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Abstract—Missing data techniques (MDTs) have been widely
employed and shown to improve speech recognition results under
noisy conditions. This paper presents a new technique which
improves upon previously proposed sparse imputation techniques
relying on the least absolute shrinkage and selection operator
(LASSO). LASSO is widely employed in compressive sensing
problems. However, the problem with LASSO is that it does not
satisfy oracle properties in the event of a highly collinear dictio-
nary, which happens with features extracted from most speech
corpora. When we say that a variable selection procedure satisfies
the oracle properties, we mean that it enjoys the same perfor-
mance as though the underlying true model is known. Through
experiments on the Aurora 2.0 noisy spoken digits database, we
demonstrate that the Least Angle Regression implementation of
the Elastic Net (LARS-EN) algorithm is able to better exploit the
properties of a collinear dictionary, and thus is significantly more
robust in terms of basis selection when compared to LASSO on the
continuous digit recognition task with estimated mask. In addition,
we investigate the effects and benefits of a good measure of sparsity
on speech recognition rates. In particular, we demonstrate that
a good measure of sparsity greatly improves speech recognition
rates, and that the LARS modification of LASSO and LARS-EN
can be terminated early to achieve improved recognition results,
even though the estimation error is increased.

Index Terms—Automatic speech recognition (ASR), compressive
sensing, convex optimization, missing data techniques (MDTs), ro-
bustness, sparse representation.

I. INTRODUCTION

M ISSING data/feature techniques (MDTs) have been pro-
posed for noisy signal conditions to compensate for un-

reliable components of features corrupted by noise. By missing
data/feature, we mean problems that are made difficult by ab-
sence of portions of data which take on some known/hypothe-
sized structure. Missing data techniques have been employed in
statistics [1] long before its adoption into the speech processing
field for automatic speech recognition (ASR). In addition to
speech processing, techniques for data imputation (i.e., filling
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in or substituting for missing data) have also been employed
in many other areas for denoising noisy measurements. For ex-
ample, in the field of genetics [2], the microarrays employed in
measuring gene expressions often suffer from the problem of
probe noise. Another example is in reconstruction of noisy im-
ages [3].

There have been a large number of works pertaining to
the topic of MDT and imputation in the speech processing
field. For example, in [4] and [5], the authors have employed
two different statistical methods to infer the unreliable speech
data. The first is marginalization, where the likelihood of
the incomplete data vector is computed. Using and to
denote the reliable parts and the unreliable parts of the feature
vector respectively, the method allows computation of
instead of , where represents the states in a
hidden Markov model (HMM). A further refinement of this
marginalization technique is termed “bounded marginaliza-
tion” where the integral of the probability density functions
are done over a finite range rather than from to . The
second method is to compute the distribution of the unreliable
segments of the feature vector instead of the likelihood of the
data present. Experimental evaluation on the TIDigits corpus
with nonstationary (car/helicopter/factory) noise corruption
showed that with these proposed techniques, the performance
is much better than the original performance before imputation.
In particular, the performance of the bounded marginalization
method outperforms that of the second method.

Sparse representation techniques have also been used in
the realm of MDT, attempting data reconstruction under the
assumption that the signal can be reconstructed by a sparse rep-
resentation from a dictionary. Sparse representation techniques
and compressive sensing techniques [6] (where the dictionary
obeys the restricted isometry hypothesis) have been used
widely, applications including phonetic classification in speech
processing [7], and also image processing and medical imaging
[8]–[12]. Recently, Gemmeke et al. [13], [14], and Börgstrom
et al. [15], [16] have proposed the use of optimization tech-
niques for spectral imputation. By optimization techniques,
we are referring to techniques which optimize some error
function subject to constraints on the norm of the solution
vector , defined as follows:

(1)

In particular, Gemmeke et al. proposed an imputation frame-
work based on a dictionary of exemplars, and refer to the
process as “Sparse Imputation.” Fig. 1 gives an illustration of
the sparse imputation process. Both works have experimentally
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Fig. 1. Diagram of sparse imputation process.

demonstrated the effectiveness of this technique when recov-
ering missing speech components in adverse signal-to-noise
ratio (SNR) conditions (SNR dB). In [13] and [14], the au-
thors evaluated the imputation techniques on a time-normalized
single digit recognition task. The formulation in [13] and [14]
assumes a well constructed dictionary for the sparse imputation
process and it was found through experimentation that a dictio-
nary with 4000 exemplar spectrogram representations yielded
the best performance with the LASSO algorithm in terms of
speed and accuracy for their dataset. The LASSO algorithm
is essentially a variable selection procedure which imposes a
constraint on the norm of the solution vector. Results in [14]
have demonstrated considerable improvement of the Sparse
Imputation technique with well constructed dictionaries over
classical imputation techniques like per-Gaussian-conditioned
imputation and cluster-based imputation. An attempt to extend
this system on the continuous digit task using LASSO has been
reported in [17]. A further extension of the system to large
vocabulary continuous speech recognition (LVCSR) has also
been explored in [18].

One of the goals of this paper is to investigate a solution to
better exploit the properties of collinear dictionaries of exem-
plars in the sparse imputation setting for the continuous digits
recognition task. We typically desire a dictionary which is less
collinear, by which we are referring to a dictionary where the
value

where (2)

is small [19], which essentially means that the entries of the dic-
tionary have a higher tendency to point in different directions.
Here, refers to the number of columns in . In partic-
ular, in the event of a collinear dictionary, some variable selec-
tion procedures such as LASSO do not satisfy oracle properties,
meaning that they do not identify the correct subset of predic-
tors to model the observation, and they do not have an optimal
estimation rate [20].

The two main algorithms we will investigate in this paper
are LASSO [21] and the Least Angle Regression implemen-
tation of the Elastic Net (LARS-EN) [22] which is essentially
an enhanced version of LASSO and Ordinary Least Squares
(OLS). The reason LASSO is chosen as our baseline is because
it has been demonstrated by [17] to be an efficient algorithm in
the Sparse Imputation framework. In addition, LASSO offers a
LARS modification which greatly accelerates its implementa-
tion. LARS-EN is chosen because it is theoretically proven to

better exploit the property of collinear dictionary compared to
LASSO, and offers the LARS modification which allows for fast
execution [22].

We demonstrate experimentally that by better exploiting the
properties of a collinear dictionary, we can expect to enjoy better
speech recognition rates. We also provide a study of how dif-
ferent degrees of sparsity will affect speech recognition rates
and why a good measure of sparsity is needed for optimal speech
recognition results. We will use the implementation details of
both algorithms to explain why a good measure of sparsity is
necessary for optimal speech recognition rates. We demonstrate
LARS-EN to be a significant improvement over LASSO for
the continuous digit recognition task with estimated masks. We
also supplement the results of evaluation with some popular
regularization techniques for completeness. In this paper, like
many others in the related literature, we will adopt the Aurora
2.0 noisy digits database for evaluation. The algorithms we in-
troduce are incorporated into the speech recognition front-end,
and the denoised/imputed version of the speech features are in
turn used for speech recognition. We will be working with the
standard Mel-frequency cepstral coefficient (MFCC) front-end
in contrast to [13], [14], which use PROSPECT features [23]
for recognition. We also evaluate our methods on dictionaries
of multiple sizes in contrast to [13] and [14]. In practical sce-
narios, it will be difficult to tune for dictionary sizes, and the
basis selection technique employed should ideally be able to se-
lect the appropriate sparse basis representation regardless of the
structure of the dictionary. We will show that LARS-EN with
small dictionary sizes outperforms LARS-LASSO with larger
dictionaries for our digit recognition task.

The organization of the paper is as follows. Section II details
the framework, algorithm, and justification as to the choices of
the particular algorithms. Section III provides a description of
our experimental setup and the experimental results, as well as a
discussion of our parameter choices, and the results. Section V
concludes with possible extensions of this work.

II. METHODOLOGY

A. Construction of Representation of Test Utterances

We first need to construct a signal observation representation
of the test spoken utterance . In this paper, we use frame-level
spectral representations of speech rather than time-domain rep-
resentations. The approaches in [13] and [14] considered a fixed
length vector representation for each digit. This is done by con-
verting the acoustic feature representation to a time-normalized
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representation with a fixed number of acoustic feature frames.
That reduces the digit recognition into a classification task since
the digit boundaries are assumed to be known. Working with the
assumption that the digit boundaries are known is nontrivial in
practical settings.

In this paper, we consider the continuous digit recognition
scenario like in [17]. Let the total number of frames for utterance

be denoted . Let the feature vector corresponding to frame
of digit utterance be denoted . The feature vector

contains (number of frequency bands) spectral coefficients
corresponding to frame of utterance . Let be a
matrix defined as follows:

(3)

We now consider a sliding window extraction of the data in
this matrix representation . Define a sliding matrix which
has dimensions , representing the duration of the
sliding matrix. We also define a window shift parameter ,
which represents the number of frames by which we shift the
sliding matrix.

Through this we obtain a total of
matrices of feature vectors. For a more efficient implementation
of the window extraction algorithm, we zero-pad to be a

matrix where .
Let us denote the th window corresponding to utterance to
be . Let us denote the lineariza-
tion of the matrix to be the following:

(4)

Now, we make the assumption that we can write as
, where is the observation (feature vector),

is a dictionary of exemplars, is a vector of weights. We
are assuming that each test segment can be written as a linear
combination of vectors from the dictionary. This is a reason-
able assumption to make and follows the approaches in [10],
[13], [14], [24] and many other signal processing applications
where a regularized regression setting is desired for denoising.
Also, the spectral representations for different realizations of the
same word have energy concentrations in similar regions in the
time–frequency domain, giving us a reason for using this linear
representation.

Thus, we will have the following linear representations from
our windows:

(5)

After the sparse imputation process, we need to recon-
struct an imputed representation of the original sliding ma-
trix. Define a counter matrix of dimension , where

. This counter matrix
counts the number of times each entry in the matrix is
imputed due to overlapping windows. Formation of the final
imputed matrix will involve first reshaping [the solution
to optimizing (5)] back to dimensions , adding all

the resulting reshaped frames together, and then doing ele-
ment-wise division by the entries of the counter matrix. This is
in effect amounts to averaging the contributions of individual
imputations coming from multiple windows. To simplify the
notation we will omit the subscript in the remainder of the
paper when dealing with the th sliding matrix.

Let us denote the number of utterances in the training data
to be used in our dictionary by . We then form a dictio-
nary which consists of segments of
clean spectral shapes. This will be our overcomplete dictionary
of exemplar spectral segments. We now describe the procedure
by which we obtain for . To motivate our
dictionary choice, we will treat each digit as a recognition unit,
and hence we will be putting exemplars of the clean spectral
shapes of each recognition unit as entries of our dictionary. We
thus only consider the single digit files in our training data for
formation of our dictionary, since we will have whole digit ut-
terances without having to do any forced alignment. We then
extract the matrix containing the spectral coefficients
corresponding to those digits. After extraction, a simple time
normalization is performed by interpolating the frames of
the extracted spectral features of the single digit files to
frames. This is done by cubic spline interpolation [25] which
retains the spectral shapes of the coefficients fairly well. We
then linearize the interpolated matrix to a 1 vector
which goes into each column of our dictionary . Note that
our dictionary construction retains boundary information to a
great extent, which turns out to be instrumental in improving
recognition rates. Section III-E1 will provide experimental ev-
idence to substantiate our dictionary choice over randomly se-
lected fixed-length exemplars for the continuous digit recogni-
tion task.

B. Signal Reliability Masks

Most works in speech processing MDT [4], [5], [13], [14] de-
fine some sort of signal reliability mask for the mel-frequency
log-energy coefficients (the popularly used signal representa-
tion), which is a matrix the size of the original feature vectors
with entries containing 1 to mean that the feature component is
reliable and 0 to mean domination by noise. Basically, the mask
is defined as

if
otherwise

(6)

where and stands for the signal and noise, respectively.
is the index of the frequency bands and the index of the time
frames.

If the SNR ratio is above a certain threshold we deem appro-
priate, we regard the component to be reliable. However, if the
SNR is below our threshold, this means the component is un-
reliable and will be replaced with the corresponding imputed
version we have from our imputation algorithms.

An oracle mask is a signal reliability mask computed with
perfect knowledge of what the noise signal is and what the un-
derlying clean signal is. An estimated mask relaxes the assump-
tion that we have oracle knowledge of the underlying noise char-
acteristics by estimating the noise characteristics from the noisy
speech signal itself.
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There have been works to estimate masks from just the ob-
served noisy speech data, like in [26], where MDT techniques
were evaluated on a variety of masks such as Discrete SNR
Masks, Soft SNR Masks, and combined Harmonicity and SNR
masks. Another good overview on the topic of mask estimation
is given in [27].

We adopt the estimated mask described in [28] rather than
using oracle masks as described in [4]. Essentially, we get a
local estimate of the SNR by averaging the first ten frames of
the spectral features of the utterance, which contains informa-
tion preceding the voicing of the digits. This provides a reason-
able estimate of the noise, under the condition that the noise is
stationary [28], which will be assumed here. An estimate of the
clean digit utterance is obtained by subtraction of the noise es-
timate from the noisy digit utterance.

Now that we have a mask giving us an indication of the reli-
able/unreliable components in the spectrum, we are able to make
modifications to our dictionary . The main idea is that we will
be only including vectors in the dictionary which correspond to
reliable components for our imputation process. Let be the
number of reliable components in . We define the matrix
to be a matrix containing 0s and 1s which extracts
the rows of which correspond to the reliable components of

as defined by our estimated mask. Thus, we have

(7)

where is the new dictionary we use for our algorithms and
are the reliable components in . For the reconstruction,

we will simply impute the components which are defined as
unreliable by our SNR mask.

C. Noise Model

When noise is added to the speech signal, the spectral coef-
ficients will be perturbed. Let us represent this perturbation in
our model as

(8)

where is a 1 dimension noise vector. Note that even
though we have been dealing with what is in principle a noise-
less signal corresponding to the reliable parts of the data, in
practice there will still be a noise component associated with
it, which we attempt to capture by the vector .

We assume that we are dealing with additive noise in the time
domain, and hence we have , where
is the observed speech signal, is the original clean speech
signal, is the noise signal, and refers to the time frame.
To compute the spectral coefficients using the notation in [29],
we do pre-emphasis, frame blocking, windowing (Hamming),
and the short-time discrete Fourier transform (stDFT) to give

, where refers to the frequency band index and refers
to the length of the window used for the stDFT. Since the stDFT
is linear, we will analogously have the additive noise become

additive spectral noise . Taking the logarithm, we will
have , which we can then write as

We can hence calculate the output of the th critical band
filter by

(9)
is the impulse response of the th critical band filter and

is the number of points for computing the stDFT. Ideally, a
high SNR will mean that is close to zero, and
so the term in (9) will
be approximately zero, meaning that the observed spectral com-
ponent will be close to the true value. However, in reality, there
will still be a mismatch between the estimated reliable compo-
nents and their true values; thus, we can attempt to model the
term by some appro-
priate noise model in our optimization problem. Hence, we see
that spectral imputation is closely equivalent to imputation of
the output features.

D. Bounded Optimization

Bounded optimization refers to solving the optimization
problem such that the optimized value is less than or equal to
the original value. Unbounded optimization means that this
constraint is ignored. Since we are approximating the additive
noise in the time domain by additive noise in the spectral
domain also, the imputed values should technically be less than
the original noisy version. However, our optimization problems
are generally unbounded; hence, this constraint is not guaran-
teed. To circumvent this problem, as in most works in MDT,
we simply opted to impute only if the specific component to be
imputed has an inferred value which is less than the original
noisy component. In general, this simple rule resulted in better
recognition accuracies compared to those of the unbounded
situation by our preliminary experiments. This phenomena has
been observed in [14] as well.

E. Formulation of Optimization Problem

If we consider a regularized least-squares approach for the
spectral coefficients denoising, the vector is assumed dis-
tributed according to a Gaussian distribution [30]. By a similar
token, if we consider a regularized approach, is assumed
Laplacian. To ensure maximal sparsity, we ideally like to solve
the optimization problem. For our problem setup, this is
equivalent to solving the optimization problem of the form

(10)

Here, the parameter controls the sparsity of the vector ;
specifically, when we increase the value of , will become
more sparse.
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Fig. 2. Visualization of the , , and penalty functions. In the figure,
we can see that the linear penalty function emulates the penalty function
more closely than the quadratic penalty function.

It is a well-known fact that optimizing equation(10) is an
NP-hard problem, since it involves searching through
least-squares problems, where is the degree of sparsity de-
sired. This can be computationally expensive for our problem
at hand since could potentially be large. There have been
alternatives proposed which try to get around this problem while
still maintaining a good penalty curve approximation to the
solution.

F. Baseline—The LASSO Solution

Schemes presented in [13]–[16] have employed the classical
solution for sparse imputation borrowed from compressive

sensing [31], [32], and have demonstrated its efficiency in the
sparse imputation framework. Furthermore, the penalty curve
for optimization emulates that of the solution fairly
closely (see Fig. 2). We will likewise use the classical so-
lution as our baseline. When applied to our problem setup, we
can represent it as the following convex optimization problem:

(11)

Note that (11) can be equivalently formulated as:

(12)

Here is the shrinkage parameter, which is inversely related
to . As gets smaller, the weight vector will become more
sparse. Note that it is easy to see that (11) and(12) are equivalent
by the Karush–Kuhn–Tucker (KKT) conditions [32].

There are several efficient algorithms proposed for the solu-
tion of (11) or (12). Reference [21] proposed the “Least Ab-
solute Shrinkage and Selection Operator” (LASSO) which in-
volves a series of quadratic programs. In fact, (12) is equivalent
to solving a least-squares with different inequality con-
straints corresponding to the signs of the components of

for (13)

What Tibshirani [21] proposed is that, instead of solving all
the inequality constraints at once, we can progressively incor-
porate the inequality constraints while seeking a solution which
still satisfies the KKT conditions. Essentially, the iterative al-
gorithm starts out with just the sign of the least-squares solu-
tion in its constraint set. If the next iteration solves the problem,
the algorithm is terminated. Otherwise, the violated constraint
is added to the constraint set and the algorithm continues.

Another solution proposed by Efron et al. for the LASSO al-
gorithm is the Least Angle Regression (LARS) modification for
LASSO (LARS-LASSO) [33]. One of the important results in
the paper is proving that the LARS algorithm yields all LASSO
solutions. The LARS algorithm is a much faster algorithm com-
pared to Tibshirani’s original proposal in [21]. It starts by setting
all coefficients to zero and then finding the highest direction of
correlation with the response vector. It then takes the largest step
possible in that direction until some other predictor has as much
correlation with the current residual. LARS then continues in the
direction equiangular between the two predictors, and this pro-
cedure is repeated. This is actually an important property which
we will capitalize upon to control sparsity, and the experimental
justification for this will be presented in Section III.

Another related work regarding the optimization is Basis-
Pursuit [34]. We use the LARS-LASSO algorithm as our base-
line.

G. Drawbacks of the Classical LASSO Solution for Our
Recognition Task and Dataset

There have been several studies on the asymptotics and oracle
properties of LASSO such as in [20] and [35]–[37].

In [20] and [37], it has been independently demonstrated that
LASSO does not satisfy oracle properties under certain circum-
stances. Let us define to be the estimate returned by a variable
selection procedure. We define the oracle properties of a vari-
able selection procedure as follows[20].

• Identify the right subset of predictors to model the obser-
vation.

• Have an optimal estimation rate given by:
. is the estimate where and

is the covariance matrix given that the oracle subset of
predictors is known.

Without loss of generality, assume that the first entries of
are nonzero, , where here is the solution to the

optimization problem (11). Otherwise, we can easily reorder the
columns of to match this assumption.
Also assume the rest of the entries , where .

Define the covariance matrix to be

(14)

where is a positive definite matrix. We set

(15)
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We say that the estimator is sign consistent if and only if

(16)

Sign consistency is needed for the LASSO estimate to match
the true model.

It is proven in [20] and [37] that LASSO is sign consistent
only if (Strong Irrep-
resentable Condition). is a 1 dimensional vector of ones.
However, it is easy to see that this condition is easily violated
when the columns of are highly collinear or correlated.

In our case, we can expect that the spectral profiles (coef-
ficients) for the same digits to be similar. Thus, we can expect
contiguous entries in the dictionary to be highly collinear. More-
over, in our specific overcomplete dictionary, there are only 11
distinct digits. Thus, we will have a highly coherent dictionary,
potentially leading to problems when using LASSO.

H. Proposed Solution for the Continuous Digits Task

One of the possible alternatives for testing the suitability
of the Gaussian noise model is the Ordinary Least-Squares
(OLS) method. However, it is well known that OLS is generally
inferior in terms of prediction and does not give parsimonious
solutions [22]. Moreover, its penalty curve is less effective than
LASSO when used as an approximation for the penalty
curve, since OLS has a quadratic penalty curve. LASSO has
a linear penalty curve, which emulates the penalty curve
better than the quadratic one (see Fig. 2).

To circumvent the disadvantages of LASSO for our problem
as outlined in Section II-G, and also that of OLS, several solu-
tions have been proposed. They include the Elastic Net solution
(a variation of regularized least-squares) [22], Sparse Bayesian
Learning (SBL) [38], [39], Matching Pursuit [40] and Orthog-
onal Matching Pursuit [41].

SBL assumes a parametrized prior from the data using a
Gamma distribution and by choice of this distribution, is shown
to enjoy sparsity. While SBL is guaranteed to converge to an
optimum since it operates with the Expectation–Maximization
(EM) algorithm, it could potentially get stuck in a local min-
imum. In fact, our experiments with SBL also resulted in lower
recognition accuracies as compared to LARS-LASSO for the
continuous digits recognition task (see Appendix for results)
for high thresholds. Bayesian compressive sensing tech-
niques have, however, demonstrated success in the phonetic
classification task [42].

We have additionally evaluated Matching Pursuit and Or-
thogonal Matching Pursuit which are popular -approximation
techniques, but both algorithms performed worse than LARS-
LASSO in terms of recognition rates for our imputation task
(see Appendix for results of our evaluation) .

The Elastic Net is our choice for the optimization task due to
the advantages advocated by the authors in [22]. In particular,
the Elastic Net encourages a “grouping effect” more strongly
than LASSO, where highly correlated predictors tend to be se-
lected or excluded together in a more efficient manner. The
Elastic Net is also more effective as a variable selection proce-
dure when we encounter a matrix where the number of columns
is much greater than the number of rows, as with our current
framework. Moreover, the Elastic Net can be viewed as a more

general framework as an extension to LASSO, since LASSO is
a special case of the Elastic Net when the coefficient for the
regularization term is set to zero. Computationally, the Elastic
Net offers a LARS modification which allows us to create the
entire solution path with complexity comparable to that of a
single OLS optimization, and thus is efficient compared to OLS.

The “naive” Elastic Net formulation is given by the following:

(17)

Note that the formulation in (17) is very similar to our original
formulation in (11), with an additional regularization term of the

norm.
The reason why the formulation in (17) is called “naive” is

due to the fact that experimental evidence by the authors in [22]
showed that it does not perform up to expectations unless it is
close to the ridge regression or LASSO. The solution to this is
scaling the solution of the “naive” Elastic Net as follows:

(18)

From this basic formulation, it is possible to prove that the
Elastic Net overcomes some of the limitations of LASSO [22];
most importantly, it is able to better exploit the properties
of highly collinear/correlated dictionary entries. Specifically,
in the event of a group of highly correlated vectors, LASSO
has a tendency to randomly pick one from the group without
regard for which one is selected. However, the Elastic Net is
demonstrated to be able to select these “grouped” variables
more efficiently.

We will be using the Least Angle Regression implementation
of the Elastic Net (LARS-EN), which implements the Elastic
Net in an efficient manner as mentioned above. Further details
of this implementation can be found in [22].

III. DESCRIPTION OF DATASET, EXPERIMENTAL SETUP, AND

EXPERIMENTAL RESULTS

A. Experimental Setup

1) Database: For our recognition system, we use all of the
8040 clean training files (containing single and continuous digit
utterances) provided in the Aurora 2.0 database training set to
train a continuous digit recognizer in HTK [43].

For the continuous digit recognition task, the Aurora database
consists of test sets labeled N1, N2, N3, and N4 (corresponding
to subway, babble, car and exhibition noise, respectively) in the
Test Set A subset. We used the N1 folder for tuning of our op-
timization parameters. For the test sets, we created two test sets
as follows:

• TEST1: merging N1, N2, N3, and N4, giving us a total of
4004 files;

• TEST2: merging N2, N3, and N4 (exclusion of the N1
folder), giving us a total of 3003 files

We evaluated our algorithms on different SNR conditions:
SNR dB, SNR 0 dB, SNR 5 dB, and SNR 10 dB.

To form our dictionary , we get all the single digit audio
files in the training data, which totals 2412 files, and interpolate
them to frames as described above. We then form with
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TABLE I
PARAMETER VARIATION/TUNING FOR SNR 5 dB DATASET FOR THE

AURORA 2.0 DATABASE ON CONTENTS OF TESTA/N1. THE LAST COLUMN
INDICATES WHETHER THE IMPROVEMENT OVER LARS-LASSO AT THE

SAME VALUE OF IS SIGNIFICANT WITH THE DIFFERENCE OF
PROPORTIONS TEST AT 95% CONFIDENCE LEVEL THE BEST PERFORMING

RESULT OF EACH ALGORITHM IS IN BOLD.

each column representing the interpolated spectral components
from the 2412 files, giving us a matrix of dimensions

2412. We also experiment with different dictionary sizes,
namely with 1000, 1500, 2000, 2412.

2) ASR Features: We train the recognizer on MFCCs with
the first and second derivatives, with 16 states total. We use 23
frequency bands ( ), a hamming window size of 25
ms, and a frame shift of 10 ms. For the delta and delta-delta
coefficients, we set the DELWINDOW and the ACCWINDOW
parameters in HTK to be both equal to two frames.

The feature extraction for the 23 spectral coefficients is done
in MATLAB. We then optimize upon these spectral coefficients
with the optimization algorithms described in Section II-H.
From the denoised spectral coefficients, we reconstruct (again
using MATLAB) the 13 MFCC coefficients with the first and
second derivatives, which are then fed to the HTK continuous
digit recognizer that we have trained.

Algorithm Implementation Details: Both our optimiza-
tion algorithms are implemented using MATLAB. The
LARS-LASSO baseline was implemented using Sparselab
available at http://sparselab.stanford.edu which provides a
MATLAB routine called SolveLasso to solve the LASSO
formulation using the LARS modification.

B. Tuning for Parameters

For parameter tuning, we used a smaller subset of the test files
we have. We took 1001 test files from the test set testa/N1 as our
tuning set. The tuning results are presented in Table I.

As evident from Table I, we used the SNR 5 dataset to tune for
a suitable reliability threshold . Since we are using an es-
timated mask, we will want more accurate components to enter
our optimization matrix. Thus, we need to set our confidence
level to be sufficiently high to eliminate bad estimates. At the

same time, if we set the threshold of to be too high, too
few components will enter our optimization matrix and we will
have an ill-defined optimization problem. Thus, it is important
to strike a balance between these two factors. We decided upon
a threshold of 20 dB after some experimentation (see re-
sults in Table I).

Initial experimentation with several window lengths showed
that (which is also the average digit duration in the
training set) is a good window length to choose for our particular
database. For the frame shift parameter, we experimented with
several values using LARS-LASSO as the tuning algorithm. We
find that provided the best results for the SNR 5 set.
Note that for our tuning set using LARS-LASSO,
gave a recognition rate of 63.24%, a recognition
rate of 65.04%, a recognition rate of 65.88%, and

a recognition rate of 45.38%. The reason behind
the differences with [17] is due to a different dictionary con-
struction. Thus, has a different optimal point to ensure op-
timal superpositioning of the imputed results for the best speech
recognition rates.

As for the algorithmic parameters, we decided upon ten it-
erations of LARS-LASSO and a sparsity degree of 50 for the
LARS-EN by experimentation with our tuning set (see Table I).
Note that the number of iterations and sparsity degree is in fact
related; the more iterations of the LARS algorithm we take, the
less sparse our solution vector will be (see Fig. 3).

C. Experimental Results for Continuous Digit Recognition
Task

For the continuous digit task, we evaluated LARS-EN and
LARS-LASSO (baseline).

We make the following observations from our experimental
results given in Tables I–III.

1) LARS-EN consistently out-performs LARS-LASSO in
terms of recognition accuracy. This can be explained
by LARS-EN being more adept at handling a collinear
dictionary as compared to LARS-LASSO.

2) As we start from a degree of sparsity of zero and continue
increasing the value, the recognition rate increases. How-
ever, there is a point of saturation; any further increase
in the number of nonzero components leads to degrada-
tion of the speech-recognition performance. As we start
increasing the number of nonzero entries in , we keep get-
ting a better representation of the observation vector .
However, after a point, the representation becomes poor
due mainly to the fact the LARS modification is essentially
a greedy approach. As characteristic to most greedy algo-
rithms (like Forward Selection/Forward Stagewise), each
movement is in the promising direction, and it is highly
likely that as more iterations are taken, some important co-
variates are missed, resulting in errors in speech recogni-
tion. Each step forward in a different direction corresponds
to an increase in one degree of sparsity. This testifies to the
fact that a good sparsity measure helps in improving recog-
nition rates.
Another reason why sparsity is needed is due to the fact
that it helps prevent overfitting by ensuring that the more
relevant components are chosen.
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Fig. 3. Stem plot on the top shows the weight vector for five iterations of
LARS-LASSO, and the one on the bottom shows the weight vector for 20 it-
erations of LARS-LASSO for a specific optimization problem. While five it-
erations of LARS-LASSO give a sparser representation than 20 iterations of
LARS-LASSO from the diagram, five iterations of LARS-LASSO will have a
higher error in compared to 20 iterations due to the nature of
the LARS implementation.

3) As we increase , the recognition improves until a
point where it saturates. See Section III-B for further de-
tails.

4) The recognition rates generally do not depend on the mag-
nitude of the estimation error , but rather
on the quality of covariates selected. This is in fact an
interesting and important observation. For example, for
LARS-LASSO, we see that ten iterations of the algorithm
give a better performance than 20 iterations of the algo-
rithm from Table I. In fact, a small number of iterations
gives a sparser vector compared to a larger number it-
erations of the algorithm but at the expense of a higher
error in by nature of the LARS implemen-
tation. The values of for the Sparselab im-
plementation of LARS-LASSO can be verified by setting
the Verbose option to be True. Fig. 3 gives examples of

Fig. 4. Plot of ASR recognition error versus average estimation error rate (av-
erage across all optimization problems) for the SNR 5 corruption level. We can
see that a diminishing estimation error rate results in a much worse performance
in terms of ASR recognition rate for both LARS-LASSO and LARS-EN. The
highest points in both graphs correspond to the best performance that was eval-
uated with the algorithms for the tuning set.

stem plots of the solution vectors for a specific optimiza-
tion. Fig. 4 shows a plot of the recognition rate versus the
average estimation error across all the optimizations of our
tuning set. This can be explained by the fact that ASR accu-
racy is more determined by the relevant covariates that the
regression technique selects rather than the absolute error
that the optimization problem seeks to minimize. In fact, it
is apparent from our experiments that if bad covariates are
included, even if the error in estimation is much lower, the
recognition rates suffer.
Another connection to sparsity is to relate this observa-
tion to (11). Note that an increase in the magnitude of
implies an increase in sparsity. When becomes big, the
role that plays in the optimization problem
decreases. This further reinforces the fact that the appro-
priate degree of sparsity helps in improving recognition
rates rather than the low magnitude in the estimation error

.

D. Insight Into the Mechanism Behind the Imputation Process

Fig. 5 shows the spectral plots of one particular utterance. As
we can observe, the imputed spectral plots bear much closer re-
semblance to the clean signal than the noisy one, with much of
the noise artifacts removed. In particular, we can distinctly ob-
serve that the imputed result with LARS-EN bears a closer re-
semblance to the clean signal than LARS-LASSO. This further
testifies to the robustness of LARS-EN given our experimental
setup/conditions.

In fact, the regularization techniques, when deployed in
the spectral domain, can be viewed as spectral denoising.
In each frame of imputation, we are essentially doing some
form of spectral profile identification. To further reinforce this
intuition, the first step of the LARS-LASSO involves finding
the projection of the observation vector onto the dictionary

. Thus, what we are doing is essentially a form of spectral
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TABLE II
RECOGNITION RESULTS FOR DIFFERENT NOISE CORRUPTION VALUES RANGING

FROM dB, 0 dB, 5 dB, AND 10 dB FOR TEST1. THE LAST COLUMN
INDICATES WHETHER THE IMPROVEMENT OVER LARS-LASSO IS SIGNIFICANT

WITH THE DIFFERENCE OF PROPORTIONS TEST AT 95% CONFIDENCE LEVEL

TABLE III
RECOGNITION RESULTS FOR DIFFERENT NOISE CORRUPTION VALUES RANGING

FROM dB, 0 dB, 5 dB, AND 10 dB FOR TEST2. THE LAST COLUMN
INDICATES WHETHER THE IMPROVEMENT OVER LARS-LASSO IS SIGNIFICANT

WITH THE DIFFERENCE OF PROPORTIONS TEST AT 90% CONFIDENCE LEVEL

profile identification, taking into account a noise model. The
sliding window framework simply reconciles all the possible
predictions by careful superposition of the predictions and then
averaging them.

E. Investigation of Various Dictionary Structures

1) Whole Digits Versus Randomly Selected Fixed Length Ex-
emplars: For dB, we conducted experiments with
both LARS-LASSO and LARS-EN using randomly selected
fixed length exemplars from the training data as described in
[17]. For our tuning set and a dictionary size of 2412, ten itera-
tions of LARS-LASSO gave a recognition rate of 58.70%, and
LARS-EN with a sparsity degree of 50 gave a recognition rate of
61.50%. We see that the choice of whole digit exemplars yields a
better recognition rate (65.88% for LARS-LASSO and 71.83%

Fig. 5. Spectral plot of one particular imputed utterance using the
LARS-LASSO and LARS-EN algorithms for the SNR 5 corruption level. As
we can observe from the diagram, the imputed signals have a much closer
resemblance to the clean signal than the noisy one with much of the noise arti-
facts removed. Moreover, we can observe that the imputed result of LARS-EN
bears closer resemblance to the clean signal relative to LARS-LASSO, further
testifying to the robustness of LARS-EN.

for LARS-EN). This can be explained by the fact our dictio-
nary choice retains digit boundary information to a greater ex-
tent than the dictionary choice of randomly selected fixed length
exemplars. Moreover, the transition information is not as signifi-
cant in the digit recognition setting as compared to the phoneme
recognition/LVCSR setting, since the acoustic distance between
digits is significantly more distinct as compared to that between
phonemes.

2) Investigation of Varying Dictionary Sizes: We next inves-
tigate the effectiveness of the various basis selection methods
with dictionaries of varying sizes and also investigate the pos-
sible relationship to recognition accuracies. For this section, we
just consider the results on the dataset with SNR 5-dB corrup-
tion. For the dictionary sizes, we consider 1000, 1500,
2000. These dictionaries are random subsets of the original dic-
tionary of size 2412.

From our results in Table IV, it is apparent that the LARS-EN
algorithm is consistently better than LARS-LASSO in terms
of improving the recognition accuracy of the ASR. Thus,
LARS-EN does the most robust job in basis selection, regard-
less of dictionary size. Note that the LARS-EN with a smaller
dictionary even outperforms LARS-LASSO with a bigger
dictionary, as evident from Table IV. This demonstration can
be useful when we want to port a similar framework to a full
LVCSR system rather than the current continuous digits task.
This is because optimization in those cases can be expensive
in terms of computational power if numerous occurrences of
each word have to be included in the dictionary, resulting in
an overly large dictionary. Now, with this verification of an
efficient basis selection technique for improved recognition, we
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TABLE IV
RESULTS FOR SNR 5 dB DATASET WITH dB FOR THE AURORA 2.0
DATABASE, WITH 1000, 1500, 2000 FOR TEST1. THE LAST COLUMN
INDICATES WHETHER THE IMPROVEMENT OVER LARS-LASSO IS SIGNIFICANT

WITH THE DIFFERENCE OF PROPORTIONS TEST AT 95% CONFIDENCE LEVEL

TABLE V
NUMBER OF OPTIMIZATION PROBLEMS FOR THE TEST1 DATASET WITH

SNR-5 dB NOISE FOR DIFFERENT VALUES OF

see that dictionary construction can be a much easier task, since
we can choose a smaller subset of the original overcomplete
dictionary for our imputation process. Hence, it will definitely
be wiser to opt for a smaller dictionary.

IV. DISCUSSION OF PRACTICALITY OF IMPLEMENTATION

IN REAL-TIME SYSTEMS

For our dataset of 4004 test files (TEST1), the number of
complete optimization problems required to fully impute all
windows is anywhere between 10 000 and 56 577 (upper-limit
for our dataset) depending on the value of chosen. See
Table V for the number of optimization problems for the SNR
5-dB dataset for different values of . Specifically, for our
threshold of dB, we have 51 260 optimization prob-
lems to solve. This is a computationally expensive procedure if
we are considering implementation on a real-time system and
renders iterative algorithms like the Adaptive LASSO [20] and
the Reweighted- algorithm [9] impractical.

The LARS implementation of LASSO and Elastic Net pro-
vides an acceleration over classical implementations [18], [33].
For our MATLAB implementation of both LARS-LASSO and
LARS-EN, the entire sparse imputation process for a test utter-
ance generally finishes between 1 to 20 s on a Core 2 Quad Pro-
cessor with 8 GB of RAM for the SNR 5-dB corruption. How-
ever, MATLAB is generally slower due to it being a high-level
language. When porting this to a real ASR system, we can ex-
pect execution time to improve when we are coding in lower
level languages such as C. This greatly increases the feasibility
of porting our algorithms to an LVCSR system.

TABLE VI
RESULT FOR SNR 5-dB TUNING SET WITH dB

FOR THE AURORA 2.0 DATABASE

V. CONCLUSION AND EXTENSIONS

We showed that the LASSO solution for sparse imputation is
relatively less effective (theoretically and experimentally) in im-
proving the accuracies of the continuous digit recognition task
as compared to the Elastic Net algorithm. The LARS-EN al-
gorithm proved to be the more robust of the two algorithms
under our specific experimental conditions (test set, dictionary,
training set, parameters choice). We have also seen the effects
of appropriate sparsity in helping speech recognition accuracies.
The lesson learned is that it is the quality of the covariates that
matters, not the quantity. Moreover, we believe that with appro-
priate noise models the quality of speech recognition can be im-
proved, and we intend on investigating that in our future work.

An immediate extension to this paper will be to extend our
work to a full LVCSR system similar to that described in [18].
The number of spectral segments would increase likewise, and
efficient dictionary creation would become a challenge. Thus,
basis selection, appropriate noise models, sparsity and algo-
rithmic complexity will play an even more important role in
large systems, and the techniques that we proposed to deal with
the digits task can be analogously extended to deal with a larger
and more general framework. Moreover, for the LVCSR system,
it will be useful to explore the effects of dictionary sizes on the
overall imputation time and the effects on recognition rates.

For the LVCSR system, transitions between words/phonemes
can play a bigger role than in the digits recognition case. Thus,
rather than interpolating or doing a random selection of exem-
plars for dictionary construction, a more informed choice of se-
lecting representative exemplars could potentially lead to im-
provements of recognition rates. This is a line of work we intend
to pursue in future.

Future work on the MFCC sparse imputation front-end can
include the investigation of combining dimensionality reduction
techniques like HDA [44] with sparse imputation to see if the
effects of dimensionality reduction can be capitalized when we
are doing basis selection. If we do dimensionality reduction, the
number of rows of the dictionary will decrease, and thus the
number of entries in the basis can be reduced too. With a smaller
matrix , we expect to reduce operation time which will be
desirable in a larger system.

APPENDIX

EVALUATION OF OTHER REGULARIZATION/OPTIMIZATION

TECHNIQUES

We implemented the algorithms in Table VI in MATLAB.
The SBL algorithm was implemented using the Sparse
Bayes toolbox available at http://www.miketipping.com/
index.php?page=rvm. The MP and OMP algorithms were
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implemented using Sparselab available at http://sparselab.stan-
ford.edu.
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