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Abstract ing images of faces is realistic skin rendering. This
is a hard problem because skin reflectance consists
We present an image-based technique to efficientlgf many complex components, including light inter-
acquire spatially varying subsurface reflectanceeflection and subsurface scattering.
properties of a human face. The estimated prop- Subsurface scattering is the phenomenon of light
erties can be used directly to render faces with spaentering one point on a surface of a material and
tially varying scattering, or can be used to estimatecattering inside it before exiting at another point.
a robust average across the face. We demonstralie this process, light is not only scattered, but may
our technique with renderings of peoples’ faces unalso be partially absorbed by the material and these
der novel, spatially-varying illumination and pro- effects typically vary for different wavelengths. Vi-
vide comparisons with current techniques. Our capsually, subsurface scattering results in a softening
tured data consists of images of the face from a sinef the appearance of the material, color bleeding
gle viewpoint under two small sets of projected im-within the material, and diffusion of light across
ages. The first set, a sequence of phase-shifted pshadow boundaries. The human visual system can
riodic stripe patterns, provides a per-pixel profile ofeasily notice the absence of these cues. Light dif-
how light scatters from adjacent locations. The secfusion across illumination boundaries is especially
ond set of structured light patterns is used to obtaiimportant for cinematic lighting, where faces are
face geometry. We subtract the minimum of eacloften in partial lighting and the resulting shadow
profile to remove the contribution of interreflected edges are soft and blurred.
light from the rest of the face, and then match the The dipole diffusion model [6] has been pro-
observed reflectance profiles to scattering propertigsosed as a fast closed-form approximation for cal-
predicted by a scattering model using a lookup taculating the outgoing radiance due to subsurface
ble. From these properties we can generate imagegattering, and is capable of producing very real-
of the subsurface reflectance of the face under anigtic images. Rendering with this model, however,
incident illumination, including local lighting. The requires an estimate of the scattering and absorp-
rendered images exhibit realistic subsurface transion parameters of the skin. Current methods for
port, including light bleeding across shadow edgescapturing these parameters require setups not suit-
Our method works more than an order of magnitudeable for faces [6], or specialized devices [17]. More
faster than current techniques for capturing subsutimportantly, these methods are too slow to capture
face scattering information, and makes it possiblehe parameters over an entire face, providing only
for the first time to capture these properties over am sparse set of parameters. Skin, however, is not a

entire face. homogeneous material, and its scattering properties
change across different people and across a face;
1 Introduction cheeks have more blood, giving them a reddish ap-

pearance, areas with whiskers tend to be darker, and
Rendering human faces realistically has been there may be uneven patches in the skin. Spatially
longstanding problem in computer graphics and aarying parameters are hence important for captur-
subject of recent increased interest. There are seing the appearance of skin, and, as shown in [5],
eral important areas that require the realistic renderare already used in the entertainment industry for
ing of human faces, including computer games, anrendering realistic faces. Due to the absence of a
imated feature films, and special effects for moviesmethod for estimating spatially varying scattering
One of the most crucial factors in creating convinc-properties of skin, these techniques could not use



independent spatially varying parameters (see Sef-0{ | reduced extinction coefficierGg + Oa
tion 2 for details). Figures 4 and 7 show the impor-{ o' | reduced albedwy/of
tance of using the spatially varying scattering pas oy | effective transport extinction coefficient/ 302 0f
rameters estimated by our method in producing an I, | meanfree patil/of
accurate image. ld diffuse mean free patﬂ/ Otr

Our Approach. We propose a technique that| z | distance from real source to surfabg
measures the spatially varying scattering propertie’s z, | distance from virtual source to surfabg (1 4 4A/3)
of a subject, using just a camera and projector, with distancd|Xo — Xi |
acquisition times under a minute. This time frame ¢ | gistance fromxo to real sourcer /T2 + 22
is small enough to permit a human subject to re; distance fromXo to vinual sourcey /T2 + 22

. .. . v

main sufficiently still. We reduce the number of
images needed by making key assumptions about
light scattering in skin, which are that the scattering
is isotropic, local, and has low spatial frequency. ]

We estimate a point's scattering properties using®>SRDF can be evaluated accurately by solving the
aScattering Profilehat encodes the amount of light radiative transport equation, also known as the vol-

that scatters to it from nearby locations. We mea¥Mme rendering equation. This is an integral equa-
sure one such profile per pixel (see Figure 2) ustion and direct methods to solve it, including Monte

ing information derived from an image of the sub-Carlo simulation [4], finite element methods and
ject taken under shifting patterns of black and whitePh0ton mapping, are relatively slow.

stripes. The spatially varying scattering properties The diffusion approximation to light propagation
of the face are derived from theSeattering Pro- in participating media states that for optically dense
files by matching them with a lookup table (LUT) material the behavior of the material is dominated
of pre-rendered profiles with known absorption anddy multiple scattering [13] and directional depen-
scattering properties. The per-pixel estimated propdence is negligible. Hence the BSSRDF can be ap-
erties and captured geometry are then used to rendBfoximated faithfully by the 4D diffusion approx-

Table 1:Definition of variables.

the face under new local illumination. imation, Ry(Xo, %), which depends only on the in-
coming and outgoing points. [13] presents numer-
2 Background and Related Work ical solutions to solve the diffusion equation, but

Scattering Models Subsurface transport is de- does not present a closed-form solution.
scribed by the Bidirectional Surface Scattering The dipole approximation to the diffusion model
Reflectance Distribution Function (BSSRDF), S,is a fast closed-form solution introduced by [6]. It
which relates the outgoing radiantg(xo, W) at ~ evaluate®y(|[xo —xi||) for a half infinite slab of ho-
surface point, in the directionwg to the incident mogeneous material as:
flux ¢ (x;,W;) at surface poink; from the direction

. e otrdr

m: Ri) =% {a(ow+d) g+

Lo, W5) = S(X, %0, W) (4, W) (1) a(o+d) ezl @

Given S, the outgoing radiandg can be com-
puted by integrating the incident radiance over in- Given the scattering and absorption coefficients
coming direction and area: of the materialRy(r) gives the fraction of light that
exits pointx, given an impulse of incoming light at
- Ry a pointx; that is distance away. The total outgo-
Lo(Xo,Wo) = /271 '/AS(X"W'?’XONVO)) ing reflectance at, in the directionws is given by
i ) ] Equation 4. Herdy j is the Fresnel transmittance at
Li O, W) (n-wi)dwid A ) (2) the incident point andk o is the Fresnel transmit-

The scattering of light in a material is dictated tance at the exitant point.

by two optical parameters per wavelength. Thes _ 1 .

are the scatterings and absorptiow, coefficients, %"(X"’wg) ooz F""(n’wg)/ARd(HXO %[ @
which indicate the fracthn of light that |s_scattered / Li (%, ® )i (1, ) (n- ) dw A )
or absorbed by the medium for each unit length of

distance traveled by the light. The 8-dimensional



Measurement The ¢} and o, of a homogeneous ble incident light field R (x;, W;).
material can be estimated by illuminating a small Image-based relighting methods attempt to cap-
patch of with a thin beam of white light and fit- ture the reflectance field of an object and render
ting the resultant image values to Equation 3, afrom this data. They are capable of producing ex-
proposed by [6]. The DISCO method of [3] ex- tremely realistic images, since they inherently en-
tends this technique to measure the spatially varyingode all the complicated reflectance properties of
properties of a smooth heterogeneous object. Thethe scene. [1] capture a subset of the reflectance
capture impulse response images of the object theld of a human face by taking basis images of the
laser light of different wavelengths for all positions subject under directional illumination generated by
xi. This yields the functiomRy(x;,Xo) for all points  a movable light source some distance away. An im-
X; andxo on the surface, which is then used directlyage of the face under any incident field of direc-
to represent the spatially varying subsurface scational illumination can be approximated by a linear
tering properties. The very large acquisition timescombination of these basis images. However, the
however, make the technique unfeasible for humarestriction of illumination to distant light prevents
subjects. In contrast, [10] use a projector and camthem from being able to simulate the effects of spa-
era setup to project a series of images of point gridgally varying light across the face.
on the subject, reducing the acquisition time to a [8] use a camera and projector setup to capture a
couple of hours. [15] also aim to capture the spa6D reflectance fieldR(x;, Wi; X, ), which can be used
tially varying properties of heterogeneous objectsto relight the scene with local illumination. The
but their focus is on materials with large mesostruccoarse resolution and large acquisition time, how-
tures. They factor light transport in such materialsever, make this technique inappropriate to apply to
into a constant diffuse scattering term and spatiallycapturing faces. [12] use a similar approach but
varying mesostructure entrance and exit functionsgreatly reduce the number of images required, and
[17] capture the translucency of skin using a speconsequently the acquisition time, by using adap-
cialized measurement probe, and derive an averagive refinement and Helmholtz reciprocity. Adap-
value over a sparse sampling of points on severalve refinement, however, requires online computer
faces. This value can then be used to estimate a sianalysis during capture, which currently cannot be
gle set of scattering and absorption parameters for performed in real time.
target face, given its average diffuse reflectance (see
Section 5). Spatially varying diffuse reflectance and3 Choice of SSS Parameters
a fixed o have been used by [5] to derive spatially
Varying 05 over a face. In contrast to these tech-In this work we fit our observed data to the di-
niques, our techniquguicklycaptures alensesam-  pole diffusion model in order to estimate the spa-
pling of spatially-varying absorpticand scattering tially varying subsurface scattering properties of the
parameters across the entire surface of a target fadéce. Our method of using a lookup table with pre-
using the same camera and projectors usually aFalculated profiles is, however, independent of the
ready present in a typical 3D scanning setup. Irimodel used. It can just as easily be used to fit other
addition to being used to render spatially varyingmodels, such as the Sum of Gaussians sometimes
sub surface scattering, these parameters can be ugdégpd in real time rendering. Given the wide use
to provide a robust average of the scattering para@f the dipole method, we use this model in order
meters for a face. As shown in Figure 7b, usingto show that its parameters can quickly and eas-
the average of our estimated parameters providesity be estimated. Furthermore, the model expresses
more accurate result compared with using paraméhe data in a compact representation,with just two
ters derived from pre-estimated translucency valueBarameters per point, which can be represented as
(in this case we are using the values from [17]). maps over the face that are intuitive and easy to edit.
These maps are a logical extension of existing maps
Reflectance Fields A related concept to the such as specular and diffuse maps.
8D BSSRDF is the 8D reflectance field [1], An alternative to fitting the desired model to the
R(x;, Wi; %, W), which is a generalization of the data using a lookup table is to estimate the radial
BSSRDF to an arbitrary closed surfack, The scattering profileRy(r) directly, without making
reflectance field represents the radiant exitant lightny assumptions about the scattering model. Our
field, Ry (X, W), from A in response to every possi- decision to forego this approach was based on a



couple of drawbacks. The problem of trying to re-
cover the functiorRy(r) at a pointx from images

of x under multiple beams of light (our projected
patterns) can be stated as recovering the impul
response of a system whose input and output a
known, and falls under the area of signal deconvo

lution. In general this problem is ill-conditioned, _. . . .

and the solutions, especially for impulse response';Igure L@ Face It py the fully on projector, (b) one
that are Gaussian-like in shape, are highly sensitiv8f 40 ph_ase_'Sh'ﬂed Smp? patterns, _(C) after _Cor,recnn,g for
to measurement noise. This is partly because thIélmbertlan Ilght attenugt'lon, (d) estlmatfa of |nd|r§ct light
power spectrum of these functions quickly becomegom subtracting the minimum of each pixel’s profile.

very small, which leads to issues with numerical

stability. By fitting the observed data to a modelject. Figure 1(b) is an image of one such pattern.
instead, we reduce the number of unknowns in the The widths of the stripes and the distances be-

system, which makes a robust estimation possibléveen them are dictated by conflicting require-

even with noisy data. ments. Firstly, to minimize the interference of
neighboring stripes, so that points that fall in the
4 [llumination Patterns middle of two stripes are completely dark, the

stripes need to be as far apart as possible. How-
The optical parameterss; and oa, of a homoge- ever, to reduce the number of patterns, and hence
neous translucent material can be accurately detethe time needed to capture all the images, we need
mined by illuminating the surface with a thin beamto keep the stripes close together. Secondly, the
of light and fitting Equation 3 to a one dimensionalwidths of the stripes should ideally be a single pro-
radial profile of the spread [6]. Extending this ap-jector pixel. Practically, however, at low light levels
proach to capture spatially varying parameters nethe subsurface scattering signal that we are trying
cessitates capturing prohibitively many images forto observe is too low to be accurately distinguish-
real time capture, [3, 10]. In order to reduce theable from the camera noise. Hence, to increase the
number of images needed we make three assumpignal to noise ratio we keep the stripes several pix-
tions about the material: that it has slowly varyingels thick. We found that 8 pixel wide stripes that
scattering properties, that the material is opticallyare 32 pixels apart, for a total of 40 patterns, is a
dense, and that scattering is isotropic [17]. Thegood compromise between all these requirements.
assumption of an optically dense material impliesThe approach presented in [11], which is based on
that its behavior is dominated by multiple scatter-Hadamard coding, could also be used to generate
ing, and hence its properties can be faithfully modsingle pixel width stripes with a better signal to
eled by the diffusion approximation. Furthermore,noise ratio. However, we found the information
an optically dense material will have a short mearavailable in our data was more than sufficient for
free path and hence the scattering properties of thestimating the scattering parameters of interest.
material in one part will only affect a small neigh-
boring area. 5 Parameter Estimation

To estimate per-point optical properties we need

to capture images of the face under a small sequend®e use the images of a subject under the projected
of light patterns. Ideally, each image should yieldstripe patterns to createattering profilegor each
scattering information for many parts on the facepixel. A pixel's scattering profile is a 1D array
simultaneously. To meet this goal, instead of meaef values representing its reflectance response over
suring the radial decrease in intensity away from dime to the shifting patterns. Figure 2 shows the
thin spot of light [6, 10], we measure the decreaseyraphs of four such profiles (with their phase shifted
in intensity away from dinite-widthstripe of light  so that the peak is centered), that were created from
that is projected onto the face. Furthermore, usingur 40 input stripe patterns.
the assumption that light does not travel far within  The per-pixel scattering and absorption parame-
the skin, we illuminate the skin with multiple stripes ters are estimated from these profiles by fitting the
of light simultaneously. Hence, our patterns are peprofiles to the dipole model using a lookup table,
riodic stripes of light that are swept across the subsimilar to the specular lobe parameter estimation



o Fresnel effects (since these effects are more im-

. e portant at grazing angles where our data is unre-
liable) and includes the cosine fall-off term inside

Li(xi,w;). Ry°(r) is calculated using Equation 3 and

the properties ato, andb is the constant amount of

5 indirect light falling on the pixel (section 5.2).
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o The time profiles in the LUT are constructed by
" ,__/\ /\ calculating for each stripe pattern, a pixgls re-
P obsT TP T ewte " sponse to it as given by Equation Fare all pixels

in the camera image that get direct light from the

Figure 2: Scattering Profiles of four different points on Projector pattern and are also near enougketto
the face for the three color channels, used for estimatinghfluence its appearance. The calculationpode-
translucency. Note that the lips (c) have a comparativelyP€nds on the ratio of projector distances to camera
higher profile in the red channel and the profiles in thedistances, which in turn depends on the angle be-
stubble region (d) tend to zero more quickly (indicatingtween the projector and the surface point. In this
comparatively lower translucency in all channels). work we assume that the surface is normal to the
direction of the projector. For more accurate results
we could either capture the surface from additional

of [2]. We could also use a least squares fit to | 3D table that takes int tth
the diffusion equation to estimate these parametergfng es, orusea able that takes into account the
ngle of the surface.

but we found the LUT based approach to be faste ;
Our LUT contains pre-computed profiles indexed We use three different LUTs, one for each color

by two optical parameters, and we match a giVer{:hannel, to maximize the resolution of our esti-
input profile against the table to estimate its para-mat(Ed parameters. E?Ch LUT has a resolution of
meters. Instead of usingl and ca, we use a dif- 200x 200, but covers different areas in the translu-

ferent parametrization of the dipole model as pre &MY and ref!ectlwty spectra. I_Each _Iocat|on_ in
sented in [7], the total diffuse reflectand®y, and the LUT contains an area-normalized time profile,

the translucency, denoted by the diffuse mean fregnd th_e scattering and absorption par_ameters_ corre-
path,ly. Given values oRy andlg, [7] calculate sponding to th&yy andly values. Four time profiles

values ofc, andas by inverting Equations 5 and 6. from different parts of the LUT are shown in Figure

3 (d)-(9)-
/
Ry = % <1+e—%A\/3(1—a’>) e V3l-oY5) 51 Parameter Profile Matching
Lo 1 6 The Ry value of a pixel is estimated by using the
d = ol /31— o) ®) pixel's value in the fully lit image, after the in-

coming light has been normalized to one (Section
The advantage of using this re-parametrization i¥), and angular light fall off has been accounted
that the total diffuse reflectance valRg, which is  for (Section 6). We use cross-polarized illumina-
the outgoing radiance of a point when all pointstion to ensure that the observed reflectance values
around it are illuminated, is available in a fully lit do not contain a specular component. To deter-
image of the subject after subtracting specular remine a pixel’sly value we use ity value to in-
flection and indirect light (Figure 1(a)). Hence al- dex into the LUT and perform a one-dimensional
though we build a two-dimensional LUT &y vs  search in the corresponding row for the profile that
l4, for any given pixel we only have to perform a best matches the area-normalized scattering profile
one-dimensional search for the valuelgf in the  of the pixel. Our error metric is the sum of squared
row given by itsRy value. differences between the two profiles, and since this
We estimate the total outgoing radiance at pixemetric varies smoothly across the table for a given
Xo resulting fromp nearby illuminated pixels using input profile, our search is implemented using a par-
the simplified Equation 7. This equation ignoresabolic minimum finder. Thes; and ¢ correspond-



results in such regions.

To find the amount of indirect light we first es-
timate the best matching curve as outlined in sec-
tion 5.1, and then subtract from the minimum of
the input curve the minimum of the matched curve.
This gives us the amount of reflectance that the scat-
tering model could not account for, most probably
due to the interreflected light. Following [14], we
use subtraction to compensate for this indirect light;

(d) (e) ® (@ we subtract its estimated value from the input pro-

file and then rematch the profile to the LUT. Figure

Figure 3:Visual representation of the number of matches1(d) shows the amount of indirect light that we esti-
found for each entry of the LUT for the three color chan-Mated for a particular capture. Note that the greatest

nels (a,b,c) for the female subject. We see that red has @mount of indirect light was calculated to be in con-
higher average mean free path, and also that it has large2Vities such as the eye sockets and under the chin.

variations across the face compared to the other two charV10re recently, [9] uses a similar technique to esti-

nels. Figures (d)-(g) show the area-normalized profiles fofMate the direct and indirect light in various scenes.

four combinations oRy andLy shown in (b).

7]

(a) Red channel  (b) Green channel (c) Blue channel

6 Geometry Acquisition and Use

ing to the best matcmng profile. are then stored irEince the surface of the face is non-planar, it is

sepgrate scattering and absorptpn maps. important to acquire geometry for both parameter
Figure 6 shows some of the different maps thal

timate. W that the beard regi htestimation and rendering. For parameter estima-
we estimate. Ve can see that the beard region Ngg,, \ye have to correct for the decrease in light

higher absorption and lower translucency values-mtensity falling on a point as the angle between

W.h'Ch was also visible in F_lggr_e 4. The lips have 8its normal and the light vector increases (see Fig-
higher translucency, and significantly lesser absorp-

ion i ; re 1(a)). Failing to correct for this light attenua-
tion in the green and blue channels. Figures 3 (a—EE (@)) 9 g

h th ber of ti LUT entrv i ich on would lead us to erroneously conclude that the
Shows the humber ofimes a entry 1S match€qyin is darker in such areas. Figure 1(b) shows how
to an input profile for the three color channels, in-

o h T the fully lit image looks after correcting for the co-
tuitively showing the distribution of the parameters g light falloff, by dividing the reflectance value
Ry andly over the face. '

at each pixel by the cosine of the angle between the
5.2 Indirect Light Compensation light and the normal vector. This correction is per-
formed on each of our input images.
In areas of concavities the reflectance profiles that We estimate the face geometry by first deriving
we observe may contain significant amounts of in-a sub-pixel accurate projector-camera correspon-
terreflected light. The contribution of this light dence image using the method described in [14],
transport has to be removed before we fit the subsuwhich reliably distinguishes between illumination
face scattering model to the reflectance values. Wedges in the presence of subsurface scattering. We
note that most indirect light on a point generally ar-then triangulate the correspondence image using the
rives from areas that are relatively far and relativelycalibration information of the camera and projector,
large compared to the stripe distance: for examplg18]. Finally, the geometry is smoothed to reduce
indirect light on a point on the side of the nose ar-high-frequency extraction artifacts.
rives from all over the cheek. Thusitis a reasonable
assumption that, given the frequency of our stripes7 Results and Discussion
the same amount of indirect light arrives at a par-
ticular point on the face regardless of which stripeSetup. Our setup consists of a projector and cam-
pattern phase is being projected. The same observara pair aimed at the subject. We use a high res-
tion was made earlier by [14] in regard to Gray codeolution camera (2352 1726 Basler A404) to cap-
stripe patterns. This assumption is violated in areasire detailed images of the skin in a short amount of
with local geometric detail (such as skin folds), andtime. The projector and camera are synchronized
we do not expect this technique to produce accuratby assigning alternating colors to a small square



Oa [mnT 1] o [mnT 1] Translucency
Red Green Blue Red Green Blue Red Green Blue
female lips 0.0657 0.2505 0.2835 1.102 0.9084 0.7982 2.0844 1.0716 1.042¢
forehead | 0.0836 0.1774 0.2554 1.3079 1.5042 1.1741 1.6928 1.0571 0.9555
cheek 0.0525 0.1653 0.2214 1.2814 1.5000 1.1248 2.1817 1.1004 1.0569

mean 0.075 0.156 0.2254) 1.3881 1.5017 1.0969 1.9282  1.2048 1.0988
std. dev. | 0.0532 0.0652 0.0703 0.3484 0.3737 0.2496 0.3378 0.1986 0.1524
male lips 0.3227 0.6631 0.6833 0.7819 0.6710 0.5209 0.9670 0.6139 0.6365

forehead | 0.4761 0.3163 0.442| 1.1415 1.2267 0.8851 0.6578 0.8264 0.7538§
stubble 0.4056 0.6024 0.6707 0.9237 0.8621 0.6648 0.7863 0.6147 0.6100

mean 0.2047 0.3595 0.4691 1.1602 1.1586 0.8373 1.1926 0.8164 0.7606
std. dev. | 0.0989 0.1148 0.1179 0.1823 0.1985 0.1354 0.3127 0.15611  0.132§
Weyrich 06 1.8155  1.0213 0.6453
Jensen 01 skinl 0.032 0.17 0.48 0.74 0.88 1.01 3.6733  1.3665 0.6827
skin2 0.013 0.070 0.145 | 1.09 1.59 1.79 4.8215  1.6937 1.0899

Table 2: Estimated parameters for different areas on two different subjects, female and male. The last row is provided
for comparison against constant parameters estimated in previous work, [17, 6].

in the projector images. A photoreceptor detectdured under cross-polarized illumination to elimi-
these changes and triggers the camera. The setapte specular reflections). Our renderings do not
is capable of displaying and capturing five patterngeproduce the complete reflectance of a person’s
per second, with two images of different exposuredace, as we ignore the specular surface reflection
captured for each projected pattern. The differentlyand interreflected light, which would be simulated
exposed images are compiled into HDR images afin the context of a complete face scanning system
ter subtracting the camera and projector black leveke.g. [1, 17]). Using the spatially varying properties
We calibrate the incident illumination by taking an estimated in Section 5 and the geometry estimated
image of a reflectance standard, and we divide ailh Section 6, we render the subsurface response of
captured images by its average value. Finally, wehe face using the method outlined in [6]. We per-
cross-polarize the camera and the projector to elimform a color correction step on our renderings using
inate the specularly reflected light, which is necesa color matrix to compensate for crosstalk between
sary for correctly fitting our scattering model to the the color channels of the projector and the camera.

observed values. The polarizers are placed diag- Figure 4 shows a comparison of our approach
onally on the LCD projector and camera to avoidwith an image rendered with constant translucency
color shifts. We project a total of 88 images: 40(an average of the estimated translucency values
stripe patterns, and 48 structured lightimages.  gver the entire face), and spatially varying reflec-
Table 2 shows a comparison of the estimatedivity. The presence of whiskers inside the skin
parameters across the face for different subjectsin the right side of the image reduces its translu-
There is a significant difference in both parametergency, an effect captured by our technique (Figure
across the male and female subject; the male sul#{(c)). Note that just a constant translucency para-
ject's skin exhibits higher absorption and smallermeter (Figure 4(a)) cannot account for this. Figure
scattering. Our parameters are on the same scale 2sshows that constant parameters also cannot cor-
those previously estimated, although the color disrectly predict the response of skin in the lip region.
tribution is slightly different. In particular, [6] pre- However, using constant parameters that are the av-
dicts a greateo{ for the blue channel than the red erage of our estimated spatially varying parameters
channel. This might be because of different colorfor the subject, 7(b), provides a more accurate im-
response of our systems, or because [6] obtain meage compared with parameters derived from previ-
surements on the subject’s arm instead of the faceously published translucency values 7(a). Figure 5
We validate our parameters with renderings ofshows a comparison between a synthetic rendering
faces produced under different incident illuminationcreated using our technique and a real image cap-
and we compare them to ground truth images (captured under similar light. Our technique correctly



renders the scattering of light across the illumination. Our data capture approach is a logical addition

tion edge and the skin color in fully lit areas.

to existing face-scanning approaches e.g. [1, 16, 17]

as it requires only a projector and camera.

8 Limitations and Future Work

There are several limitations to our method that sug-[1]
gest logical directions for future work. Since we
capture images from a single viewpoint, both our .
geometry and estimated parameters are unreliablé]
in areas where the angle between the surface normal
and the projector or camera is large (e.g. the white[3]
areas in Figures 6a and 6b), or where they are not
in focus. In practice the acquisition should be re- 4
peated for multiple viewpoints, e.g. left, front, and
right, and the results merged so that the most fronto-
parallel data is used from each position. Alterna- [5]
tively, we could create a 3D LUT, where the third
dimension represents the angle between the normaf’
at a point and the projector direction. Since these
angles are already known for each point, the 3D ta-[7]
ble would not impose any extra cost for searching.
Although our LUT-based approach to estimation
is extremely fast, it assumes locally flat geometry.
This assumption is valid for most image regions but
causes miscalculation of parameters for points nearf9]
geometric discontinuities. For such places, a more
accurate but more expensive approach would be IBO]
use the geometric information and a least squares
solution. A good compromise, however, is to man-
ually correct such errors with information from the
neighboring area, which is reasonable since the pé%l]
rameter maps that we estimate are images that can
easily be edited and touched up. [12]

(8]

9 Conclusion 13
We have presented an image-based acquisition S
tem that quickly and efficiently estimates the scat-
tering properties of an optically dense translucent
non-homogeneous material. Our system allows us
to capture the spatially varying properties of skin ajs,
a high resolution, which was not possible with ear-
lier approaches because of their large time require-
ments. Our method can also be used to estimaté®!
improved average scattering parameters for the skin
more conveniently and efficiently than earlier point-
sampling based approaches. The technique is mirit7]
imally invasive, using neither potentially danger-
ous lasers [6] or specialized equipment [17]. Our
data representation is compact and editable, witfis
just two floating-point values per pixel, and can be
used to render realistic faces under local illumina-
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(a) Spatially constant SSS
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(b) Real Image

 ——

(c) Spatially varying SS

Low Exposure, +3 stops High Exposure, +6.5 stops Area on Subject

Figure 4: Animage of a stripe of light projected onto a male subject’s neck (left), and stubble (right) area. Note that

the real image (b), exhibits significantly less subsurface scattering in the stubble region as compared to the neck. Ou
approach (c), using spatially varying scattering parameters captures this effect, whereas the rendering using constal
average translucency (a) overestimates the scattering in the stubble region and underestimates the scattering in the nec

(a) Weyrich06 (b) average translucency (c) spatially varying scattering (d) realimage

Figure 7: A curved stripe of light projected over the female subject’s lips. (a) and (b) are rendered with constant
translucency; parameters from [17] and an average of our estimated parameters, respectively. Note that the scatterir
in (b) has a yellower tone than the real image. (c) is rendered using spatially varying parameters, and comes closest t
capturing the color and influence of the subsurface transport in the real image, (d).

(a) realimage

(b) synthetic rendering

Figure 5:Comparison of a rendering using our estimated
parameters with a real image under spatially-varying inci-

dent illumination (high exposure on left, low exposure onFigure 6:From the top: recovered translucency, absorp-
right). The amount of scattering along the shadow edge i§0n Ga, and scatterings; maps for the three color chan-
generally consistent between the two, except for the interd€ls. The white parts in (a,d) are areas where we cannot
reflected light which is not simulated estimate good parameters, see Section 8.



