Digital Ira and Beyond:
Creating Photoreal Real-Time Digital Characters

Summary Statement

This course explains a complete process for creating next-generation realtime digital human characters,
using the Digital Ira collaboration between USCICT and Activision as an example, covering highres facial
scanning, blendshape rigging, video-based performance capture, animation compression, realtime skin
and eye shading, hair, latest results, and future directions.

Short Overview

This course will present the process of creating "Digital Ira" seen at the SGGRAPH 2013 Real-Time live
venue, covering the complete set of technologies from high resolution facial scanning, blendshape
rigging, video-based performance capture, animation compression, realtime skin and eye shading, and
hair rendering. The course will also present and explain late-breaking results and refinements and point
the way along future directions which may increase the quality and efficiency of this kind of digital
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character pipeline. The actor from this project was scanned in 30 high-resolution expressions from
which eight were chosen for real-time performance rendering. Performance dips were captured using
multi-view video. BExpression UVs were interactively corresponded to the neutral expression,
retopologized to an artist mesh. An animation solver creates a performance graph representing dense
GPU optical flow between video frames and the eight expressions; dense optical flow and 3D
triangulation are computed, yielding per-frame spatially varying blendshape weights approximating the
performance. The performance is converted to standard bone animation on a 4k mesh using a bone-
weight and transform solver. SQurface stress values are used to blend albedo, specular, normal, and
displacement maps from the high-resolution scans per-vertex at run time. DX11 rendering indudes SS§
translucency, eye refraction and caustics, physically based two-lobe specular reflection with
microstructure, DOF, antialiasing, and grain. The course will explain each of processes, mentioning why
each design choice was made and pointing to alternative components which may have been employed
in place of any of the steps. We will also cover emerging technologies in performance capture and facial
rendering. Attendees will receive a solid understanding of the techniques used to create photoreal
digital characters in video games and other applications, and the confidence to incorporate some of the
techniquesinto their own pipelines.

Project URL

http://gl.ict.usc.edu/ Research/Digitallra/

Intended Audience

Digital Character Artists, Game Developers, Texture Painters, and Researchers working on Performance
Capture, Facial Modeling, and Real-Time Shading research

Prerequisites

Some experience with video game pipelines, facial animation, and shading models. The course is
designed so that attendees with a wide range of experience levels will take away useful information and
lessons from the course.



Course Schedule

1. Introduction/ Overview - von der Pahlen

2. Facial Scanning and Microgeometry Capture - Debevec

3. Facial scan correspondence with Vuvuzela (live demo) - Alexander
4. Performance capture and animation solving - Fyffe

5. Compressing animation to a bone rig - Danvoye

6. &in shading - dmenez

7. Driving Expression Blending - Danvoye

8. Rendering Byes - Jmenez

9. Rendering Hair - dmenez

10. Latest Results and Future Work - von der Pahlen

12. Q&A- Al

Instructor Bios:

JAVIER VON DER PAHLEN is Director or R&D at Activision Central Sudios, leading a photreal character
program since 2009. Javier started working on computer graphicsin the Architecture program at Cornell
University in the late 80s. Before joining Activision he co-created Softimage Face Robot in 2005, the first
face commercially available facial animation software.

JORGE JMENEZ is a real-time graphics researcher at Activision Blizzard. He received his PhD degree in
Real-Time Graphics from Universidad de Zaragoza (Spain) in 2012. His interests incude real-time
photorealistic rendering, special effects, and squeezing rendering algorithms to be practical in game
environments. He has contributions in conferences, books, and journals, induding SGGRAPH and GDC,
the GPU Pro series, the Game Developer magazine, and the journal Transaction on Graphics. He co-
organized the course "Filtering Approaches for Real-Time Anti-Aliasing at SGGRAPH 2011. Some of his
key achievementsindude dmeneZ's MLAA, SVIAA, and the separable subsurface scattering technique.



ENENNE DANVOYE joined Activision Central Sudio’s R&D team in 2009. He has been involved in
improving every step of the pipeline for realistic characters, from the high resolution scanning hardware
to the tools to process the animation and texture data into a runtime-ready form. Before that, he spent
seven years at Artificial Mind&Movement (now Behavior Interactive) as Lead Engine Programmer, with
focus on animation, partides and physics. Areas of expertise incdlude animation engines, and efficient
game engine pipelines.

PAauL DEBEVEC is a Research Professor in the University of Southern California’s Viterbi School of
Engineering. He has worked on facial capture and rendering research beginning with his SGGRAPH 2000
paper "Acquiring the Reflectance Feld of the Human Face" which gave rise to the Light Sage systems
recognized with an Academy Scientific and Engineering Award in 2010.

GRAHAM FYFFE is a computer scientist in the Graphics Lab of the USCInstitute for Creative Technologies.
He previously worked at Svay Sudio in Los Angeles, CA, during which time he received a Visual Efects
Society award in 2007 for Qutstanding Visual Bfects in a Music Video. He received his masters in
computer science at the University of New Brunswick, Canada, which gave him a background in
computer graphics and artificial intelligence. His research interests include computer graphics, computer
vision, and physics simulation, especialy as applied towards visual effects. His recent work focuses on
facial geometry scanning and performance capture.

OLEG ALEXANDER is a technical artist specializing in facial rigging and animation. He received his MFA in
Computer Arts from Horida Atlantic University. From 2006 to 2009 he was lead technical artist at Image
Metrics. During this time, Oleg created hundreds of facial rigs for film, game, and TV projects. He
became an expert in the Facial Action Coding System, facial rigging, and facial animation. In 2008, he
directed and rigged the Digital Emily project, a demo featuring a photorealistic OG facial performance.
Qurrently, Olegisatechnical artist at USCInstitute for Creative Technologies.



Digital Ira and Beyond: Creating Real-Time Photoreal Digital Actors

Oleg Alexander Graham Fyffe Jay Busch Xueming Yu Jorge Jimenez Etienne Danvoye Bernardo Antionazzi
Ryosuke Ichikari Andrew Jones Paul Debevec-
USC Institute for Creative Technologies

Mike Eheler Zybnek Kysela Javier von der PahlenY
Activision, Inc.

Figure 1: (Left) Three of eight high-res (0.1mm) light stage scans of the actor in static expressions. (Middle) Seven-camera HD performance
recording. (Right) 180Hz video-driven blendshape model with screen-space subsurface scattering and advanced eye shading effects.

Overview In 2008, the “Digital Emily” project [Alexander et al.
2009] showed how a set of high-resolution facia expressions
scanned in a light stage could be rigged into a real-time photo-
real digital character and driven with video-based facial anima-
tion techniques. However, Digital Emily was rendered offline, in-
volved just the front of the face, and was never seen in a tight
closeup. This SIGGRAPH 2014 Course will describe in detail the
processes used by USC ICT and Activision to create the " Digita
Ira” character shown at SIGGRAPH 2013’s Real-Time Live venue,
which achieved a real-time, largely photoreal digital human char-
acter which could be seen from any viewpoint, in any lighting, and
could perform realistically from video performance capture evenin
atight closeup. In addition, the character ran in a real-time game-
ready production pipeline, ultimately achieving 180 frames per sec-
ond for afull-screen character on a two-year old graphics card. For
2014, the course will show additional character examples, discuss
lessons learned, and suggest directions for future work.

3D Scanning We began by scanning accomodating researcher
Ari Shapiro in thirty high-resolution expressions using the USC
ICT’s Light Stage X system [Ghosh et al. 2011], producing 0.1mm
resoution geometry and 4K diffuse and specular reflectance maps
per expression. We chose eight expressions for the real-time perfor-
mance rendering, maximizing the variety of fine-scale skin defor-
mation observed in the scans. The expressions were merged onto an
artistically built back-of-the head model. To record performances
for the character, we shot seven views of 30fps video of the actor
improvising lines using the same seven Canon 1Dx cameras used
for the scans. We used a new tool called Vuvuzela to interactively
and precisely correspond all expression texture (u,v) coordinates to
the neutral expression, which was retopologized to a low-polygon
clean artist mesh.

Performance Animation Our offline animation solver creates a
performance graph from dense GPU optical flow between the video
frames and the eight expressions. This graph gets pruned by an-
ayzing the correlation between the video frames and the expres-
sion scans over twelve facial regions. The algorithm then computes
denseoptical flow and 3D triangulation yielding per-frame spatially
varying blendshape weights approximating the performance.

debevec@ict.usc.edu ¥ Javier.Pahlen@activision.com

The Game Rig To create the game-ready facia rig, we trans-
ferred the mesh animation to standard bone animation on a4K poly-
gon mesh using a bone weight and transform solver. The solver op-
timizes the smooth skinning weights and the bone animated trans-
forms to maximize the correspondence between the game mesh and
the reference animated mesh.

Real-Time Rendering The rendering technique uses surface
stress values to blend diffuse texture, specular, normal, and dis-
placement maps from the different high-resol ution expression scans
per-vertex at run time. As aresult, realistic wrinkles appear around
the actor’s eyes when he squints and on his foreheard when he
raises his eyebrows; the color of the skin also changes with expres-
sion due to shifting blood content. The DirectX11 rendering takes
into account light transport phenomena happening in the skin and
eyes, from large scale events like the reflection of light of the own
face into the eyes, to the shadowing and occlusion happening in the
skin pores. In particular, it includes separable subsurface scattering
[Jimenez et al. 2012] in screen-space, translucency, eye refraction
and caustics, advanced shadow mapping and ambient occlusion, a
physically-based two-lobe specular reflection with microstructure,
depth of field, post effects, temporal antialiasing (SMAA T2x), and
film grain.

Acknowledgements (Omitted for review)
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Overview Game Rig

In 2008, the “Digital Emily” project [Alexander et al. 2009]
showed how a set of high-resolution facial expressions

scanned in a light stage could be rigged into a real-time pho-

toreal digital character and driven with video-based facial ani

mation techniques. However, Digital Emily was rendered of-

fline, involved just the front of the face, and was never seen in

a tight closeup. In this collaboration between Activision and

USC ICT shown at SIGGRAPH 2013’s Real-Time Live venue,

we endeavoured to create a real-time, photoreal digital

human character which could be seen from any viewpoint, in

any lighting, and could perform realistically from video per-

formance capture even in a tight closeup. In addition, we

wanted this to run in a real-time game-ready production pipeline, ultimately achieving 180 frames
per second for a full-screen character on a two-year old graphics card.

To create the game-ready facial rig, we transferred the mesh animation to standard bone animation
on a 4K polygon mesh using a bone weight and transform solver. The solver optimizes the smooth
skinning weights and the bone animated transforms to maximize the correspondence between the
game mesh and the reference animated mesh, giving the most natural movement available.

Real-Time Rendering

The rendering technique uses surface stress values to
blend diffuse texture, specular, normal, and displacement
maps from the different high-resolution expression scans
per-vertex at run time. As a result, realistic wrinkles
appear around the actor’s eyes when he squints and on
his foreheard when he raises his eyebrows; the color of
the skin also changes with expression due to shifting
3D Scanning blood content.

We began by scanning accomadating re-
searcher Ari Shapiro in thirty high-resolution
expressions using the USC ICT's Light Stage
X system [Ghosh et al. 2011], producing
0.1mm resoution geometry and 4K diffuse
and specular reflectance maps per expres-
sion. We chose eight expressions for the re-
altime performance rendering, maximizing
the variety of fine-scale skin deformation ob-
served in the scans. The expressions were
merged onto an artistically built back-of-the The DirectX11 rendering takes into account' light transport
head model. To record performances for the phenomena happening in the skin and eyes, from large scale
character, we shot seven views of 30fps events like the reflection of light of the own face into the eyes, to
video of the actor improvising lines using the same seven Canon 1Dx cameras used for the scans. the shadowing and occlusion happening in the skin pores. In
We used a new tool called Vuvuzela to interactively and precisely correspond all expression texture particular, it includes separable subsurface scattering [Jimenez
(u,v) coordinates ta the neutral expression, which was retopologized to a low-polygon clean artist et al. 2012] in screen-space, translucency, eye refraction and
mesh. caustics, advanced shadow mapping and ambient occlusion, a
physically-based two-lobe specular reflection with microstruc-
Performance Animation ture, depth of field, post effects, temporal antialiasing (SMAA
T2x), and film grain.
Our offline animation solver creates a perfor-
mance graph from dense GPU optical flow be- 4
tween the video frames and the eight expres- Acknowledgements
sions. This graph gets pruned by analyzing We thank Borom Tunwattanapong, Koki Nagano, Domi Piturro, Alejo von der Pahlen, Joe Alter,
the correlation between the video frames and ’ Curtis Beeson, Mark Daly, Mark Swain, Jen-Hsun Huang, Ari Shapiro, Valerie Dauphin, and Kathleen
the expression scans over twelve facial re- Haase for their important assistance and contributions to this work. This work was supported by
gions. The algorithm then computes dense op- E USA RDECOM, USC, and Activision, Inc; no endersement is implied.
tical flow and 3D triangulation yielding
per-frame  spatially varying blendshape
weights approximating the performance.
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Activision R&D demos hyper-
realistic facial animation
By John Funk on Mar 28, 2013 at 1:30p

Activision’s research and development department has released a video
demonstrating its new extremely realistic facial movement technology.

world

The video shows a man speaking at the camera and making a variety of expressions.

Elder

nd Ballmer: Speed

Ryse, Ub
Scrol
Run

While there appear to be some incomplete parts that mar the illusion — such as the

inside of his mouth being pitch black when he speaks — eyes move and skin shifts as

one might expect those of an actual person to.

Web Gaming Hacks Computing WatchThis Science

maR - Activision Demonstrates Very Life-

28 Like Facial Rendering San Francisco | Oct 1417
@ RADICAL ENERGY EFFICIENCIES
(& SMARTER SUPPLY CHAINS

(@ NEXT-GEN BUILDINGS

Posted by Jamie Lord

Early Bird Rate Expires Aug 30

Register Now

Every Tom, Dick and Harry seems to be having a go at creating realistic face renders at
the moment. Activision have demonstrated their attempt, and it's probably the best yet.

All of the effects in the video below were rendered In real-time, that's pretty impressive
considering the advanced techniques used to try to fool your mind. We're clearly a long
way off this technology being usable in games, using an entire computer to render one
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Activision demos incredible lifelike facial rendering technology

By Smo o & Bltke 91 Qo1 6 |9 Tweet 2 =
On March 28, 2013, 10:00 AM =4 TechSpoton: Ejuke 1| wFollow B

Activision's research and development team has been working hard as of late to produce what they are calling
next generation character rendering. The company showed off the new technology at the Game Developers
Conference and although the video clip on display is short, it shows a number of facial animations running in real Spri nt}
time that are stunning.

As you can see in the clip below, the animations are extremely lifelike — perhaps more so than any others we INTHU n u cl N G

have seen to date. Activision said they used source material from USC Institute for Creative Technologies and

converted it into a *70 bones rig” using advanced techniques to deliver realism to the eyes and skin. uNI-I MITED TALK
’
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yanceuy An Activision researched and development team demoed new lifelike facial rendering technology to an ) Will Smith And Family Harrifed
audience at Game Developer's Conference. During Miley Cyrus Performance At
VMAS
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Kaya Burgess.

In the cinemas and video games of the
near future, computer-generated char-
acters will be so lifelike that individual
skin cells and hair follicles will be visi-
ble, because of a new high-definition
form of digital animation technolo

The distinction between  real

ctors and computer graphics has
already been blurred by films such as
Beowulf and Avatar which use
camputer-penerated imagery (C
create animated versions of le
actors — but until now they meJ
seeming rather plastic-looking.

But thanks to new super-high resolu-
tion facial scanning you will now be
able to see every blemish and i
Angelina Jolie's virtual cheek or Zoe
Saldana’s digital forehead

Researchers at the University
Southern  California and
College London have de
nigues to scan  centimelre-square
patches of skin from the cheek, fore-
head, nose, chin and temple in such
high resolution that a single skin cell
cavers three pixels on the screen.

The team has alsa polarised the light
source used during the scanning to
pick up not only the light reflecting off
the skin’s surface but alsa light that
penetrates below the epidermis and
scatters back, providing greater depth
and tone to the final image.

The scanning, which uses high-
resolution stills cameras in a labor-
atary, also captures how the skin be-
haves under different types of light and
during different facial expressions. The

)

vancouer

SIGGRAPH2014

Th 41st Infermational
Computer

and Exhibltion

Canferance
Graphics ard Interactive Techniques

The hi-tech scanner that turns
actors into aliens, warts and all

How CGl can now capture each skin cell

records tacial
xpressions ta
alea

3D Image

Srmall patches of
skin scanned ata

scanned palches can then be mapped
on toa 3-D image of the actor, created
with motion-capture lechnolog;
result,  compuler-generated
-acters will no longer be so “plastic
looking', according to Paul Udm‘
the associate director of graphics
research at USC, whese earlier tech
niques were used on James Cameron’s

£ Skinpatches
mapped on o
0 image of the:
actor, which can
thenbearinaled

Compiter

In Ihe film

Avatar, "The bumpiness of the surface

in,at the micron scale, actually

how light reflects off the sur-
Professor Debevec explained.

That’s \\h\l makes it Iunk healthy

chalky. It makes

someane ook 1ike a Imm.ln heing

made out of organic material and not

like 2 computer-gencraled zombie.”

To make Avatar, artists had to po back
to the CGlimagery of the blue-skinnex
Na'vi characters and add blemishes,
such as moles or creases, by hand. This
vastly increased the man-hours and
expense of the film, which was nearly
60 per cent computer-generated and
cost more than 150 million,

The process will now be much cheap-

T, Professor Debevee said, and vide:
game developers at Activision have
already created mathematical algo-
rithms that can mimic many of the
effects of the high-definition scanning,
areatly redu e time, expense and

cessing power needed.

This will allow hyper-realistic CGl
characters to appear on video games
consoles and could allow film directors
tocreate CGl scenes in real lime.

Professor Debevec said:
future it might be the less expel
movies that use CGI technology
hig budget movies will be the on
who can still afford to go out on
location and shoot in Paris or Bermuda
and take up actors” time.”

Abhijeet Ghosh, from the computing
department at Imperial  College
London, helped to develop the “facial
microgeometry scanning” process and
was approached by the Avon cosmetics
company to help it to analyse the
effiects of make-up on the skin.

He predicted that cosmetics custom-
ers may be able to use apps in future to
see how their faces would look with
different types of foundation. “When
you start smnnm;, n at that scale, it
couldalso

eZNXmPzul
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Digital Ira at SIGGRAPH 2013
Real-Time Live

World’s first (reasonably) photoreal real-time
digital character, collaboratively developed
with Activision, debuts at Real-Time Live to
2000+ attendees

Leverages Graham et al.’'s Measurement- Tt e T T . T ]
Based Synthesis of Facial Microgeometry e SO I B‘ 8’ Q 3 68 B‘B
Eurographics 2013 for skin detail synthesis AR5 R - ¢ qagﬁgaga
First version with hair! 0 AR Ll L
NVIDIA shows improved Digital Ira in their My B @ 8 ﬁ @ % % ?f @'
SIGGRAPH booth on 4K monitor, including Light Stagt-Scanning =" FACS Poses
Dlgltal Ira running on their "PI‘OjeCt Loganu Digital Ira SIGGRAPH 2013 Real-Time Live
tablet prototype : ;
» Come to “Digital Ira” Project Overview at i :
ICT Monday 8/26 featuripg Graham Fyffe, ACTIVISioN
Oleg Alexander, and Javier von der Pahlen : ET

Video Performance Capture ; 2
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USC INSTITUTE F
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Digital Emily — SIGGRAPH 2008 ®
USC ICT and Image Metrics »
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Latest Result: 30 High-Res Expressions Processed in One Week
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Measurement-Based Synthesis of Facial
Microgeometry

Paul Graham, Borom Tunwattanapong, Jay Busch, Xueming Yu, Andrew Jones,
Paul Debevec, Abhijeet Ghosh

USClInstitute for Creative Technologies

Presented at @ Suosenics e

Rendering from Multi-view Scan Photograph Rendering with Enhance
Microstructure
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Recording skin microstructure

* 12-ight hemispherical dome or
» Polarized LED sphere
 higher lighting resolution for
specular/oily skin
* Canon 1DMark lll camera
» Canon 100mm macro lens
*  24mm by 16mm aperture
* 7 micronsresolution

RECORDED SKIN
MESOSTRUCTURE DATA

RECORDED SKIN MICROSTRUCTURE DATA

FOREHEAD PATCH
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Soecular Qurface Normals and Displacement Maps

Male Subject

Female Qubject B

SYNTHESISING MICROSTRUCTURE

MICROSTRUCTURE
(~.01mm)
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Vuvuzela: A Facial Scan Correspondence Tool

Ryosuke I chikari

USC Institute for Creative Technologies

(a)
Figure 1: (a) Source. (b) Target. (c) Vuvuzela workflow. (d) Warped source. (e) Difference between warped source and target.

1 Introduction

When scanning an actor’s face in multiple static facial expressions,
itisoften desirablefor theresulting scansto all have the same topol -
ogy and for the textures to all be in the same UV space. Such
“corresponded” scans would enable the straightforward creation
of blendshape-based facia rigs. We present Vuvuzela, a semi-
automated facial scan correspondence tool. Vuvuzela is currently
being used in our facial rigging pipeline, and was one of the key
toolsin the Digital Ira project.

2 Our Approach

Our rig building process begins by scanning an actor’s face in our
Light Stage X device[Ghosh et al. 2011]. We capture a set of about
30 static facial expressions, roughly corresponding to Action Units
from the Facial Action Coding System [Ekman and Friesen 1978].
We also capture a master “neutral” expression, which becomes the
target scan in our correspondence pipeline.

Rather than storing our scans as geometry and textures, we choose
instead to store our scans asimages. Each one of our scansis stored
as aset of 4K, 32 bit float EXR images, including diffuse, specular,
specular normals, and a high resolution point cloud. The maps are
in acylindrically unwrapped UV space, representing our ear to ear
data. However, the UV space differs slightly for each expression
scan.

Vuvuzela exploits this image-based scan represantation by doing
the scan correspondence in 2D rather than 3D. Vuvuzela takes as
input two scans: one of the expressions as the source and the neu-
tral expression as the target. Vuvuzela provides an OpenGL Ul,
alowing the user to interact with the scans in 3D. The scans are
rendered with the diffuse textures only, and all of the correspon-
dence processing uses only the diffuse textures.

The user clicks corresponding pointsin the source and target scans,
such as corners of the eyes and lips, and other facial landmarks. We
found that we don’t need to put dots or markers on the face during
scanning, because there is plenty of naturally occuring texture in
the face, especially when over-sharpened. The placement of the
correspondence points doesn’t have to be exact—the points are used
only as an initialization by our algorithm.

Once enough points have been placed, the user presses the Update
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Paul Debevec
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button, which triggers our correspondence algorithm. The result
is displayed to the user and the Ul offers several modes to pre-
view the quality of the correspondence, including a “blendshape”
slider blending both geometry and/or texture. The user can then
add, delete, or edit points, and repeat the process until a high qual-
ity correspondence is achieved.

Our agorithm has three steps and runs in 2D. First, we construct
a Delaunay triangulation between the user supplied points and ap-
ply affine triangles to roughly pre-warp the source diffuse texture
to the target. Second, we use GPU-accel erated optical flow to com-
pute a dense warp field from the pre-warped source diffuse texture
to the target. Finally, we apply the dense warp to each one of our
source texture maps, including diffuse, specular, specular normals,
and point cloud. The result is the source scan warped to the tar-
get UV space. The submillimeter correspondence is able to align
individual pores across the majority of the face.

Some expressions are more challenging to correspond than others.
Especially expressions with lots of occlusions, like mouth open to
mouth closed. In such cases, optical flow will fail to get agood re-
sult. We assist optical flow intwo ways. First, we paint black masks
around occlusion regions in both source and target diffuse textures.
Second, we mark some points as “pinned” and those points are ras-
terized into small black dots at runtime. Using both of these tech-
niques in combination usually produces good results even in the
toughest cases.

A useful byproduct of Vuvuzela is the ability to generate blend-
shapes directly from the corresponded scans. First, we remesh the
neutral scan, creating an artist mesh with artist UVs. Then we load
the artist mesh into Vuvuzela and export the blendshapes for al the
scans by looking up vertex positionsin the warped point clouds. All
the texture maps are also warped into the artist UV space, which is
simply an additional affine triangles 2D warp. The result is a set of
blendshapes and texture maps ready to hand off to the facial rigger.
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Introduction

When scanning an actor’s face in multiple static facial expressions, it is
often desirable for the resulting scans to all have the same  topology
and for the textures to all be in the same UV space. Such “correspond-
ed” scans would enable the straightforward creation of blend-
shape-based facial rigs. We present Vuvuzela, a semiautomated facial
scan correspondence tool. Vuvuzela is currently being used in our
facial rigging pipeline, and was one of the key tools in the Digital Ira
project

Our Approach

DaTA ACQUISITION A wrion Qur rig building process begins by scanning an actor’s face in our
Light Stage X device [Ghosh et al. 2011]. We capture a set of about 30 static facial expressions,
roughly corresponding to Action Units from the Facial Action Coding System [Ekman and Friesen
1978]. We also capture a master “neutral” expression, which becomes the target scan in our corre-
spondence pipeline.

Rather than storing our scans as geometry and textures, we choose instead to store our scans as
images. Each one of our scans is stored as a set of 4K, 32 bit float EXR images, including diffuse,
specular, specular normals, and a high resolution point cloud. The maps are in a cylindrically un-
wrapped UV space, representing our ear to ear data. However, the UV space differs slightly for each
expression scan.

& Vuvuzela exploits this image-based scan represantation by doing the scan corre-
spondence in 2D rather than 3D. Vuvuzela takes as input two scans: one of the expressions as the
source and the neutral expression as the target. Vuvuzela provides an OpenGL U, allowing the user
to interact with the scans in 3D. The scans are rendered with the diffuse textures only, and all of the
correspondence processing uses only the diffuse textures.

The user clicks corresponding points in the source and target scans, such as corners of the eyes
and lips, and other facial landmarks. We found that we don’t need to put dots or markers on the face
during scanning, because there is plenty of naturally occuring texture in the face, especially when
over-sharpened. The placement of the correspondence points doesn’t have to be exact—the points
are used only as an initialization by our algorithm.
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Once enough points have been placed, the user presses the
Update button, which triggers our correspondence algo-
rithm. The result is displayed to the user and the Ul offers
several modes to preview the quality of the correspondence,
including a “blendshape” slider blending both geometry
and/or texture. The user can then add, delete, or edit points,
and repeat the process until a high quality correspondence
is achieved.

smim Our algorithm has three steps and
in 2D. First, we construct a Delaunay triangulation be-
tween the user supplied points and apply affine triangles to
roughly pre-warp the source diffuse texture to the target.
Second, we use GPU-accelerated optical flow to compute a
dense warp field from the pre-warped source diffuse texture
to the target. Finally, we apply the dense warp to each one of our source texture maps, including
diffuse, specular, specular normals, and point cloud. The result is the source scan warped to the
target UV space. The submillimeter correspondence is able to align individual pores across the ma-
jority of the face.

al e

Uszr mrervenTion Some expressions are more challenging to correspond than others. Especially ex-
pressions with lots of occlusions, like mouth open to mouth closed. In such cases, optical flow will
fail to get a good result. We assist optical flow in two ways, First, we paint black masks around oc-
clusion regions in both source and target diffuse textures. Second, we mark some points as
“pinned” and those points are rasterized into small black dots at runtime. Using both of these tech-
niques in combination usually produces good results even in the toughest cases.

BLeno suares A useful byproduct of Vuvuzela is the ability to generate blendshapes directly from the
corresponded scans. First, we remesh the neutral scan, creating an artist mesh with artist UVs
Then we load the artist mesh into Vuvuzela and export the blendshapes for all the scans by looking
up vertex positions in the warped point clouds. All the texture maps are also warped into the artist
UV space, which is simply an additional affine triangles 2D warp. The result is a set of blendshapes
and texture maps ready to hand off to the facial rigger.

Software Interface and Workflow

http://www.ict.usc.edu/
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Driving High-Resolution Facial Scans with Video Performance Capture
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(©) (d)

Figure 1: (a) High resolution geometric and reflectance i nformation from multiple stati c expression scans is automatically combined with (d)
dynamic video frames to recover (b) matching animated high resolution performance geometry that can be (c) relit under novel illumination
froma novel viewpoint. In this example, the performance is recovered using only the single camera viewpoint in (d).

Abstract

We present a process for rendering a redlistic facia performance
with control of viewpoint and illumination. The performance is
based on one or more high-quality geometry and reflectance scans
of an actor in static poses, driven by one or more video streams of
a performance. We compute optical flow correspondences between
neighboring video frames, and a sparse set of correspondences be-
tween static scans and video frames. The latter are made possible
by leveraging the relightability of the static 3D scans to match the
viewpoint(s) and appearance of the actor in videostaken in arbitrary
environments. As optical flow tends to compute proper correspon-
dence for some areas but not others, we also compute a smoothed,
per-pixel confidence map for every computed flow, based on nor-
malized cross-correlation. These flows and their confidences yield
a set of weighted triangulation constraints among the static poses
and the frames of a performance. Given a single artist-prepared
face mesh for one static pose, we optimally combine the weighted
triangulation constraints, along with a shape regularization term,
into a consistent 3D geometry solution over the entire performance
that is drift-free by construction. In contrast to previous work, even
partia correspondences contribute to drift minimization, for exam-
ple where a successful match is found in the eye region but not
the mouth. Our shape regularization employs a differential shape
term based on a spatialy varying blend of the differential shapes
of the static poses and neighboring dynamic poses, weighted by the
associated flow confidences. These weights also permit dynamic
reflectance maps to be produced for the performance by blending
the static scan maps. Finadly, as the geometry and maps are rep-
resented on a consistent artist-friendly mesh, we render the result-
ing high-quality animated face geometry and animated reflectance
maps using standard rendering tools.

e-mail: £fyffe,jones,oal exander,debevecg@ict.usc.edu

1 Introduction

Recent facial geometry scanning techniques can capture very high
resolution geometry, including high-frequency details such as skin
pores and wrinkles. When animating these highly detailed faces,
highly accurate temporal correspondence is required. At present,
the highest quality facia geometry is produced by static scanning
techniques, where the subject holds a facia pose for severa sec-
onds. This permits the use of high-resolution cameras for accu-
rate stereo reconstruction and active illumination to recover pore-
level resolution surface details. Such techniques also capture high-
quality surface reflectance maps, enabling realistic rendering of the
captured faces. Alternatively, static facial poses may be captured
using facia casts combined with detail acquired from surface im-
prints. Unfortuately, dynamic scanning techniques are unable to
provide the same level of detail as static techniques, even when
high-speed cameras and active illumination are employed.

The classic approach to capturing facial motion is to use markers
or face paint to track points on the face. However, such techniques
struggle to capture the motion of the eyes and mouth, and rely on
ahigh-quality facial rig to provide high-frequency skin motion and
wrinkling. The best results are achieved when the rig is based on
high-resol ution static scans of the same subject. A second approach
isto capture a performance with one or more passive video cameras.
Such setups are lightweight as they use environmental illumination
and off-the-shelf video cameras. As the camera records the entire
face, it should be possible to recover eye and mouth motion missed
by sparse markers. Still, by itself, passive video cannot match the
resol ution of static scans. Whileit is possible to emboss some video
texture on the face [Bradley et al. 2010][Becler et al. 2011][Val-
gaerts et al. 2012], many facial details appear only in specular re-
flections and are not visible under arbitrary illumination.

We present a technique for creating realistic facia animation from
a set of high-resolution scans of an actor’s face, driven by passive
video of the actor from one or more viewpoints. The videos can be
shot under existing environmental illumination using off-the-shelf
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HD video cameras. The static scans can come from a variety of
sources including facial casts, passive stereo, or active illumination
techniques. High-resolution detail and relightabl e reflectance prop-
ertiesin the static scans can be transferred to the performance using
generated per-pixel weight maps. We operate our algorithm on a
performance flow graph that represents dense correspondences be-
tween dynamic frames and multiple static scans, leveraging GPU-
based optical flow to efficiently construct the graph. Besides asin-
gle artist remesh of a scan in neutral pose, our method requires no
rigging, no training of appearance models, no facial feature detec-
tion, and no manual annotation of any kind. As a byproduct of our
method we also obtain a non-rigid registration between the artist
mesh and each static scan. Our principal contributions are:

0 An efficient scheme for selecting a sparse subset of image
pairs for optical flow computation for drift-free tracking.

1 A fully coupled 3D tracking method with differential shape
regularization using multiple locally weighted target shapes.

01 A message-passing-based optimization scheme leveraging
lazy evaluation of energy terms enabling fully-coupled opti-
mization over an entire performance.

2 Related Work

As many systems have been built for capturing facial geometry and
reflectance, we will restrict our discussion to those that establish
some form of dense temporal correspondence over a performance.

Many existing algorithms compute temporal correspondence for a
sequence of temporally inconsistent geometries generated by e.g.
structured light scanners or stereo algorithms. These algorithms op-
erate using only geometric constraints [Popa et a. 2010] or by de-
forming template geometry to match each geometric frame [Zhang
et al. 2004]. The disadvantage of this approach is that the per-
frame geometry often contains missing regions or erroneous ge-
ometry which must befilled or filtered out, and any details that are
missed in the initial geometry solution are non-recoverable.

Other methods operate on video footage of facial performances.
Methods employing frame-to-frame motion analysis are subject
to the accumulation of error or “drift” in the tracked geometry,
prompting many authors to seek remedies for this issue. We there-
fore limit our discussion to methods that make some effort to ad-
dress drift. Li et al. [1993] compute animated facial blendshape
weights and rigid motion parameters to match the texture of each
video frame to a reference frame, within a local minimum deter-
mined by a motion prediction step. Drift is avoided whenever a
solid match can be made back to the reference frame. [DeCarlo
and Metaxas 1996] solves for facial rig control parameters to agree
with sparse monocular optical flow constraints, applying forces to
pull model edges towards image edges in order to combat drift.
[Guenter et al. 1998] tracks motion capture dotsin multiple viewsto
deform a neutral facial scan, increasing the realism of the rendered
performance by projecting video of the face (with the dots digitally
removed) onto the deforming geometry. The ”Universal Capture’
system described in [Borshukov et al. 2003] dispenses with the dots
and uses dense multi-view optical flow to propagate vertices from
an initial neutral expression. User intervention is required to cor-
rect drift when it occurs. [Hawkins et al. 2004] uses performance
tracking to automatically blend between multiple high-resolution
facial scans per facial region, achieving redlistic multi-scale facial
deformation without the need for reprojecting per-frame video, but
uses dots to avoid drift. Bradley et al. [2010] track motion us-
ing dense multi-view optical flow, with a final registration step be-
tween the neutral mesh and every subsequent frame to reduce drift.
Beeler et a. [2011] explicitly identify anchor framesthat are similar

to a manualy chosen reference pose using a simple image differ-
ence metric, and track the performance bidirectionally between an-
chor frames. Non-sequential surface tracking [Klaudiny and Hilton
2012] finds a minimum-cost spanning tree over the framesin a per-
formance based on sparse feature positions, tracking facial geome-
try across edges in the tree with an additional temporal fusion step.
Valgaerts et al. [2012] apply scene flow to track binocular passive
video with aregularization term to reduce drift.

Onedrawback to al such optical flow tracking algorithmsisthat the
face is tracked from one pose to another as a whole, and success of
the tracking depends on accurate optical flow between images of the
entire face. Clearly, the human face is capable of repeating differ-
ent poses over different parts of the face asynchronously, which the
holistic approachesfail to model. For example, if the subject istalk-
ing with eyebrows raised and later with eyebrows lowered, a holis-
tic approach will fail to exploit similarities in mouth poses when
eyebrow poses differ. In contrast, our approach constructs a graph
considering similarities over multiple regions of the face across the
performance frames and a set of static facial scans, removing the
need for sparse feature tracking or anchor frame selection.

Blend-shape based animation rigs are aso used to reconstruct dy-
namic poses based on multiple face scans. The company Image
Metrics (now Faceware) has developed commercial software for
driving a blend-shape rig with passive video based on active appear-
ance models [Cootes et al. 1998]. Weise et a. [2011] automatically
construct a personalized blend shape rig and drive it with Kinect
depth data using a combination of as-rigid-as-possible constraints
and optical flow. In both cases, the quality of the resulting tracked
performance is directly related to the quality of the rig. Each
tracked frame is a linear combination of the input blend-shapes,
so any performance details that lie outside the domain spanned by
the rig will not be reconstructed. Huang et a. [2011] automati-
cally choose a minimal set of blend shapes to scan based on previ-
ously captured performance with motion capture markers. Recre-
ating missing detail requires artistic effort to add corrective shapes
and cleanup animation curves [Alexander et a. 2009]. There has
been some research into other non-traditional rigs incorporating
scan data. Ma et al. [2008] fit a polynomial displacement map to
dynamic scan training data and generate detailed geometry from
sparse motion capture markers. Bickel et a. [2008] locally inter-
polate a set of static poses using radial basis functions driven by
motion capture markers. Our method combines the shape regu-
larization advantages of blendshapes with the flexibility of optical
flow based tracking. Our optimization agorithm leverages 3D in-
formation from static scans without constraining the result to lie
only within the linear combinations of the scans. At the same time,
we obtain per-pixel blend weights that can be used to produce per-
frame reflectance maps.

3 Data Capture and Preparation

We capture high-resol ution static geometry using multi-view stereo
and gradient-based photometric stereo [Ghosh et al. 2011]. The
scan set includes around 30 poses largely inspired by the Facial
Action Coding System (FACS) [Ekman and Friesen 1978], selected
to span nearly the entire range of possible shapes for each part of
the face. For efficiency, we capture some poses with the subject
combining FACS action units from the upper and lower half of the
face. For example, combining eyebrows raise and cheeks puff into
asingle scan. Examples of the input scan geometry can be seen in
Fig. 2. A base mesh isdefined by an artist for the neutral pose scan.
The artist mesh has an efficient layout with edge loops following
the wrinkles of the face. The non-neutral poses are represented as
raw scan geometry, requiring no artistic topology or remeshing.
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We capture dynamic performances using up to six Canon 1DX
DSLR cameras under constant illumination. In the simplest case,
we use the same cameras that were used for the static scans and
switch to 1920111080 30p movie mode. We compute a sub-frame-
accurate synchronization offset between cameras using a correla-
tion analysis of the audio tracks. This could be omitted if cam-
eras with hardware synchronization are employed. Following each
performance, we capture a video frame of a calibration target to
calibrate camera intrinsics and extrinsics. We relight (and when
necessary, repose) the static scan data to resemble the illumination
conditions observed in the performance video. In the simplest case,
the illumination field resembles one of the photographs taken dur-
ing the static scan process and no relighting is required.

Figure 2: Sample static scans (showing geometry only).

4 The Performance Flow Graph

Optical-flow-based tracking algorithms such as [Bradley et al.
2010][Bedler et a. 2011][Klaudiny and Hilton 2012] relate frames
of a performance to each other based on optical flow correspon-
dences over a set of image pairs selected from the performance.
These methods differ in part by the choice of the image pairs to be
employed. We generdlize this class of algorithms using a structure
we call the performance flow graph, which is acomplete graph with
edges representing dense 2D correspondences between all pairs of
images, with each edge having a weight, or confidence, of the as-
sociated estimated correspondence field. The graphs used in previ-
ous works, including anchor frames [Beeler et a. 2011] and non-
sequential alignment with temporal fusion [Klaudiny and Hilton
2012], can be represented as a performance flow graph having unit
weight for the edges employed by the respective methods, and zero
weight for the unused edges. We further generalize the performance
flow graph to include a dense confidence field associated with each
correspondence field, allowing the confidence to vary spatially over
the image. This enables our technique to exploit relationships be-
tween images where only a partial correspondence was able to be
computed (for example, apair of images where the mouth is similar
but the eyes are very different). Thus our technique can be viewed
as an extension of anchor frames or minimum spanning trees to
minimize drift independently over different regions of the face.

A performance capture system that considers correspondences be-
tween all possible image pairs naturally minimizes drift. However,
this would require an exorbitant number of graph edges, so we in-
stead construct a graph with a reduced set of edges that approxi-
mates the compl ete graph, in the sense that the correspondences are
representative of the full set with respect to confidence across the
regions of the face. Our criterion for selecting the edges to include
in the performance flow graph is that any two images having ahigh
confidence correspondence between them in the compl ete graph of
possible correspondences ought to have a path between them (a
concatenation of one or more correspondences) in the constructed
graph with nearly as high confidence (including the reduction in

Dynamic SEQUENCE

&.

Static Scans

Figure 3: performance flow graph showing optical flow correspon-
dences between static and dynamic images. Red lines represent op-
tical flow between neighboring frames within a performance. Blue,
green, and orangelines represent optical flow between dynamic and
static images. Based on initial low-resolution optical flow, we con-
struct a sparse graph requiring only a small subset of high resolu-
tion flows to be computed between static scans and dynamic frames.

confidence from concatenation). We claim that correspondences
between temporally neighboring dynamic frames are typicaly of
high quality, and no concatenation of alternative correspondences
can be as confident, therefore we always include a graph edge be-
tween each temporally neighboring pair of dynamic frames. Cor-
respondences between frames with larger temporal gaps are well-
approximated by concatenating neighbors, but decreasingly so over
larger temporal gaps (due to drift). We further claim that whenever
enough drift accumulates to warrant including a graph edge over
thelarger temporal gap, there exists a path with nearly as good con-
fidence that passes through one of the predetermined static scans
(possibly adifferent static scan for each region of theface). Wejus-
tify this claim by noting the 30 static poses based on FACS ought
to span the space of performances well enough that any region of
any dynamic frame can be corresponded to some region in some
static scan with good confidence. Therefore we do not include
any edges between non-neighboring dynamic frames, and instead
consider only edges between a static scan and a dynamic frame as
candidates for inclusion (visualized in Fig. 3). Finally, as the drift
accumulated from the concatenation described above warrants ad-
ditional edges only sparsely over time, we devise a coarse-to-fine
graph construction strategy using only a sparse subset of static-to-
dynamic graph edges. We detail this strategy in Section 4.1.

4.1 Constructing the Performance Flow Graph

The images used in our system consist of one or more dynamic
sequences of frames captured from one or more viewpoints, and
roughly similar views of a set of high-resolution static scans. The
nodes in our graph represent static poses (associated with static
scans) and dynamic poses (associated with dynamic frames from
one or more sequences). We construct the performance flow graph
by computing a large set of static-to-dynamic optical flow corre-
spondences at a reduced resolution for only a single viewpoint, and
then omit redundant correspondences using a novel voting algo-
rithm to select a sparse set of correspondences that is representative
of the original set. We then compute high-quality optical flow cor-
respondences at full resolution for the sparse set, and include all
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viewpoints. The initial set of correspondences consists of quarter-
resolution optical flows from each static scan to every n dynamic
frame. For most static scans we use every 5 dynamic frame, while
for the eyes-closed scan we use every dynamic frame in order to
catch rapid eye blinks. We then compute normalized cross corre-
|ation fields between the warped dynamic frames and each original
static scan to evaluate the confidence of the correspondences. These
correspondences may be computed in parallel over multiple com-
puters, as there is no sequential dependency between them. We find
that at quarter resolution, flow-based cross correlation correctly as-
signs low confidence to incorrectly matched facial features, for ex-
ample when flowing disparate open and closed mouth shapes. To
reduce noise and create a semantically meaningful metric, we av-
erage the resulting confidence over twelve facial regions (see Fig.
4). These facial regions are defined once on the neutral pose, and
are warped to all other static poses using rough static-to-static opti-
cal flow. Precise registration of regionsis not required, as they are
only used in selecting the structure of the performance graph. In
the subsequent tracking phase, per-pixel confidenceis used.

(f)

Figure 4: We compute an initial low-resolution optical flow be-
tween a dynamic image (a) and static image (b). We then com-
pute normalized cross correlation between the static image (b) and
the warped dynamic image (c) to produce the per-pixel confidence
shown in (d). V\e average these values for 12 regions (€) to obtain
a per-region confidence value (f). This example shows correlation
between the neutral scan and a dynamic frame with the eyebrows
raised and the mouth slightly open. The forehead and mouth re-
gions are assigned appropriately lower confidences.

Ideally we want the performance flow graph to be sparse. Besides
temporally adjacent poses, dynamic poses should only connect to
similar static poses and edges should be evenly distributed over time
to avoid accumulation of drift. We propose an iterative greedy vot-
ing algorithm based on the per-region confidence measure to iden-
tify good edges. The confidence of correspondence between the dy-
namic frames and any region of any static facial scan can be viewed
as acurve over time (depicted in Fig. 5). In each iteration we iden-
tify the maximum confidence value over all regions, al scans, and
al frames. We add an edge between the identified dynamic pose
and static pose to the graph. We then adjust the recorded confidence
of the identified region by subtracting a hat function scaled by the
maximum confidence and centered around the maximum frame, in-
dicating that the sel ected edge has been accounted for, and temporal

= Forehead
0.6 = Mouth

0.4

conmnaence

0.2

L 1 1 1 1
200 250 300 350 400
frame number

I L
0 50 100 150

10 70 130 180 270 320

Figure 5: A plot of the per-region confidence metric over time.
Higher numbers indicate greater correlation between the dynamic
frames and a particular static scan. The cyan curve represents the
center forehead region of a brows-raised static scan which is ac-
tive throughout the later sequence. The green curve represents the
mouth region for an extreme mouth-open scan which is active only
when the mouth opensto its fullest extent. The dashed linesindicate
the timing of the sampled frames shown on the bottom row.

neighbors partly so. All other regions are adjusted by subtracting
similar hat functions, scaled by the (non-maximal) per-region con-
fidence of theidentified flow. This suppresses any other regions that
are satisfied by the flow. The slope of the hat function represents a
loss of confidence as this flow is combined with adjacent dynamic-
to-dynamic flows. We then iterate and choose the new highest con-
fidence value, until all confidence valuesfall below athreshold. The
two parameters (the slope of the hat function and the final thresh-
old value) provide intuitive control over the total number of graph
edges. We found a reasonable hat function faloff to be a 4% re-
duction for every temporal flow and a threshold value that is 20%
of the initial maximum confidence. After constructing the graph,
a typica 10-20 second performance flow graph will contain 100-
200 edges between dynamic and static poses. Again, as the change
between sequentia frames is small, we preserve all edges between
neighboring dynamic poses.

After selecting the graph edges, final HD resolution optical flows
are computed for all active cameras and for all retained graph edges.
We directly load video frames using nVidia's h264 GPU decoder
and feed them to the FlowLib implementation of GPU-optical flow
[Werlberger 2012]. Running on a Nvidia GTX 680, computation
of quarter resolution flows for graph construction take less than one
second per flow. Full-resolution HD flows for dynamic-to-dynamic
images take 8 seconds per flow, and full-resolution flows between
static and dynamic images take around 23 seconds per flow due to
a larger search window. More sophisticated correspondence esti-
mation schemes could be employed within our framework, but our
intention is that the framework be agnostic to this choice and ro-
bust to imperfections in the pairwise correspondences. After com-
puting optica flows and confidences, we synchronize al the flow
sequences to a primary camera by warping each flow frame for-
ward or backward in time based on the sub-frame synchronization
offsets between cameras.

We claim that an approximate performance flow graph constructed
in this manner is more representative of the complete set of possible
correspondences than previous methods that take an all-or-nothing
approach to pair selection, while still employing a number of opti-
ca flow computations on the same order as previous methods (i.e.
temporal neighbors plus additional sparse image pairs).
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5 Fully Coupled Performance Tracking

The performance flow graph is representative of al the constraints
we could glean from 2D correspondence analysis of the input im-
ages, and now we aim to put those constraints to work. We formu-
late an energy function in terms of the 3D vertex positions of the
artist mesh asit deforms to fit all of the dynamic and static posesin
the performance flow graph in a common head coordinate system,
aswell asthe associated head-to-world rigid transforms. We collect
thefree variablesinto avector 1= (xP;Rp;tpjp2 D[ S;i 2 V),
where xP represents the 3D vertex position of vertex i at pose p
in the common head coordinate system, R, and t, represent the
rotation matrix and translation vector that rigidly transform pose p
from the common head coordinate system to world coordinates, D
isthe set of dynamic poses, S is the set of static poses, and V isthe
set of mesh vertices. The energy function is then:

X X
E(’_‘) = (ECOrr + Eggrr)+ ’_‘ JFPJE
(Piq)2F 2D[ S
p:q X - . p . -
+0 JFDJE\?vrap + UFgjEground; (1)
p2S

shape

where F isthe set of performance flow graph edges, F is the sub-
set of edges connecting to pose p, and g is the ground (neutral)
static pose. This function includes:

[ dense correspondence constraints ERJ;, associated with the
edges of the performance flow graph,

0 shape regularization terms EF, _  relating the differential
shape of dynamic and static poses to their graph neighbors,

L) “shrink wrap” terms E 5, to conform the static poses to the
surface of the static scan geometries,

1 afinal grounding term E grouna to prefer the vertex positions
inaneutral poseto be closeto the artist mesh vertex positions.

We detail these terms in sections 5.2 - 5.5. Note we do not em-
ploy astereo matching term, allowing our technique to be robust to
small synchronization errors between cameras. As the number of
poses and correspondences may vary from one dataset to another,
the summations in (1) contain balancing factors (to the immediate
right of each [J) in order to have comparable total magnitude (pro-
portional to jF j). The terms are weighted by tunable term weights
0, DJand [, which in all examples we set equal to 1.

5.1 Minimization by Lazy DDMS-TRWS

In contrast to previous work, we consider the three-dimensional
coupling between all termsin our formulation, over al dynamic and
static poses simultaneously, thereby obtaining arobust estimate that
gracefully fills in missing or unreliable information. This presents
two major chalenges. First, the partial matches and loops in the
performance flow graph preclude the use of straightforward mesh
propagation schemes used in previous works. Such propagation
would produce only partial solutions for many poses. Second (as a
result of thefirst) we lack a completeinitial estimate for traditiona
optimization schemes such as Levenberg-Marquadt.

To address these challenges, we employ an iterative scheme that
admits partial intermediate solutions, with pseudocode in Algo-
rithm 1. As some of the terms in (1) are data-dependent, we
adapt the outer loop of Data Driven Mean-Shift Belief Propagation
(DDMSBP) [Park et a. 2010], which models the objective function
in each iteration as an increasingly-tight Gaussian (or quadratic)
approximation of the true function. Within each DDMS loop, we

use Gaussian Tree-Reweighted Sequential message passing (TRW-
S) [Kolmogorov 2006], adapted to allow the terms in the model to
be constructed lazily as the solution progresses over the variables.
Hence we cal our scheme Lazy DDMS-TRWS. We define the or-
dering of the variables to be pose-major (i.e. visiting al the vertices
of one pose, then all the vertices of the next pose, etc.), with static
poses followed by dynamic poses in temporal order. We decom-
pose the Gaussian belief as a product of 3D Gaussians over vertices
and poses, which admits a pairwise decomposition of (1) as a sum
of quadratics. We denote the current belief of a vertex i for pose p
as xP with covariance 07 (stored as inverse covariance for conve-
nience), omitting the i subscript to refer to al vertices collectively.
We detail the modeling of the energy terms in sections 5.2 - 5.5,
defining y¥ = RpxP + t, as shorthand for world space vertex
position estimates. We iterate the DDMS loop 6 times, and iterate
TRW-S until 95% of the vertices converge to within 0.01mm.

Algorithm 1 Lazy DDMS-TRWS for (1)

8pi 1 (19)" 0.
for DDMS outer iterations do
/I Reset the model:
8P q - Ecorrr Eshape' E\F/)vrap
for TRW-Sinner iterations do
/I Major TRW-Sloop over poses:
for eachp2 D[ S inorder of increasing o(p) do
/I Update model where possible:
for each QJ(P q) 2 F do
(P)"" 8 0 and E&J., undefined then
E&‘,‘rr model fit using (2) in section 5.2.
if (19)'" 8 0and E3,, undefined then
Ed. mode fit using (2) in section 5.2.
if (UP)-' 6 0and Efrap undefined then
Efrap  model fit using (8) in section 5.4.
if O(p:qy2r (%) '8 0and EY, ., undefined then
Efhape  model fit using (5) in section 5.3.
/I Minor TRW-Sloop over vertices:
Pass messages based on (1) to update xP; (71P) '
Update Rp; tp asin section 5.6.
/I Reverse TRW-S ordering:
o(s) kD[ Sk+ 10 0(s).

undefined (effectively 0).

5.2 Modeling the Correspondence Term

The correspondence term in (1) penalizes disagreement between
optical flow vectors and projected vertex locations. Suppose we
have a 2D optical flow correspondence field between poses p and q
in (roughly) the same view c. We may establish a 3D relationship
between x? and x; implied by the 2D correspondence field, which
we model as a quadratic penalty function:
X

(x 0 xP O f§q)TF§q(x? 0 xP o fé:q); 2)

c2C
i2v

pa - 1
Ecorr - ﬁ

where C is the set of camera viewpoints, and f§q; F §q are respec-

tively the mean and precision matrix of the per|1alty, ‘which we es-

timate from the current estimated positions as follows. We first
project Y into the image plane of view c of pose p. We then warp
the 2D image position from view ¢ of pose p to view c of pose q
using the correspondence field. The warped 2D position defines a
world-space view ray that the same vertex i ought to lie on in pose
g. We transform this ray back into common head coordinates (via
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[tq, Rg) and pendlize the squared distance from x{ to this ray.
Letting r§q represent the direction of this ray, thisyields:
|

f{gq = (10 r?ququ)(RcT;(Cg Utg) U X—F)! (3)

where cg is the nodal point of view ¢ of poseq, and rgq = Rqdgq
| I

with dpq the world-space direction of the ray in view ¢ of pose

|

q through the 2D image plane point f 54[Ps(¥F)] (where square

brackets represent bilinearly interpolated sampling of afield or im-

age), f 5q the optical flow field transforming an image-space point

from view ¢ of pose p to the corresponding point in view ¢ of pose

g, and P;(x) the projection of a point x into the image plane of

view c of pose p (which may differ somewhat from pose to pose).

If we were to use the squared-distance-to-ray penalty directly, F §q
I

would be | U riqriq", which is singular. To prevent the problem

from being ill-conditioned and also to enable the use of monocular
performance data, we add a small regularization term to produce
a non-singular penalty, and weight the penalty by the confidence
of the optical flow estimate. We also assume the optical flow field
is localy smooth, so a large covariance (I inversely influences
the precision of the model, whereas a small covariance Lip does
not, and weight the model accordingly. Intuitively, this weighting
causes information to propagate from the ground term outward via
the correspondencesin early iterations, and blends correspondences
from all sourcesin later iterations. All together, thisyields:

Fa= min(1; det(1?) SV §alPS(yP)I( rfarfa™ 1) (4)

where V§ is a soft visibility factor (obtained by blurring a binary
!

vertex visibility map and modulated by the cosine of the angle be-

tween surface norma and view direction), [, is the confidence

field associated with the correspondence field f 5, and Llis a small

regularization constant. We use det([1)"'=® as a scalar form of
precision for 3D Gaussians.

5.3 Modeling the Differential Shape Term

The shape termin (1) constrains the differential shape of each pose
to a spatialy varying convex combination of the differential shapes
of the neighboring poses in the performance flow graph:

ORI (5)

EPape =

shape
P(i:i)ZE
) ) Pq
P = 19 D9+ | gipqrzr Wh (X D X7 ©)
ij ) Pq )
o+ ai(pa2F Wij
pa,,,Pa
WW
Pq — i .
W= e (@)
ij Wipq + ijq

where E is the set of edges in the geometry mesh, wPd =
det(ig  coc F§q+ |=iap)1=3 (which is intuitively the strength of
the relationship between poses p and q due to the correspondence
term), g denotes the artist mesh vertex positions, and [lis a small
regularization constant. The weights wP9 additionally enable triv-
ial synthesis of high-resolution reflectance maps for each dynamic
frame of the performance by blending the static pose data.

5.4 Modeling the Shrink Wrap Term

The shrink wrap term in (1) penalizes the distance between static
pose vertices and the raw scan geometry of the same pose. We

model this as a regularized distance-to-plane penalty:

X
Elrap = (xP LdP)'gP(nPnf"+ )(xP L1 dP);  (8)
i2v

where (nf; dP) are the normal and centroid of a plane fitted to the
surface of the static scan for pose p close to the current estimate
xP in common head coordinates, and gf is the confidence of the
planar fit. We obtain the planar fit inexpensively by projecting y?
into each camera view, and sampling the raw scan surface via a
set of precomputed rasterized views of the scan. (Alternatively, a
3D search could be employed to obtain the samples.) Each surface
sample (excluding samples that are occluded or outside the raster-
ized scan) provides a plane equation based on the scan geometry
and surface normal. We let n? and dP be the weighted average
values of the plane equations over all surface samples:

X
nf = ! E?Rgﬁf,[Pf,(yj’)] (normalized); 9)
c2C
X HiaX .
df= 1§ LERp(Q5IPR(YP)I )i (10)
c2C c2C
1 X
o = min(lidet(17) 3) 1§ (11)
c2C l

where (Ag; 33) are the world-space surface normal and position
images of the rasterized scans, and ! § = 0if the vertex is occluded

in view c or lands outside of the raslterized scan, otherwise ! § =
I
vh exp(Dkag[Pg(yf)] | y,f’kz).
|

5.5 Modeling the Ground Term

The ground term in (1) penalizes the distance between vertex po-
sitions in the ground (neutral) pose and the artist mesh geometry:

b
Eground = @(? O Rggl o, (12)

i2Vv

where g; is the position of the vertex in the artist mesh. This term
is simpler than the shrink-wrap term since the pose vertices are in
one-to-one correspondence with the artist mesh vertices.

5.6 Updating the Rigid Transforms

We initialize our optimization scheme with all (0F) "= 0(and
henceall xP moot), fully relying on the lazy DDMS-TRWS scheme
to propagate progressively tighter estimates of the vertex positions
xP throughout the solution. Unfortunately, in our formulation the
rigid transforms (R;tp) enjoy no such treatment as they aways
occur together with xP and would produce non-quadratic terms
if they were included in the message passing domain. There-
fore we must initialize the rigid transforms to some rough ini-
tial guess, and update them after each iteration. The neutral pose
is an exception, where the transform is specified by the user (by
rigidly posing the artist mesh to their whim) and hence not up-
dated. In all our examples, the initial guess for all poses is sim-
ply the same as the user-specified rigid transform of the neutral
pose. We update (Rp;t,) using a simple scheme that aligns the
neutral artist mesh to the current result. Using singular value
decqmpositiog, we compute the closesté;gid transform minimiz-
ing  ,y MitRpgi + tp 0 RpxP 1,7, where r; is a rigidity
weight value (high weight around the eye sockets and temples, low
weight elsewhere), gi denotes the artist mesh vertex positions, and
(Rl; th) isthe previous transform estimate.
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5.7 Accelerating the Solution Using Keyframes

Minimizing the energy in (1) over the entire sequence requires mul-
tiple iterations of the TRW-S message passing algorithm, and mul-
tiple iterations of the DDMS outer loop. We note that the perfor-
mance flow graph assigns static-to-dynamic flows to only a sparse
subset of performance frames, which we call keyframes. Corre-
spondences among the spans of frames in between keyframes are
reliably represented using concatenation of tempora flows. There-
fore to reduce computation time we first miminize the energy at
only the keyframes and static poses, using concatenated temporal
flowsin between keyframes. Each iteration of this reduced problem
is far cheaper than the full problem, so we may obtain a satisfac-
tory solution of the performance keyframes and static poses more
quickly. Next, we keep the static poses and keyframe poses fixed,
and sol ve the spans of in-between frames, omitting the shrink-wrap
and grounding terms as they affect only the static poses. This sub-
sequent minimization requires only a few iterations to reach a sat-
isfactory result, and each span of in-between frames may be solved
independently (running on multiple computers, for example).

6 Handling Arbitrary lllumination and Motion

Up to now, we have assumed that lighting and overall head motion
in the static scans closely matches that in the dynamic frames. For
performances in uncontrolled environments, the subject may move
or rotate their head to face different cameras, and lighting may be
arbitrary. We handle such complex cases by taking advantage of
the 3D geometry and relightable reflectance maps in the static scan
data. For every 5" performance frame, we compute a relighted ren-
dering of each static scan with roughly similar rigid head motion
and lighting environment as the dynamic performance. These ren-
derings are used as the static expression imagery in our pipeline.
The rigid head motion estimate does not need to be exact as the
optical flow computation is robust to a moderate degree of mis-
dignment. In our results, we (roughly) rigidly posed the head by
hand, though automated techniques could be employed [Zhu and
Ramanan 2012]. We a so assume that a HDR light probe measure-
ment [Debevec 1998] exists for the new lighting environment, how-
ever, lighting could be estimated from the subject’s face [Valgaerts
et al. 2012] or eyes[Nishino and Nayar 2004].

The complex backgroundsin real-world uncontrolled environments
pose a problem, as optical flow vectors computed on background
pixels close to the silhouette of the face may confuse the correspon-
dence term if the current estimate of the facial geometry slightly
overlaps the background. This results in parts of the face “stick-
ing” to the background as the subject’s face turns from side to side
(Fig. 6). To combat this, we weight the correspondence confidence
field by a simple soft segmentation of head vs. background. Since
head motion is largely rigid, wefit a 2D affine transform to the op-
tical flow vectors in the region of the current head estimate. Then,
we weight optical flow vectors by how well they agree with the
fitted transform. We also assign high weight to the region deep
inside the current head estimate using a simple image-space ero-
sion algorithm, to prevent large jaw motions from being discarded.
The resulting soft segmentation effectively cuts the head out of the
background whenever the head is moving, thus preventing the opti-
cal flow vectors of the background from polluting the edges of the
face. When the head is not moving against the background the seg-
mentation is poor, but in this case the optical flow vectors of the
face and background agree and pollution is not damaging.

(a) (b) (€ (d)

Figure 6: (a, b) Two frames of a reconstructed performance in
front of a cluttered background, where the subject turns his head
over the course of ten frames. The silhouette of the jaw “ sticks’
to the background because the optical flow vectors close to the jaw
are stationary. (c, d) A simple segmentation of the optical flow field
to exclude the background resolves the issue.

7 Results

We ran our technique on severa performances from three differ-
ent subjects. Each subject had 30 static facial geometry scans cap-
tured before the performance sessions, though the performance flow
graph construction often employs only a fraction of the scans. An
artist produced a single face mesh for each subject based on their
neutral static facial scan.

7.1 Performances Following Static Scan Sessions

We captured performances of three subjects directly following their
static scan sessions. The performances were recorded from six
camera views in front of the subject with a baseline of approxi-
mately 15 degrees. Our method produced the performance anima-
tion results shown in Fig. 19 without any further user input.

7.2 Performances in Other Locations

We captured a performance of a subject using four consumer HD
video cameras in an office environment. An animator rigidly posed
ahead mode! roughly aligned to every 5™ frame of the performance,
to produce the static images for our performance flow graph. Im-
portantly, this rigid head motion does not need to be very accurate
for our method to operate, and we intend that an automated tech-
nique could be employed. A selection of video frames from one of
the viewsis shown in Fig. 7, along with renderings of the results of
our method. Despite the noisy quality of the videos and the smaller
size of the head in the frame, our method is able to capture stable
facial motion including lip synching and brow wrinkles.

7.3 High-Resolution Detail Transfer

After tracking a performance, we transfer the high-resolution re-
flectance maps from the static scans onto the performance result.
As all results are registered to the same UV parameterization by
our method, the transfer is a simple weighted blend using the cross-
correlation-based confidence weights wP? of each vertex, interpo-
lated bilinearly between vertices. We also compute val ues for wP9
for any dynamic-to-static edge pq that was not present in the per-
formance flow graph, to produce weights for every frame of the
performance. This yields detailed reflectance maps for every per-
formance frame, suitable for redlistic rendering and relighting. In
addition to transferring reflectance, we also transfer geometric de-
tails in the form of a displacement map, alowing the performance
tracking to operate on a medium-resolution mesh instead of the
full scan resolution. Fig. 8 compares transferring geometric details
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Figure 7: A performance captured in an office environment with uncontrolled illumination, using four HD consumer video cameras and
seven static expression scans. Top row: a selection of frames from one of the camera views. Middle row: geometry tracked using the
proposed method, with reflectance maps automatically assembled from static scan data, shaded using a high-dynamic-range light probe. The
reflectance of the top and back of the head were supplemented with artist-generated static maps. The eyes and inner mouth are rendered as
black as our method does not track these features. Bottom row: gray-shaded geometry for the same frames, from a novel viewpoint. Our
method produces stable animation even with somewhat noisy video footage and significant head motion. Dynamic skin details such as brow
wrinkles are transferred from the static scans in a manner faithful to the video footage.

(@ (b) ()

Figure 8: High-resolution details may be transferred to a medium-
resolution tracked model to save computation time. (a) medium-
resol ution tracked geometry using six views. (b) medium-resolution
geometry with details automatically transferred from the high-
resolution static scans. (c) high-resolution tracked geometry. The
transferred details in (b) capture most of the dynamic facial details
seenin (c) at a reduced computational cost.

from the static scans onto a medium-resol ution reconstruction to di-
rectly tracking a high-resolution mesh. Asthe high-resolution solve
is more expensive, we first perform the medium-resolution solve
and use it to prime the DDMS-TRWS belief in the high-resolution
solve, making convergence morerapid. In all other results, we show
medium-resolution tracking with detail transfer, as the results are
satisfactory and far cheaper to compute.

Figure 9: Results using only a single camera view, showing the last
four frames from Fig. 7. Even under uncontrolled illumination and
significant head motion, tracking is possible from a single view, at
somewhat reduced fidelity.

7.4 Monocular vs. Binocular vs. Multi-View

Our method operates on any number of camera views, producing
a result from even a single view. Fig. 9 shows results from a sin-
gle view for the same uncontrolled-illumination sequence as Fig.
7. Fig. 10 shows the incremental improvement in facia detail for
a controlled-illumination sequence using one, two, and six views.
Our method is applicable to a wide variety of camera and lighting
setups, with graceful degradation as less information is available.

7.5 Influence of Each Energy Term

The core operation of our method is to propagate a known facial
pose (the artist mesh) to a set of unknown poses (the dynamic
frames and other static scans) via the ground term and correspon-
dence terms in our energy formulation. The differential shape term
and shrink wrap term serve to regularize the shape of the solution.
We next explore the influence of these terms on the solution.
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Figure 10: Example dynamic performance frame reconstructed
from (a) one view, (b) two views and (c) six views. Our method
gracefully degrades as less information is available.

Figure 11: The artist mesh is non-rigidly registered to each of the
other static expression scans as a byproduct of our method. The
registered artist mesh is shown for a selection of scans from two
different subjects. Note the variety of mouth shapes, all of which
are well-registered by our method without any user input.

Correspondence Term The correspondence term produces a
consistent parameterization of the geometry suitable for texturing
and other editing tasks. As our method computes a coupled solu-
tion of performance frames using static poses to bridge larger tem-
poral gaps, the artist mesh is non-rigidly registered to each of the
static scans as a byproduct of the optimization. (See Fig. 11 for ex-
amples.) Note especially that our method automatically produces a
complete head for each expression, despite only having static facial
scan geometry for the frontal face surface. Asshownin Fig. 12, this
consistency is maintained even when the solution is obtained from
adifferent performance. Fig. 13 illustrates that the use of multiple
static expression scans in the performance flow graph produces a
more expressive performance, with more accentuated facial expres-
sion features, as there are more successful optical flow regions in
the face throughout the performance.

Differential Shape Term In our formulation, the differentia
shape of a performance frame or poseistied to ablend of its neigh-
bors on the performance flow graph. This allows details from mul-
tiple static poses to propagate to related poses. Even when only one

Figure 12: Top row: neutral mesh with checker visualization of tex-
ture coordinates, followed by three non-rigid registrations to other
facial scans as a byproduct of tracking a speaking performance.
Bottom row: the same, except the performance used was a series
of facial expressions with no speaking. The non-rigid registration
obtained from the performance-graph-based tracking is both con-
sistent across expressions and across performances. Note, e.g. the
consistent locations of the checkers around the contours of the lips.

static pose is used (i.e. neutral), allowing temporal neighbors to in-
fluence the differential shape provides temporal smoothing without
overly restricting the shape of each frame. Fig. 13 (c, d) illustrates
the loss of detail when temporal neighbors are excluded from the
differential shape term (compareto a, b).

Shrink Wrap Term The shrink wrap term conforms the static
poses to the raw geometry scans (Fig. 14). Without thisterm, subtle
details in the static scans cannot be propagated to the performance
result, and the recovered static poses have less fidelity to the scans.

7.6 Comparison to Previous Work

We ran our method on the data from [Beeler et al. 2011], using their
recovered geometry from the first frame (frame 48) as the “artist”
mesh in our method. For expression scans, we used the geome-
try from frames 285 (frown) and 333 (brow raise). As our method
makes use of the expression scans only viaimage-space operations
on camera footage or rasterized geometry, any point order infor-
mation present in the scans is entirely ignored. Therefore in this
test, it is as if the static scans were produced individually by the
method of [Beeler et al. 2010]. We constructed a simple UV pro-
jection on the artist mesh for texture visualization purposes, and
projected the video frames onto each frame’'s geometry to produce a
per-frame UV texture map. To measure the quality of texturealign-
ment over the entire sequence, we computed the temporal variance
of each pixel in the texture map (shown in Fig.15 (a, b)), using
contrast normalization to disregard low-frequency shading varia-
tion. The proposed method produces substantially lower temporal
texture variance, indicating a more consistent alignment throughout
the sequence, especially around the mouth. Examining the geome-
try in Fig.15 (c-f), the proposed method has generally comparable
quality as the previous work, with the mouth-closed shape recov-
ered more faithfully (which is consistent with the variance analy-
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Figure 13: Using multiple static expressions in the performance
flow graph produces more detail than using just a neutral static
expression. Multiple static expressions are included in the perfor-
mance flow graph in (a, ¢), whereas only the neutral expression is
includedin (b, d). By including temporal neighbors and static scans
in determining the differential shape, details from the various static
scans can be propagated throughout the performance. Differential
shapeis determined by the static expression(s) and temporal neigh-
borsin (a, b), whereas temporal neighbors are excluded from the
differential shapetermin (c, d). Note the progressive loss of detail
in e.g. the brow region from (a) to (d).

sis). We also compared to [Klaudiny and Hilton 2012] in a similar
manner, using frame O as the artist mesh, and frames 25, 40, 70,
110, 155, 190, 225, 255 and 280 as static expressions. Again, no
point order information is used. Fig. 16 again shows an overall
lower temporal texture variance from the proposed method.

7.7 Performance Timings

We report performance timings in Fig. 17 for various sequences,
running on a 16-core 2.4 GHz Xeon E5620 workstation (some oper-
ations are multithreaded across the cores). All tracked meshes have
65 thousand vertices, except Fig. 8(c) and Fig. 15 which have one
million vertices. We report each stage of the process: “ Graph” for
the performance graph construction, “Flow” for the high-resolution
optical flow calculations, “Key” for the performance tracking solve
on key frames, and “Tween” for the performance tracking solve
in between key frames. We mark stages that could be parallelized
over multiple machines with an asterisk (*). High-resolution solves
(Fig. 8(c) and Fig. 15) take longer than medium-resolution solves.
Sequences with uncontrolled illumination (Fig. 7 and Fig. 9) take
longer for the key frames to converge since the correspondence ty-
ing the solution to the static scans has lower confidence.

7.8 Discussion

Our method produces a consistent geometry animation on an artist-
created neutral mesh. The animation is expressive and lifelike, and
the subject is free to make natural head movements within a cer-
tain degree. Fig. 18 shows renderings from such a facial perfor-
mance rendered using advanced skin and eye shading techniques
as described in [Jimenez et al. 2012]. One notable shortcoming of
our performance flow graph construction algorithm is the neglect
of eye blinks. This results in a poor representation of the blinks
in the final animation. Our method requires one artist-generated
mesh per subject to obtain results that are immediately usable in
production pipelines. Automatic generation of this mesh could
be future work, or use existing techniques for non-rigid registra-
tion. Omitting this step would still produce a result, but would re-
quire additional cleanup around the edges as in e.g. [Becler et al.
2011][Klaudiny and Hilton 2012].
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(d)

(e)

Figure 14: The shrink wrap term conforms the artist mesh to the
static scan geometry, and also improves the transfer of expressive
details to the dynamic performance. The registered artist mesh is
shown for two static posesin (a) and (b), and a dynamic pose that
borrows brow detail from (a) and mouth detail from (b) is shown in
(c). Without the shrink wrap term, the registration to the static poses
suffers (d, €) and the detail transfer to the dynamic performanceis
less sucessful (f). Fine-scale details are still transferred via dis-
placement maps, but medium-scale expressive details are | ost.

(f)

8 Future Work

One of the advantages of our technique is that it relates a dynamic
performance back to facia shape scans using per-pixel weight
maps. |t would be desirable to further factor our results to cre-
ate multiple localized blend shapes which are more semantically
meaningful and artist friendly. Also, our algorithm does not explic-
itly track eye or mouth contours. Eye and mouth tracking could
be further refined with additional constraints to capture eye blinks
and more subtle mouth behavior such as “sticky lips’ [Alexander
et al. 2009]. Another useful direction would be to retarget perfor-
mances from one subject to another. Given a set of static scans
for both subjects, it should be possible to clone one subject’s per-
formance to the second subject as in [Seol et al. 2012]; providing
more meaningful control over this transfer remains a subject for
future research. Findly, as our framework is agnostic to the par-
ticular method employed for estimating 2D correspondences, we
would like to try more recent optical flow algorithms such as the
top performers on the Middlebury benchmark [Baker et al. 2011].
Usefully, the quality of our performance tracking can be improved
any time that an improved optical flow library becomes available.
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Figure 15: Top row: Temporal variance of contrast-normalized
texture (fal se color, where blueis lowest and red ishighest), with (a)
the proposed method and (b) the method of [ Beeler et al. 2011]. The
variance of the proposed method is substantially lower, indicating a
more consistent texture alignment throughout the sequence. Bottom
row: Geometry for frames 120 and 330 of the sequence, with (c, d)
the proposed method and (e, f) the prior work.
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Figure 16: Temporal variance of contrast-normalized texture (false
color, where blueislowest and red is highest), with (a) the proposed
method and (b) the method of [Klaudiny et al. 2010]. Asin Fig.15,
the variance of the proposed method is generally lower.

providing the data for the comparisons in Figs. 15 and 16, respec-
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