. New York:
Oxford University Press.

Smith-Jentsch, K. A., R. L. Zeisig, B. Acton, and J. A. McPherson (1998). Team
dimensional training. In J. Cannon-Bowers and E. Salas (Eds.), Making Decisions
Under Stress: Implications for Individual and Team Training. American Psychological
Association.

Stiles, R., L. McCarthy, and M. Pontecorvo (1995, July). Training studio interaction. In
Workshop on Simulation and Interaction in Virtual Environments (SIVE-95), lowa
City, IW, pp. 178-183. ACM Press.

Swartout, W., R. Hill, J. Gratch, W. Johnson, C. Kyriakakis, C. LaBore, R. Lindheim,
S. Marsella, D. Miraglia, B. Moore, J. Morie, J. Rickel, M. Thiébaux, L. Tuch, R. Whit-
ney, and J. Douglas (2001). Toward the holodeck: Integrating graphics, sound, char-
acter and story. In Proceedings of the Fifth International Conference on Autonomous
Agents, New York, pp. 409—416. ACM Press.

Swezey, R. W. and E. Salas (1992). Guidelines for use in team-training development.
In R. W. Swezey and E. Salas (Eds.), Teams: Their Training and Performance, pp.
219-245. Norwood, NJ: Ablex.

Tambe, M. (1997). Towards flexible teamwork. Journal of Artificial Intelligence Re-
search 7, 83-124.



Traum, D. and J. Rickel (2002). Embodied agents for multi-party dialogue in immer-
sive virtual worlds. In Proceedings of the First International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems, New York. ACM Press. Forthcoming.

Zachary, W., J. Cannon-Bowers, J. Burns, P. Bilazarian, and D. Krecker (1998). An
advanced embedded training system (AETS) for tactical team training. In Proceedings
of the Fourth International Conference on Intelligent Tutoring Systems (ITS ’98),
Number 1452 in Lecture Notes in Computer Science, Berlin, pp. 544-553. Springer.



