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Abstract

We present an image-based technique to efficiently
acquire spatially varying subsurface reflectance
properties of a human face. The estimated prop-
erties can be used directly to render faces with spa-
tially varying scattering, or can be used to estimate
a robust average across the face. We demonstrate
our technique with renderings of peoples’ faces un-
der novel, spatially-varying illumination and pro-
vide comparisons with current techniques. Our cap-
tured data consists of images of the face from a sin-
gle viewpoint under two small sets of projected im-
ages. The first set, a sequence of phase-shifted pe-
riodic stripe patterns, provides a per-pixel profile of
how light scatters from adjacent locations. The sec-
ond set of structured light patterns is used to obtain
face geometry. We subtract the minimum of each
profile to remove the contribution of interreflected
light from the rest of the face, and then match the
observed reflectance profiles to scattering properties
predicted by a scattering model using a lookup ta-
ble. From these properties we can generate images
of the subsurface reflectance of the face under any
incident illumination, including local lighting. The
rendered images exhibit realistic subsurface trans-
port, including light bleeding across shadow edges.
Our method works more than an order of magnitude
faster than current techniques for capturing subsur-
face scattering information, and makes it possible
for the first time to capture these properties over an
entire face.

1 Introduction

Rendering human faces realistically has been a
longstanding problem in computer graphics and a
subject of recent increased interest. There are sev-
eral important areas that require the realistic render-
ing of human faces, including computer games, an-
imated feature films, and special effects for movies.
One of the most crucial factors in creating convinc-

ing images of faces is realistic skin rendering. This
is a hard problem because skin reflectance consists
of many complex components, including light inter-
reflection and subsurface scattering.

Subsurface scattering is the phenomenon of light
entering one point on a surface of a material and
scattering inside it before exiting at another point.
In this process, light is not only scattered, but may
also be partially absorbed by the material and these
effects typically vary for different wavelengths. Vi-
sually, subsurface scattering results in a softening
of the appearance of the material, color bleeding
within the material, and diffusion of light across
shadow boundaries. The human visual system can
easily notice the absence of these cues. Light dif-
fusion across illumination boundaries is especially
important for cinematic lighting, where faces are
often in partial lighting and the resulting shadow
edges are soft and blurred.

The dipole diffusion model [6] has been pro-
posed as a fast closed-form approximation for cal-
culating the outgoing radiance due to subsurface
scattering, and is capable of producing very real-
istic images. Rendering with this model, however,
requires an estimate of the scattering and absorp-
tion parameters of the skin. Current methods for
capturing these parameters require setups not suit-
able for faces [6], or specialized devices [17]. More
importantly, these methods are too slow to capture
the parameters over an entire face, providing only
a sparse set of parameters. Skin, however, is not a
homogeneous material, and its scattering properties
change across different people and across a face;
cheeks have more blood, giving them a reddish ap-
pearance, areas with whiskers tend to be darker, and
there may be uneven patches in the skin. Spatially
varying parameters are hence important for captur-
ing the appearance of skin, and, as shown in [5],
are already used in the entertainment industry for
rendering realistic faces. Due to the absence of a
method for estimating spatially varying scattering
properties of skin, these techniques could not use



independent spatially varying parameters (see Sec-
tion 2 for details). Figures 4 and 7 show the impor-
tance of using the spatially varying scattering pa-
rameters estimated by our method in producing an
accurate image.

Our Approach. We propose a technique that
measures the spatially varying scattering properties
of a subject, using just a camera and projector, with
acquisition times under a minute. This time frame
is small enough to permit a human subject to re-
main sufficiently still. We reduce the number of
images needed by making key assumptions about
light scattering in skin, which are that the scattering
is isotropic, local, and has low spatial frequency.

We estimate a point’s scattering properties using
aScattering Profilethat encodes the amount of light
that scatters to it from nearby locations. We mea-
sure one such profile per pixel (see Figure 2), us-
ing information derived from an image of the sub-
ject taken under shifting patterns of black and white
stripes. The spatially varying scattering properties
of the face are derived from theseScattering Pro-
files by matching them with a lookup table (LUT)
of pre-rendered profiles with known absorption and
scattering properties. The per-pixel estimated prop-
erties and captured geometry are then used to render
the face under new local illumination.

2 Background and Related Work
Scattering Models Subsurface transport is de-
scribed by the Bidirectional Surface Scattering
Reflectance Distribution Function (BSSRDF), S,
which relates the outgoing radianceLo(xo,−→wo) at
surface pointxo in the direction−→wo to the incident
flux φ(xi ,−→wi ) at surface pointxi from the direction
−→wi :

dLo(xo,−→wo) = S(xi ,−→wi ;xo,−→wo)dφ(xi ,−→wi ) (1)

Given S, the outgoing radianceLo can be com-
puted by integrating the incident radiance over in-
coming direction and area:

Lo(xo,−→wo) =
∫

2π

∫
A

S(xi ,−→wi ;xo,−→wo)

Li(xi ,−→wi )(n·wi)dwidA(xi) (2)

The scattering of light in a material is dictated
by two optical parameters per wavelength. These
are the scatteringσs and absorptionσa coefficients,
which indicate the fraction of light that is scattered
or absorbed by the medium for each unit length of
distance traveled by the light. The 8-dimensional

σ ′
t reduced extinction coefficientσ ′

s+σa
α ′ reduced albedoσ ′

s/σ ′
t

σtr effective transport extinction coefficient
√

3σaσ ′
t

lu mean free path1/σ ′
t

ld diffuse mean free path1/σtr
zr distance from real source to surfacelu
zv distance from virtual source to surfacelu(1+4A/3)
r distance‖xo−xi‖
dr distance fromxo to real source

√
r2 +z2

r

dv distance fromxo to virtual source
√

r2 +z2
v

Table 1:Definition of variables.

BSSRDF can be evaluated accurately by solving the
radiative transport equation, also known as the vol-
ume rendering equation. This is an integral equa-
tion and direct methods to solve it, including Monte
Carlo simulation [4], finite element methods and
photon mapping, are relatively slow.

The diffusion approximation to light propagation
in participating media states that for optically dense
material the behavior of the material is dominated
by multiple scattering [13] and directional depen-
dence is negligible. Hence the BSSRDF can be ap-
proximated faithfully by the 4D diffusion approx-
imation, Rd(xo,xi), which depends only on the in-
coming and outgoing points. [13] presents numer-
ical solutions to solve the diffusion equation, but
does not present a closed-form solution.

The dipole approximation to the diffusion model
is a fast closed-form solution introduced by [6]. It
evaluatesRd(‖xo−xi‖) for a half infinite slab of ho-
mogeneous material as:

Rd(r) = α ′

4π

{
zr

(
σtr + 1

dr

)
e−σtr dr

d2
r

+

zv

(
σtr + 1

dv

)
e−σtr dv

d2
v

}
(3)

Given the scattering and absorption coefficients
of the material,Rd(r) gives the fraction of light that
exits pointxo given an impulse of incoming light at
a pointxi that is distancer away. The total outgo-
ing reflectance atxo in the direction−→wo is given by
Equation 4. HereFt,i is the Fresnel transmittance at
the incident point andFt,o is the Fresnel transmit-
tance at the exitant point.

Lo(xo,−→wo) =
1
π

Ft,o(η ,−→wo)
∫

A
Rd(‖xo−xi‖) (4)∫

2π

Li(xi ,−→wi )Ft,i(η ,−→wi )(n·−→wi )dwidA(xi)



Measurement The σ ′
s andσa of a homogeneous

material can be estimated by illuminating a small
patch of with a thin beam of white light and fit-
ting the resultant image values to Equation 3, as
proposed by [6]. The DISCO method of [3] ex-
tends this technique to measure the spatially varying
properties of a smooth heterogeneous object. They
capture impulse response images of the object to
laser light of different wavelengths for all positions
xi . This yields the functionRd(xi ,xo) for all points
xi andxo on the surface, which is then used directly
to represent the spatially varying subsurface scat-
tering properties. The very large acquisition times,
however, make the technique unfeasible for human
subjects. In contrast, [10] use a projector and cam-
era setup to project a series of images of point grids
on the subject, reducing the acquisition time to a
couple of hours. [15] also aim to capture the spa-
tially varying properties of heterogeneous objects,
but their focus is on materials with large mesostruc-
tures. They factor light transport in such materials
into a constant diffuse scattering term and spatially
varying mesostructure entrance and exit functions.
[17] capture the translucency of skin using a spe-
cialized measurement probe, and derive an average
value over a sparse sampling of points on several
faces. This value can then be used to estimate a sin-
gle set of scattering and absorption parameters for a
target face, given its average diffuse reflectance (see
Section 5). Spatially varying diffuse reflectance and
a fixedσ ′

s have been used by [5] to derive spatially
varying σa over a face. In contrast to these tech-
niques, our techniquequicklycaptures adensesam-
pling of spatially-varying absorptionandscattering
parameters across the entire surface of a target face,
using the same camera and projectors usually al-
ready present in a typical 3D scanning setup. In
addition to being used to render spatially varying
sub surface scattering, these parameters can be used
to provide a robust average of the scattering para-
meters for a face. As shown in Figure 7b, using
the average of our estimated parameters provides a
more accurate result compared with using parame-
ters derived from pre-estimated translucency values
(in this case we are using the values from [17]).

Reflectance Fields A related concept to the
8D BSSRDF is the 8D reflectance field [1],
R(xi ,−→wi ;xr ,−→wr ), which is a generalization of the
BSSRDF to an arbitrary closed surface,A. The
reflectance field represents the radiant exitant light
field, Rr (xr ,−→wr ), from A in response to every possi-

ble incident light field,Ri(xi ,−→wi ).
Image-based relighting methods attempt to cap-

ture the reflectance field of an object and render
from this data. They are capable of producing ex-
tremely realistic images, since they inherently en-
code all the complicated reflectance properties of
the scene. [1] capture a subset of the reflectance
field of a human face by taking basis images of the
subject under directional illumination generated by
a movable light source some distance away. An im-
age of the face under any incident field of direc-
tional illumination can be approximated by a linear
combination of these basis images. However, the
restriction of illumination to distant light prevents
them from being able to simulate the effects of spa-
tially varying light across the face.

[8] use a camera and projector setup to capture a
6D reflectance fieldR(xi ,−→wi ;xr ), which can be used
to relight the scene with local illumination. The
coarse resolution and large acquisition time, how-
ever, make this technique inappropriate to apply to
capturing faces. [12] use a similar approach but
greatly reduce the number of images required, and
consequently the acquisition time, by using adap-
tive refinement and Helmholtz reciprocity. Adap-
tive refinement, however, requires online computer
analysis during capture, which currently cannot be
performed in real time.

3 Choice of SSS Parameters

In this work we fit our observed data to the di-
pole diffusion model in order to estimate the spa-
tially varying subsurface scattering properties of the
face. Our method of using a lookup table with pre-
calculated profiles is, however, independent of the
model used. It can just as easily be used to fit other
models, such as the Sum of Gaussians sometimes
used in real time rendering. Given the wide use
of the dipole method, we use this model in order
to show that its parameters can quickly and eas-
ily be estimated. Furthermore, the model expresses
the data in a compact representation,with just two
parameters per point, which can be represented as
maps over the face that are intuitive and easy to edit.
These maps are a logical extension of existing maps
such as specular and diffuse maps.

An alternative to fitting the desired model to the
data using a lookup table is to estimate the radial
scattering profileRd(r) directly, without making
any assumptions about the scattering model. Our
decision to forego this approach was based on a



couple of drawbacks. The problem of trying to re-
cover the functionRd(r) at a pointx from images
of x under multiple beams of light (our projected
patterns) can be stated as recovering the impulse
response of a system whose input and output are
known, and falls under the area of signal deconvo-
lution. In general this problem is ill-conditioned,
and the solutions, especially for impulse responses
that are Gaussian-like in shape, are highly sensitive
to measurement noise. This is partly because the
power spectrum of these functions quickly becomes
very small, which leads to issues with numerical
stability. By fitting the observed data to a model
instead, we reduce the number of unknowns in the
system, which makes a robust estimation possible
even with noisy data.

4 Illumination Patterns

The optical parameters,σ ′
s and σa, of a homoge-

neous translucent material can be accurately deter-
mined by illuminating the surface with a thin beam
of light and fitting Equation 3 to a one dimensional
radial profile of the spread [6]. Extending this ap-
proach to capture spatially varying parameters ne-
cessitates capturing prohibitively many images for
real time capture, [3, 10]. In order to reduce the
number of images needed we make three assump-
tions about the material: that it has slowly varying
scattering properties, that the material is optically
dense, and that scattering is isotropic [17]. The
assumption of an optically dense material implies
that its behavior is dominated by multiple scatter-
ing, and hence its properties can be faithfully mod-
eled by the diffusion approximation. Furthermore,
an optically dense material will have a short mean
free path and hence the scattering properties of the
material in one part will only affect a small neigh-
boring area.

To estimate per-point optical properties we need
to capture images of the face under a small sequence
of light patterns. Ideally, each image should yield
scattering information for many parts on the face
simultaneously. To meet this goal, instead of mea-
suring the radial decrease in intensity away from a
thin spot of light [6, 10], we measure the decrease
in intensity away from afinite-widthstripe of light
that is projected onto the face. Furthermore, using
the assumption that light does not travel far within
the skin, we illuminate the skin with multiple stripes
of light simultaneously. Hence, our patterns are pe-
riodic stripes of light that are swept across the sub-

Figure 1: (a) Face lit by the fully on projector, (b) one
of 40 phase-shifted stripe patterns, (c) after correcting for
lambertian light attenuation, (d) estimate of indirect light
from subtracting the minimum of each pixel’s profile.

ject. Figure 1(b) is an image of one such pattern.
The widths of the stripes and the distances be-

tween them are dictated by conflicting require-
ments. Firstly, to minimize the interference of
neighboring stripes, so that points that fall in the
middle of two stripes are completely dark, the
stripes need to be as far apart as possible. How-
ever, to reduce the number of patterns, and hence
the time needed to capture all the images, we need
to keep the stripes close together. Secondly, the
widths of the stripes should ideally be a single pro-
jector pixel. Practically, however, at low light levels
the subsurface scattering signal that we are trying
to observe is too low to be accurately distinguish-
able from the camera noise. Hence, to increase the
signal to noise ratio we keep the stripes several pix-
els thick. We found that 8 pixel wide stripes that
are 32 pixels apart, for a total of 40 patterns, is a
good compromise between all these requirements.
The approach presented in [11], which is based on
Hadamard coding, could also be used to generate
single pixel width stripes with a better signal to
noise ratio. However, we found the information
available in our data was more than sufficient for
estimating the scattering parameters of interest.

5 Parameter Estimation

We use the images of a subject under the projected
stripe patterns to createscattering profilesfor each
pixel. A pixel’s scattering profile is a 1D array
of values representing its reflectance response over
time to the shifting patterns. Figure 2 shows the
graphs of four such profiles (with their phase shifted
so that the peak is centered), that were created from
our 40 input stripe patterns.

The per-pixel scattering and absorption parame-
ters are estimated from these profiles by fitting the
profiles to the dipole model using a lookup table,
similar to the specular lobe parameter estimation



Figure 2: Scattering Profiles of four different points on
the face for the three color channels, used for estimating
translucency. Note that the lips (c) have a comparatively
higher profile in the red channel and the profiles in the
stubble region (d) tend to zero more quickly (indicating
comparatively lower translucency in all channels).

of [2]. We could also use a least squares fit to
the diffusion equation to estimate these parameters,
but we found the LUT based approach to be faster.
Our LUT contains pre-computed profiles indexed
by two optical parameters, and we match a given
input profile against the table to estimate its para-
meters. Instead of usingσ ′

s andσa, we use a dif-
ferent parametrization of the dipole model as pre-
sented in [7], the total diffuse reflectance,Rd, and
the translucency, denoted by the diffuse mean free
path, ld. Given values ofRd and ld, [7] calculate
values ofσ ′

s andσa by inverting Equations 5 and 6.

Rd =
α ′

2

(
1+e−

4
3 A
√

3(1−α ′)
)

e−
√

3(1−α ′)(5)

ld =
1

σ ′
t

√
3(1−α ′)

(6)

The advantage of using this re-parametrization is
that the total diffuse reflectance valueRd, which is
the outgoing radiance of a point when all points
around it are illuminated, is available in a fully lit
image of the subject after subtracting specular re-
flection and indirect light (Figure 1(a)). Hence al-
though we build a two-dimensional LUT ofRd vs
ld, for any given pixel we only have to perform a
one-dimensional search for the value ofld, in the
row given by itsRd value.

We estimate the total outgoing radiance at pixel
xo resulting fromp nearby illuminated pixels using
the simplified Equation 7. This equation ignores

Fresnel effects (since these effects are more im-
portant at grazing angles where our data is unre-
liable) and includes the cosine fall-off term inside
Li(xi ,wi). Rd

o(r) is calculated using Equation 3 and
the properties atxo, andb is the constant amount of
indirect light falling on the pixel (section 5.2).

Lo(xo) = b+
p

∑
i=0

Rd
o(r)Li(xi ,−→wi ) (7)

The time profiles in the LUT are constructed by
calculating for each stripe pattern, a pixelxo’s re-
sponse to it as given by Equation 7.p are all pixels
in the camera image that get direct light from the
projector pattern and are also near enough toxo to
influence its appearance. The calculation ofp de-
pends on the ratio of projector distances to camera
distances, which in turn depends on the angle be-
tween the projector and the surface point. In this
work we assume that the surface is normal to the
direction of the projector. For more accurate results
we could either capture the surface from additional
angles, or use a 3D table that takes into account the
angle of the surface.

We use three different LUTs, one for each color
channel, to maximize the resolution of our esti-
mated parameters. Each LUT has a resolution of
200×200, but covers different areas in the translu-
cency and reflectivity spectra. Each location in
the LUT contains an area-normalized time profile,
and the scattering and absorption parameters corre-
sponding to theRd andld values. Four time profiles
from different parts of the LUT are shown in Figure
3 (d)-(g).

5.1 Parameter Profile Matching

The Rd value of a pixel is estimated by using the
pixel’s value in the fully lit image, after the in-
coming light has been normalized to one (Section
7), and angular light fall off has been accounted
for (Section 6). We use cross-polarized illumina-
tion to ensure that the observed reflectance values
do not contain a specular component. To deter-
mine a pixel’sld value we use itsRd value to in-
dex into the LUT and perform a one-dimensional
search in the corresponding row for the profile that
best matches the area-normalized scattering profile
of the pixel. Our error metric is the sum of squared
differences between the two profiles, and since this
metric varies smoothly across the table for a given
input profile, our search is implemented using a par-
abolic minimum finder. Theσa andσ ′

s correspond-



(a) Red channel (b) Green channel (c) Blue channel

(d) (e) (f) (g)

Figure 3:Visual representation of the number of matches
found for each entry of the LUT for the three color chan-
nels (a,b,c) for the female subject. We see that red has a
higher average mean free path, and also that it has large
variations across the face compared to the other two chan-
nels. Figures (d)-(g) show the area-normalized profiles for
four combinations ofRd andLd shown in (b).

ing to the best matching profile are then stored in
separate scattering and absorption maps.

Figure 6 shows some of the different maps that
we estimate. We can see that the beard region has
higher absorption and lower translucency values,
which was also visible in Figure 4. The lips have a
higher translucency, and significantly lesser absorp-
tion in the green and blue channels. Figures 3 (a-c)
shows the number of times a LUT entry is matched
to an input profile for the three color channels, in-
tuitively showing the distribution of the parameters
Rd andld over the face.

5.2 Indirect Light Compensation

In areas of concavities the reflectance profiles that
we observe may contain significant amounts of in-
terreflected light. The contribution of this light
transport has to be removed before we fit the subsur-
face scattering model to the reflectance values. We
note that most indirect light on a point generally ar-
rives from areas that are relatively far and relatively
large compared to the stripe distance: for example,
indirect light on a point on the side of the nose ar-
rives from all over the cheek. Thus it is a reasonable
assumption that, given the frequency of our stripes,
the same amount of indirect light arrives at a par-
ticular point on the face regardless of which stripe
pattern phase is being projected. The same observa-
tion was made earlier by [14] in regard to Gray code
stripe patterns. This assumption is violated in areas
with local geometric detail (such as skin folds), and
we do not expect this technique to produce accurate

results in such regions.
To find the amount of indirect light we first es-

timate the best matching curve as outlined in sec-
tion 5.1, and then subtract from the minimum of
the input curve the minimum of the matched curve.
This gives us the amount of reflectance that the scat-
tering model could not account for, most probably
due to the interreflected light. Following [14], we
use subtraction to compensate for this indirect light;
we subtract its estimated value from the input pro-
file and then rematch the profile to the LUT. Figure
1(d) shows the amount of indirect light that we esti-
mated for a particular capture. Note that the greatest
amount of indirect light was calculated to be in con-
cavities such as the eye sockets and under the chin.
More recently, [9] uses a similar technique to esti-
mate the direct and indirect light in various scenes.

6 Geometry Acquisition and Use

Since the surface of the face is non-planar, it is
important to acquire geometry for both parameter
estimation and rendering. For parameter estima-
tion we have to correct for the decrease in light
intensity falling on a point as the angle between
its normal and the light vector increases (see Fig-
ure 1(a)). Failing to correct for this light attenua-
tion would lead us to erroneously conclude that the
skin is darker in such areas. Figure 1(b) shows how
the fully lit image looks after correcting for the co-
sine light falloff, by dividing the reflectance value
at each pixel by the cosine of the angle between the
light and the normal vector. This correction is per-
formed on each of our input images.

We estimate the face geometry by first deriving
a sub-pixel accurate projector-camera correspon-
dence image using the method described in [14],
which reliably distinguishes between illumination
edges in the presence of subsurface scattering. We
then triangulate the correspondence image using the
calibration information of the camera and projector,
[18]. Finally, the geometry is smoothed to reduce
high-frequency extraction artifacts.

7 Results and Discussion

Setup. Our setup consists of a projector and cam-
era pair aimed at the subject. We use a high res-
olution camera (2352×1726 Basler A404) to cap-
ture detailed images of the skin in a short amount of
time. The projector and camera are synchronized
by assigning alternating colors to a small square



σa [mm−1] σ ′
s [mm−1] Translucency

Red Green Blue Red Green Blue Red Green Blue

female lips 0.0657 0.2505 0.2835 1.102 0.9084 0.7982 2.0844 1.0716 1.0426

forehead 0.0836 0.1774 0.2554 1.3079 1.5042 1.1741 1.6928 1.0571 0.9555

cheek 0.0525 0.1653 0.2216 1.2814 1.5000 1.1248 2.1817 1.1004 1.0569

mean 0.075 0.156 0.2254 1.3881 1.5017 1.0969 1.9282 1.2048 1.0988

std. dev. 0.0532 0.0652 0.0703 0.3484 0.3737 0.2496 0.3378 0.1986 0.1524

male lips 0.3227 0.6631 0.6833 0.7819 0.6710 0.5209 0.9670 0.6139 0.6365

forehead 0.4761 0.3163 0.442 1.1415 1.2267 0.8851 0.6578 0.8264 0.7538

stubble 0.4056 0.6024 0.6707 0.9237 0.8621 0.6648 0.7863 0.6147 0.6100

mean 0.2047 0.3595 0.4691 1.1602 1.1586 0.8373 1.1926 0.8164 0.7606

std. dev. 0.0989 0.1148 0.1179 0.1823 0.1985 0.1354 0.3127 0.15611 0.1325

Weyrich 06 1.8155 1.0213 0.6453

Jensen 01 skin1 0.032 0.17 0.48 0.74 0.88 1.01 3.6733 1.3665 0.6827

skin2 0.013 0.070 0.145 1.09 1.59 1.79 4.8215 1.6937 1.0899

Table 2: Estimated parameters for different areas on two different subjects, female and male. The last row is provided
for comparison against constant parameters estimated in previous work, [17, 6].

in the projector images. A photoreceptor detects
these changes and triggers the camera. The setup
is capable of displaying and capturing five patterns
per second, with two images of different exposures
captured for each projected pattern. The differently
exposed images are compiled into HDR images af-
ter subtracting the camera and projector black level.
We calibrate the incident illumination by taking an
image of a reflectance standard, and we divide all
captured images by its average value. Finally, we
cross-polarize the camera and the projector to elim-
inate the specularly reflected light, which is neces-
sary for correctly fitting our scattering model to the
observed values. The polarizers are placed diag-
onally on the LCD projector and camera to avoid
color shifts. We project a total of 88 images: 40
stripe patterns, and 48 structured light images.

Table 2 shows a comparison of the estimated
parameters across the face for different subjects.
There is a significant difference in both parameters
across the male and female subject; the male sub-
ject’s skin exhibits higher absorption and smaller
scattering. Our parameters are on the same scale as
those previously estimated, although the color dis-
tribution is slightly different. In particular, [6] pre-
dicts a greaterσ ′

s for the blue channel than the red
channel. This might be because of different color
response of our systems, or because [6] obtain mea-
surements on the subject’s arm instead of the face.

We validate our parameters with renderings of
faces produced under different incident illumination
and we compare them to ground truth images (cap-

tured under cross-polarized illumination to elimi-
nate specular reflections). Our renderings do not
reproduce the complete reflectance of a person’s
face, as we ignore the specular surface reflection
and interreflected light, which would be simulated
in the context of a complete face scanning system
(e.g. [1, 17]). Using the spatially varying properties
estimated in Section 5 and the geometry estimated
in Section 6, we render the subsurface response of
the face using the method outlined in [6]. We per-
form a color correction step on our renderings using
a color matrix to compensate for crosstalk between
the color channels of the projector and the camera.

Figure 4 shows a comparison of our approach
with an image rendered with constant translucency
(an average of the estimated translucency values
over the entire face), and spatially varying reflec-
tivity. The presence of whiskers inside the skin
on the right side of the image reduces its translu-
cency, an effect captured by our technique (Figure
4(c)). Note that just a constant translucency para-
meter (Figure 4(a)) cannot account for this. Figure
7 shows that constant parameters also cannot cor-
rectly predict the response of skin in the lip region.
However, using constant parameters that are the av-
erage of our estimated spatially varying parameters
for the subject, 7(b), provides a more accurate im-
age compared with parameters derived from previ-
ously published translucency values 7(a). Figure 5
shows a comparison between a synthetic rendering
created using our technique and a real image cap-
tured under similar light. Our technique correctly



renders the scattering of light across the illumina-
tion edge and the skin color in fully lit areas.

8 Limitations and Future Work

There are several limitations to our method that sug-
gest logical directions for future work. Since we
capture images from a single viewpoint, both our
geometry and estimated parameters are unreliable
in areas where the angle between the surface normal
and the projector or camera is large (e.g. the white
areas in Figures 6a and 6b), or where they are not
in focus. In practice the acquisition should be re-
peated for multiple viewpoints, e.g. left, front, and
right, and the results merged so that the most fronto-
parallel data is used from each position. Alterna-
tively, we could create a 3D LUT, where the third
dimension represents the angle between the normal
at a point and the projector direction. Since these
angles are already known for each point, the 3D ta-
ble would not impose any extra cost for searching.
Although our LUT-based approach to estimation
is extremely fast, it assumes locally flat geometry.
This assumption is valid for most image regions but
causes miscalculation of parameters for points near
geometric discontinuities. For such places, a more
accurate but more expensive approach would be to
use the geometric information and a least squares
solution. A good compromise, however, is to man-
ually correct such errors with information from the
neighboring area, which is reasonable since the pa-
rameter maps that we estimate are images that can
easily be edited and touched up.

9 Conclusion

We have presented an image-based acquisition sys-
tem that quickly and efficiently estimates the scat-
tering properties of an optically dense translucent
non-homogeneous material. Our system allows us
to capture the spatially varying properties of skin at
a high resolution, which was not possible with ear-
lier approaches because of their large time require-
ments. Our method can also be used to estimate
improved average scattering parameters for the skin
more conveniently and efficiently than earlier point-
sampling based approaches. The technique is min-
imally invasive, using neither potentially danger-
ous lasers [6] or specialized equipment [17]. Our
data representation is compact and editable, with
just two floating-point values per pixel, and can be
used to render realistic faces under local illumina-

tion. Our data capture approach is a logical addition
to existing face-scanning approaches e.g. [1, 16, 17]
as it requires only a projector and camera.
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Figure 4: An image of a stripe of light projected onto a male subject’s neck (left), and stubble (right) area. Note that
the real image (b), exhibits significantly less subsurface scattering in the stubble region as compared to the neck. Our
approach (c), using spatially varying scattering parameters captures this effect, whereas the rendering using constant
average translucency (a) overestimates the scattering in the stubble region and underestimates the scattering in the neck.

(a) Weyrich06 (b) average translucency (c) spatially varying scattering (d) real image

Figure 7: A curved stripe of light projected over the female subject’s lips. (a) and (b) are rendered with constant
translucency; parameters from [17] and an average of our estimated parameters, respectively. Note that the scattering
in (b) has a yellower tone than the real image. (c) is rendered using spatially varying parameters, and comes closest to
capturing the color and influence of the subsurface transport in the real image, (d).

(a) real image

(b) synthetic rendering

Figure 5:Comparison of a rendering using our estimated
parameters with a real image under spatially-varying inci-
dent illumination (high exposure on left, low exposure on
right). The amount of scattering along the shadow edge is
generally consistent between the two, except for the inter-
reflected light which is not simulated.

Figure 6:From the top: recovered translucency, absorp-
tion σa, and scatteringσ ′

s maps for the three color chan-
nels. The white parts in (a,d) are areas where we cannot
estimate good parameters, see Section 8.


