

Details of the CFOR Planner
Jonathan Gratch

Institute for Creative Technologies
University of Southern California

ICT Technical Report
No: ICT TR 01.2002

Details of the CFOR Planner

Jonathan Gratch
University of Southern California Information Sciences Institute

4676 Admiralty Way, Marina del Rey, CA 90405
gratch@isi.edu

1 Overview
The CFOR planning system combines aspects of two sepa-
rate families of AI planning systems. On the one hand, it
builds on ideas for integrating planning and execution,
exemplified by Ambros-Ingerson and Steel’s IPEM system
(1988) and Golden et al.’s X11 planner. On the other
hand, it builds on plan adaptation strategies initially pro-
posed by Hayes (1975) and significantly elaborated by
Kambhampati and Hendler (1992). The resulting hybrid
supports planning, execution and replanning for environ-
ments where actions have duration and the world may
change in surprising ways. Additionally, CFOR is de-
signed to support planning in multi-agent environments,
and its characteristics are influenced by this requirement.

CFOR plans via constraint posting as in other classical
planners such as SNLP (McAllester and Rosenblitt, 1991).
Constraints are added in response to perceived problems or
ambiguities in the current plan. For example, if an action
in the plan has an unestablished precondition, this threat
may be resolved by identifying an existing action that es-
tablishes the effect (simple-establishment) or introducing a
new action (step-addition). Either “fix” introduces new
constraints to the current plan network. Simple-
establishment asserts a protection constraint that protect
the effect from the moment it is created until it is used by
the precondition, and binding constraints that ensure the
effect unifies with the open-precondition. Step-addition
posts a constraint to include the new action in addition to
the constraints posted by simple-establishment. Plan gen-
eration can be viewed as a sequential decision process
where the planner repeated analyzes the current plan net-
work and chooses on of a set of possible fixes.

CFOR adopts IPEM’s basic approach to integrating exe-
cution with this basic plan generation scheme. Besides
maintaining a plan network, the planner maintains a de-
clarative representation of the perceived state of the world
or current world description (CWD). The CWD allows the
planner to monitor the execution of tasks and detect any
surprising changes in the environment. The planner also
incorporates a set of execution “fixes” which may be inter-
leaved with plan generation fixes. The planner may initiate
tasks whose preconditions unify with the CWD (and are
not preceded by any uninitiated tasks), terminate tasks
who’s effects appear in the CWD, and fail tasks if some
pre-specified criterion is satisfied. As the CWD reflects
the perceived state of the world, it may change in ways not

predicted by the current plan network. For example, some
external process modifying the environment is detected by
changes to the CWD not predicted by the current set of
executing tasks. These changes may provide opportunities
(as when an unsatisfied precondition is unexpectedly ob-
served in the world). They may also threaten constraints in
the plan network, forcing the planner to modify the task
network to resolve them.

As mentioned, planning proceeds through a sequence on
planning decision. Sometimes these decisions are incon-
sistent, or inappropriate given a change in the environment.
To support plan repair, CFOR records the interdependen-
cies between planning decisions in a data structure, and
then uses this “dependency graph” to identify the decisions
that contribute problems in the current plans. This depend-
ency graph has been variously called a decision graph
(Hayes, 1975) and a validation structure (Kambhampati
and Heldler, 1992). CFOR uses this structure to propose
planning decisions that might be retracted. CFOR can in-
terleave decision retraction with its plan generation and
plan execution decisions.

2 Representations
The planner must be able to represent its beliefs about the
current state of the world, its goals, its plans, and possibly
its beliefs about the plans of other agents (as discussed
later). These representations are currently built on top of a
general reasoning system called Soar (Newell, 1990) that
uses a simple attribute value knowledge representation and
rule-based reasoning (although the planning algorithm is
not Soar-specific).

2.1 Representation of Plans
Plans are maintained in a data structure called a plan net-
work. The plan network consists of a set of tasks and a set
of constraints over tasks or their sub-components.

2.1.1 Tasks
Tasks (sometimes referred to as operators, actions, or
steps) represent the basic activities that an agent can per-
form in the world. Tasks are represented using the
STRIPS formalism (with slight modification). Tasks have
preconditions and effects, an execution state, a set of bind-
ing constraints, and some other more specialized fields that
will be described below. An example of a task definition
is:

mailto:gratch@isi.edu

defTask Move {?group ?start ?end ?route} {
:actual-name PERFORM_TACTICAL_MOVEMENT
:reference {{if type{?end} == BATTLE_POSITION}

then PS:Move_to_BP}
{if type{?end} != BATTLE_POSITION }

then PS:Move}}
:pre {{pre-at: at{?group ?start}}}
:add {{add-at: at{?group ?end}}}
:del {{del-at: at{?group ?start}}}
:bindings {{?start != ?end}}
:commands

{{:at-start resume{?group ?start}}
{:when-added ?route = route{?start ?end}}

}

Parameters: A task has a set of parameters (variables)
that define the task’s execution behavior. Parameters are
denoted by a text string preceded by a “?” symbol. The
parameters are a superset of the variables mentioned in the
preconditions and effects of the task. Traditionally, pa-
rameters only take on constants as their value. However, I
additionally allow parameters to refer to tree-structured
objects defined using attribute/value syntax. Some task-
definition fields may refer to these sub-components via
accessor functions. In the example above, the reference
field tests the “type” attribute of the “?end” parameter.
These accessor functions cannot be used in precondition
and effect definitions.

Preconditions: Preconditions describe what must (neces-
sarily) hold to successfully executed the tasks. The pre-
conditions of a task correspond to a logical conjunction of
predicates. When defining preconditions, each predicate is
preceded by a unique identifier (unique within the task
definition). This identifier is used when defining task de-
composition schema (as described below).

Effects: The consequences of executing a task are de-
scribed by an “add” list and “delete” list of predicates.
Informally, these lists describe facts that are made true or
false as a consequence of executing the tasks. As tasks
have duration, we must reconsider the standard STRIPS
semantics that assumes that effects occur instantaneously
(i.e., tasks define a discrete transition two quiescent states).
Under the STRIPS assumption, add and delete lists corre-
spond to logical conjunctive expression describing the dif-
ference between these two states. In the real world, effects
do not happen instantaneously, nor do they occur simulta-
neously. Another complication is that, though real-world
actions sometimes fail, we don’t want to model this explic-
itly (using something like a probabilistic representation
which adds complexity). This precludes a strictly logical
semantics of action effects.

As a consequence of these factors, I provide an alterna-
tive (informal) semantics for effects. The add list is a set of

predicates that (individually) will (1) be satisfied by the
CWD at some point during the execution of the task and
(2) persist until some other activity in the world negates
this fact. The delete list has the same semantics except that
the predicates are implicitly negated. There is no closed
world assumption.

A number of factors may prevent all of the effects of a
task from being simultaneously realized. Tasks may fail
causing only a subset of their effects to occur. Other si-
multaneously executing tasks may undo an effect during
the task’s execution. We allow multiple tasks to execute
simultaneously but the representation language cannot
generally express interactions between tasks (though Ped-
nault illustrates how to represent some interactions in Ped-
nault, 1986). If a task has different effects when other
tasks are executing simultaneously, the planner won’t
properly predict these conditional outcomes (but it can
react to them after the fact when the CWD changes in ways
not predicted by the planner).

Binding constraints: Tasks may contain a set of codesig-
nation or non-codesignation constraints. If two parameters
codesignate, then they must take on the same value. If
they non-codesignate, they cannot take on the same value.

Execution State: Each task instantiation in the plan net-
work has an execution state attribute that describes its cur-
rent execution status. Before a task executes it is in a
pending state. After it has been initiated, its state transi-
tions to executing, and after termination it becomes exe-
cuted.

When tasks fail it is often convenient to support some
form of handshaking between the planner and the executor.
For example, when the executor signals a failure condi-
tions, one may wish to explicitly send a command to abort
the task and place the executor in a coherent state. I sup-
port this type of reasoning via a two-step failure protocol.
A task failure is initiated via a failure signal, arising from
some domain-specific failure detector associated with the
task. At this point a task transitions into a failing state. At
this point, one can send failure-handling commands to the
execution system (see below). Subsequently, and again
initiated via a domain specific signal) tasks transition into a
failed state.

When a task transitions into a failed state, the planner
assumes that any effects that have not as yet been observed
in the CWD will never occur.

Primitive vs. Abstract: CFOR is a hierarchical planner.
Abstract tasks may be decomposed into partial sequences
of more primitive tasks. Primitive tasks are tasks that can-
not be further decomposed.

Commands: Commands are my own convention and are
not used in other planners. They support a variety of
sometimes used capabilities including procedural attach-
ment and run-time variables (Ambrose-Ingerson and Steel,
1988), and provide a more modular way to specify the ef-

fectors associated with task execution. Each command
specification includes (1) a time tag that specifies when the
command is to be executed, (2) an optional codesignation
specification that codesignates any result returned by the
command with some task parameter, and (3) the name of
the procedure to be called and the parameters it is to be
called with. Several time tags are currently implemented:

When-added: Indicates that the procedure should be
called whenever an instantiation of the task is inserted into
the plan network

At-start: Indicates that the procedure should be called
whenever a task is initiated

At-end: Indicates that the procedure should be called
whenever a task is terminated.

At-failure: Indicates that the procedure should be called
if the task transitions to a failing state.

After-failure: Indicates that the procedure should be
called if the task transitions to a failed state.

If multiple commands have the same time tag, their order
of execution is determined randomly, with the following
caveat: a command’s execution is deferred if some of its
parameters are unbound. This allows one to define a cas-
cade of commands where some commands generate bind-
ings for other commands and the planner automatically
determines a valid execution ordering. If a command has
unbound parameters that no other command generates
bindings for, an error results.

The following two fields do not effect the planner’s behav-
ior and only serve as input to a plan visualization tool as-
sociated with the CFOR Planner:

Actual-name: Some of the military domains we have im-
plemented provide quite long designators to refer to certain
tasks. To display tasks more succinctly, one can use a
short name when defining the task and specify another
“actual-name” that is to be used when communicating with
the execution system. If the actual-name field is omitted,
the actual-name defaults to the defined name.

Reference: The reference field is used to associate docu-
mentation information with tasks. Each reference refers to
a documentation filename and is preceded by the file type.
When prompted, this information is displayed by the plan
visualization tool. One can indicate that different informa-
tion should be displayed conditional on the value of task
parameters. In the above example, the reference field indi-
cates two possible postscript files to display depending on
the value of the “type” attribute of the ?end parameter.

2.1.2 Constraints
In addition to tasks, plans contain a number of constraints

of various types. As mentioned above, CFOR is a con-
straint-posting planner. Planning is seen as a process of
looking for possible violations of existing constraints
(threat detection) and asserting new constraints to resolve

possible violations (threat resolution). Constraint posting
planners also perform some limited inference on con-
straints (or constraint propagation) and consistency check-
ing (to look for possible constraint violations).

Ordering constraints: The planner can represent a partial
ordering relationship between tasks. Following standard
planning convention, an ordering constraint is a binary
relation between tasks. Asserting before(T1,T2) means
that task T1 occurs before task T2. Actually, things are a
little more complicated because tasks have duration and are
explicitly initiated and terminated. The constraint be-
fore(T1,T2) is interpreted to mean that task T1 will be ini-
tiated before task T2 is initiated (i.e., the start of T1 occurs
before the start of T2).

Note that this interpretation doesn’t prevent T1 and T2
from executing simultaneously. In other words, be-
fore(T1,T2) does not mean that task T1 ends before task T2
begins. I use a representational “trick” to express the later
statement. One can associate a dummy “end-of-task” task
with any given task in the plan network. Such dummy
tasks have no preconditions or effects and transition di-
rectly to an executed state whenever its associated task
terminates. Using this representation, the statement “T1
ends before T2 begins” is expressed as before(end-
of(T1),T2).

Ordering constraints are transitive: before(T1,T2) and
before(T2,T3) implies before(T1,T3). It is also assumed
that plans are acyclic. Therefore, a set of ordering con-
straints containing a cycle is considered inconsistent.

Supporting hierarchical planning further complicates the
picture. Abstract tasks may be decomposed into a partially
ordered sequence of more primitive tasks. This raises the
following question. Say that T1 and T2 are tasks, T1 is
before T2, and we decompose T1 into T1a and T1b where
T1a is before T1b. What, if any, ordering relations exist
between T1a and T2? What about T1b and T2? In the
current implementation I adopt the (overly) restricted as-
sumption used by IPEM. If T1 is before T2, then T2 and
any of its children must be initiated before T2 and any of
its children.

Binding Constraints: The plan network contains two
classes of binding constraints over variables in the plan
network. Codesignation constraint asserts an equality
relationship between a pair of variables. Non-
codesignation constraints assert an inequality relationship
between a pair of variables.

Protection Constraints and Causal Links: Interval pro-
tection constraints (IPCs) assert that the truth value of
some predicate must hold during the interval that occurs
between two tasks. For example IPC(T1, P(x,y), T2) cor-
responds to the constraint that the predicate P(x,y) must be
true in any state occurring between the initiation of task T1
and the initiation of task T2. As in ordering constraints, a
predicate may be protected from (to) the end of a task by
using dummy “end-of” tasks. So, IPC(T1, P(x,y), end-

of(T2)) asserts that P(x,y) is to be protected to the end of
task T2.

Most classical planning systems use the term causal link
to refer to protection constraints. However, Kambhampati
has noted that causal links are really a special case of IPCs
and that planners have need for using IPCs for reasons
other than protecting causal links. Following Kambham-
pati’s terminology, a causal link is a commitment to use a
particular effect of some task to satisfy a precondition of a
subsequent task. This commitment is subsequently pro-
tected with an interval protection constraint). In addition
to protecting causal links, the CFOR planner uses IPCs to
represent failure conditions for task (e.g., task T fail if P(x)
becomes false during its execution), and to represent con-
ditions on decomposition schema, as discussed below.

Hierarchy Relations: CFOR is a hierarchical planner.
Abstract tasks may be decomposed into a partial sequence
of more primitive tasks. Some hierarchical planners, such
as IPEM, remove abstracts tasks from the plan network as
they are decomposed. CFOR, however, retains abstract
tasks in the plan network. The subtask relation captures
the relationship between an abstract task and its descen-
dents.

2.2 Representation of Goals
Plans are constructed with the aim of achieving a set of
goals. The CFOR planner handles two basic classes of
goals: goals of achievement and maintenance goals.

Goals of Achievement: Most planning algorithms focus
on goals of achievement. The idea here is that a plan
should be a sequence of steps that transform the world into
one that satisfies some goal expression. In the CFOR
planner, as with most planning algorithms, the goal expres-
sion is a conjunction of predicates (e.g. on(Block-A,
Block-B) and clear (Block-A)). Following standard con-
vention, CFOR represents goals as a *goal* task within the
plan network. Ordering constraints are used to ensure that
this task is the last task in the network. The *goal* task is
a task with no effects and who’s preconditions correspond
to the desired goal state.

CFOR provides a mechanism for dynamically adding
and retracting goals in the plan network. The defGoal con-
struct allows one to specify specific conjuncts to add to the
goal expression under specific circumstances. It is our
intention to expand the syntax of the defGoal construct to
allow the creation of new *goal* tasks that can be ordered
at intermediate points in the plan. This generalization
would allow different goals to be achieved at qualitatively
different time in the plan. An example of the current goal
definition syntax is as follows:

defGoal handle-new-order {?me ?friend} {
:when {

(<state> ^my-name <?me>
^mental-state BORED
^friend <?friend>)}

:goal {{ at{?me MOVIES}
at{?friend MOVIES}}}

The defGoal expression has a name (handle-new-order), a
set of parameters (that correspond to the parameters listed
in the goal expression), a “when” expression, and a goal
expression. The “when” expression specifies a conjunction
of conditions which, when satisfied cause the goal expres-
sion to be added to the *goal* task, and when unsatisfied
cause the goal expression to be retracted. This expression
is formulated using the syntax of the Soar agent architec-
ture, but we will not go into the specific syntax of the when
expression at this point. The goal expression is a conjunc-
tion of predicates.

2.3 Representation of Current State
The plan network contains a representation of the current
(sensed) state of the world called the current world descrip-
tion (CWD). The CWD is a conjunction of predicates that
are assumed to currently hold in the environment. The
planner provides a construct to specify the meaning of
these predicates. The defGoal construct specifies how to
compute the truth value of predicates in terms of lower-
level symbols that are maintained by the interface between
the planning algorithm and the environment. An example
is:

defIO at {?group ?loc} {
:vars {

(<s> ^current-loc <cloc>)
(<cloc> ^group <?group> ^loc <?loc>)}

:test {{<?group> ^active-unit *yes*)}
:when-true {(write (crlf) <?group> | is at | <?loc>)}
:when-false {(write (crlf) <?group> | is not an active unit|)}

}

The example defines a predicate “at” with two variables,
group and location. The :vars are :test fields together de-
scribe a conjunction of attribute value tests that, when sat-
isfied, denote when the predicate “at(?group, ?loc)” holds.
If just the :vars field holds, the predicate is as asserted to
be false. The :when-true and :when-false allow certain
facts to be asserted in the interface or procedures to be
called (such as display text).

3 Modifying the Plan Network
The planner can modify the current plan network by add-
ing or retracting constraints via a set of “planning deci-
sions.” These decisions, for the most part, corresponding
to the standard operations of a partial-order planner (e.g.,
step-addition, conflict-resolution, etc.).

3.1 Task Decomposition
A plan is considered incomplete (threatened) if it contains
any abstract tasks that have not been specialized into a set
of primitive actions. The user may define a set of task-

decomposition schema that specify alternative ways of
specializing abstract tasks. A task may be specialized in
one of two ways, either by providing values for unbound
task parameters, or by breaking an abstract task into a par-
tially-ordered sequence of (more) primitive tasks. Either
of these possibilities are represented using the defRefine-
ment syntactical construct illustrated in the following two
examples:

defRefinementl CrossCarefully {
:task {Move{?group ?start ?end ?route}}

:conditions {
{:filter busy-road{?cross-street} :at-start step2}
{:test cross-streets-of{?route} == ?cross-street}}

:expansion {
{step1: Move{?group ?start ?intersection ?head}}
{step2:Look-both-ways{?group ?intersection}}
{step3: Move{?group ?intersection ?end ?tail}}}

:orderings {{step1 < step2} {step2 < step3}}
:links {

{step1:add-at == step3:pre-at}}
:commands {

{when-added
?intersection = intersect{?route ?cross-street}}

{:when-added
?head = route-head{?route ?intersection}}

{:when-added
?tail = route-tail{?route ?intersection}}}}

defRefinement FindRoute
:task {Move{?group ?start ?end ?route}}
:conditions {

{:unbound ?route}}
:bindings {{?route == OFF_ROAD}}

The first refinement breaks a move tasks down into a se-
quence of three subtasks. The second refinement special-
izes the Move tasks by assigning a value to one of its pa-
rameters. The defRefinement construct has the folowing
fields:

:task – This indicates the abstract tasks to which the re-
finement applies. It is a task name and a list of the task
parameters (which may be constants or variables). Only
abstract tasks that unify with the task field will be consid-
ered by this refinement

:conditions – Conditions further limit the applicability of
the refinement. The refinement is only considered if all of
its conditions are satisfied. Conditions come in several
types.

:filter conditions specify predicates that must be true
prior to the execution of the abstract task. For example,
the CrossCarefully refinement is only considered if the
current plan network indicates that the cross-street will be
busy when we get to the move task (In this sense, filter
conditions are like the :use-when conditions of NONLIN.)
When the refinement is executed, these filter conditions are

incorporated into the plan network as interval protection
constraints. One can also modulate the duration of this
protection constraint by using “at-start” and “at-end” modi-
fiers after the filter specification. In the CrossCarefully
example, the street must persist in being busy at least until
step 2 in the decomposition (Look-both-ways) is initiated.

:test conditions test the value of certain variables or
variable sub-components. One can test if the value of vari-
able equals (or does not equal) a constant or some other
variable. The refinement is only allowed if the variable is
bound and is consistent with the test.

:bound/:unbound conditions test if variables are bound
or unbound

:expansion – This field is where one specifies any sub-
tasks that the abstract is broken down into. Each task is
preceded with a unique identifier.

:orderings – This field specifies any ordering constraints
between subtasks in the expansion. The orderings are ex-
pressed using the unique identifiers mentioned in the ex-
pansion section

:links – This field is used to specify causal links between
subtasks in the expansion field. Recall that when defining
tasks, one must assign unique identifiers to precondition
and effects. The links field makes used of these identifiers.
For example, in the CrossCarefully refinement, the refine-
ment specifies that moving to the intersection (step 1) es-
tablishes the precondition of moving away from the inter-
section (step 3). More specifically, the effect named “add-
at” of step 1 should be used to establish the precondition
name “pre-at” of step 3.

:bindings – The bindings field allows one to imposing
binding constraints on variables mentioned in the refine-
ment. In the FindRoute refinement, a move task is special-
ized by asserting a binding constraint

:commands – Commands may be associated with refine-
ments in the same way they are associated with tasks.

3.2 Simple Establishment
For a plan to be complete, all preconditions must be estab-
lished by some effect of some other task in the plan. Sim-
ple establishment takes an effect that is already in the plan
network and uses it to establish some open precondition.
The effect must unify with the precondition. Performing
simple establishment introduces several constraints to the
plan network. It introduces codesignation constraints be-
tween the corresponding parameters in the effect and pre-
condition, and it creates an IPC that protects the truth-value
of the effect until the start of the precondition’s task.

3.3 Step Addition
Step addition is like simple-establishment, except that in-
stead of using an existing effect, it adds a new task to the

plan network to achieve the desired effect. Thus, in addi-
tion to the constraints added by simple establishment, it
also adds a new task instantiation to the plan network

3.4 Conflict Resolution
Three planning decisions, promotion, demotion, and

separation, are used to specialize away possible constraint
violations in the plan network. Since the plan network is
partial (there are partial orderings between tasks and partial
codesignations between variables), there are cases where
constraints in the plan network are possibly, but not
necessarily violated. Conflict resolution decisions
specialize the partial plan to try and insure that these
possible violations cannot happen. Specifically, conflict
resolution deals with possible violations of IPC constraints.
For example, say the plan contains a IPC that protects
predicate P(x) between step 1 and step 3. Say further that
step 2 asserts -P(y). Then depending on the ordering
constraint between the steps and the codesignation
constraints between x and y, there may or may not be a
violation of the protection constraint.

The promotion and demotion planning decisions try to
resolve the conflict by posting ordering constraints to move
step 2 before or after the protection interval, respectively.
Separation tries to resolve the potential conflict by adding
a non-codesignation constraint between x and y.
Currently, separation remains unimplemented.

3.5 Initiate Task
The interleaving of planning and execution is supported
through a set of execution related plan decisions that may
be interleaved with other planning decisions. Tasks have
duration and are explicitly initiated and terminated.

Only primitive tasks are explicitly initiated. Whenever a
primitive task is selected for initiation, all of its pending
ancestors are first initiated (and any “at-start” commands
associated with those ancestors are executed). Next, the
primitive task’s “at-start” commands are executed (if any),
its execution state is change to executing, and ordering
constraints are added to order the task before any pending
ones. Finally, the task is “locked in” to the plan network,
meaning that if the planning decision that introduced the
task is subsequently retracted (see below), the task remains
in the network as one can not undo the past.

There are several constraints on when a task can be initi-
ated. A primitive task is a candidate for initiation if the
following conditions hold:
(1) The task is pending.
(2) No pending task precedes it.
(3) All the task’s preconditions are established
(4) The task’s preconditions unify with the CWD.
(5) There is no pending effect of another task that could

clobber a desired effect of this task. An effect is
“pending” if it is an effect of an executing task that
does not yet unify with the CWD. An effect is “de-
sired” if it serves as an establisher of some precondi-
tion. (This prevents unintended negative interactions

between concurrently executing tasks.)
(6) There is no uninitiated ancestor of the task who’s pre-

conditions are unestablished or unsatisfied by the
CWD. Note that technically we should verify condi-
tions 1-5 for all of the ancestors but for efficiency I ig-
nore condition 5.

3.6 Terminate Task
When a task is initiated, its effects are individually unified
against the CWD. If an effect successfully unifies, it is
noted as having occurred and is tagged with the current
time. If all effects have been observed, the task is a candi-
date for termination. A task cannot be terminated unless
all of its subtasks have terminated.

When selected for termination, all of a task’s “at-end”
commands are executed and its execution state is changed
to executed. If the task has an “end-of-task” task associ-
ated with it (see the section on ordering constraints), the
end-of-task task’s execution state is also changed to exe-
cuted.

3.7 Initiate Fail Task
In the real-world, task execution occasionally fails. The
CFOR planners supports two failure modes for tasks; a
hand-shaking mode and a non-handshaking mode. In the
non-handshaking mode, a task is simply marked as failed,
as discussed in the next subsection. In the handshaking
mode, the task first transitions to a “failing” state and then
transitions to the failed state as described in the next sub-
section. The advantage of the handshaking approach is
that one can model the following behavior: (1) the planner
gets some feedback that indicates that the task is failing,
(2) the planner decides to fail the tasks and sends a mes-
sage to the controller to terminate the task and cleanup any
intermediate subprocesses, and (3) the planner receives an
acknowledgement that it has successfully terminated the
task execution.

Currently, task failure is initiated based on a signal com-
ing up from the executor that states if the task is failing or
has failed. It is a candidate to initiate failure on if the sig-
nal states the task is failing. It is a candidate to fail the task
if the signal states the task has failed. Alternatively, one
can associate maintenance conditions with tasks (IPCs that
span the duration of the task execution) and signal a failure
mode if the maintenance condition is violated. Currently
the representation syntax doesn’t support this alternative.

When this decision is executed, first the planner exe-
cutes any “at-failure” commands and changes the state of
the task to failing.

3.8 Fail Task
A task is a candidate for failure if the execution system
generates a “task failed” signal. Upon executing this plan-
ning decision, any “after-failure” commands are executed
and the task execution state is changed to “failed.” When a
task fails, some of its effects may not have occurred (they
do not unify with the CWD). Any effects that have not

occurred by the time the task has failed are assumed to
never occur. They are marked as “failed” and any causal
links they participate in are automatically retracted.

If an abstract task fails, any pending subtasks (and de-
pendent structure) are automatically retracted (see the sec-
tion on retracting refinements).

3.9 Handling Unexpected Events
The plan network can be seen as forming predictions about
the future state of the world. The CWD captures the cur-
rent perceived state of the world. The effects of currently
executing tasks form predictions about expected changes to
the CWD. Occasionally, the world will change in ways
that violated these expectations. For example, if tasks fail
or another agent manipulates the world without our knowl-
edge, certain facts may be added to the CWD that are not
added by currently executing tasks. Similarly, certain facts
may become false even though they are not deleted by cur-
rently executing tasks.

The planner has mechanisms that automatically detect
these deviations from expectation. When this occurs, the
planner offers a “handle-unexpected-event” decision for
consideration. If this decision is adopted, the planner cre-
ates a “unexpected-event” task who’s effects capture the
discrepancy. This task’s add effects correspond to any
unpredicted additions to the CWD and it’s delete effects
correspond to any unpredicted deletions. This task is given
an “executed” execution state and is ordered before any
pending tasks.

3.10 Retract Refinement
During the curse of planning, the planner may detect in-
consistencies between constraint in the plan network that
cannot be resolved by conflict resolution, or it may dis-
cover that there is no way to make further progress on the
plan. In this circumstance, the planner must retract one of
its planning decisions. CFOR differs from most planners
in that it can retract planning decisions not chronologically.
For example, it might add decision 1 then decision 2 then
retract decision 1 while leaving decision 2. CFOR uses a
dependency structure to understand which decisions lead to
which constraints and to understand the dependencies be-
tween decisions. This works somewhat like an assump-
tion-based truth maintenance system (ATMS). Decisions
can be thought of as assumptions. Whenever there is an
inconsistency, the planner identifies the set of decisions
contributing to the inconsistency. Each of these decisions
is a candidate for retraction.

If a decision is retracted, all of the constraints introduced
by the decision are removed from the plan network (except
those “locked-in” as discussed above). Additionally, all
decisions that depend on the retracted decision are addi-
tionally retracted, as well as their respective constraints.
For example, if an abstract task is retracted, all of the deci-
sions that specialized that task will also be retracted from
the plan network. The maintenance of this dependency
structure is described in the next section.

4 Dependency Graph
The dependency graph is used when retracting planning
decisions and serves two roles. First, it is used to identify
the dependencies between decisions, so when a decision is
retracted, the decisions that depend on that decision are
retracted as well. Second, it is used to track the dependen-
cies between constraints and decisions, so when a con-
straint violation is detected, the set of contributing deci-
sions may be identified.

4.1 Decision Dependencies
Dependencies are maintained between the planning deci-
sions that change the basic structure of the graph. Estab-
lishment decisions (simple or step-addition) depend on
whatever decision lead to the creation of the precondition
that they are establishing. Simple-establishment, further-
more, depends on the decision that led to the creation of
the establisher. Decomposition decisions depend on the
decision that led to the creation of the abstract task they are
decomposing. They also depend on the decisions that led
to the creation of whatever effects, or bound values they
test in their condition field. (I currently do not track this
later dependency.) Ordering decisions (promotion, demo-
tion) depend on whatever decision introduced the task that
threatened an IPC (though I also do not track this depend-
ency).

Decomposition decisions can create a lot of structure;
creating a set of subtasks and a set of establishment rela-
tions. To allow greater flexibility in plan repair, we actu-
ally model decomposition as a nested decision. Each
causal link that is created by the decomposition decision is
treated as a separate sub-decision that is dependent on the
main decision. This allows threatened causal links to be
retracted without retracting the whole decomposition.

4.2 Constraint Dependencies
Each time the planner must retract decisions (because of a
constraint violation or an inability to make further pro-
gress), the dependency graph is queried to identify the set
of decisions contributing to the problem. This involves
reasoning about the various constraints introduced by deci-
sions and how they interact. We discuss how this works in
the context of each possible event that could lead to a deci-
sion retraction. Note that it sufficient (for completeness) to
identify a superset of the decisions involved in the prob-
lem, but for search efficiency, this set should be minimal as
possible.

Open-precondition flaw: The planner will have to retract
some decision if there is an open precondition that cannot
be established. The decisions implicated in this flaw are
the decision that added the task associated with the pre-
condition, and any decisions that introduced binding con-
straints on any of the variables mentioned in the precondi-
tion. Note that, since codesignation constraints are transi-
tive, the fact that ?A equals ?B may involve a chain of

codesignation constraints, each introduced by some deci-
sion. All of these decisions are implicated.

Abstract-task flaw: If an abstract cannot be decomposed,
the decision that added the abstract task is implicated in the
failure.

IPC threat: An IPC threat arises when the effect of some
tasks violates an IPC. In this case, the decision that intro-
duced the IPC and the decision that introduced the threat-
ening task are both implicated.

Codesignation violation: A codesignation violation oc-
curs when two variables are constrained to both condesig-
nate and noncodesignate with each other. In this case, all
of the decisions that are involved in the codesignation and
noncodesignation of that variable are implicated.

Order-cycle: An order cycle occurs whenever there is a
loop in the ordering relation over tasks: e.g. before(A,B)
and before(B,A). As in codesignation constraints, we
have to consider the decisions involved in the transitive
computation of this cycle.

References
Ambros-Ingerson, J. A. and Steel, S. 1988. “Integrating
Planning, Execution and Monitoring,” in AAAI-88.
Bratman, M., Israel, D. and Pollack, M. 1988. “Plans and
resource-bounded practical reasoning,” Computational
Intelligence, 4, pp 349-355.
Cohen, P. and Levesque, H., 1990. “Intention is choice
with commitment,” Artificial Intelligence, 42(3).
Durfee, E. H., Kenny, P. G., and Kluge, K. C. 1997. Inte-
grated Permission Planning and Execution for Unmanned
Ground Vehicles. Proceedings of the First International
Conference on Autonomous Agents, pp. 348-354.
Firby, J. 1987. “An investigation into reactive planning in
complex domains,” In AAAI-87.
Georgeff, M. P., and Lansky, A. L. 1987. “Reactive rea-
soning and planning,” in AAAI-87, pp. 677-682.
Golden, K., Etzioni, O., and Weld, D. 1994. “Omnipotence
without Omniscience: Efficient Sensor Management for
Planning.” in AAAI-94, Seattle, WA.
Gratch, J. 1997. Task-decomposition planning for com-

6th mand decision-making, Conf on Computer Generated
Forces and Behavioral Representation.
Grosz, B., and Kraus, S. 1996. “Collaborative Plans for
Complex Group Action,” Artificial Intelligence, 86(2).
Hill, R., Chen, J., Gratch, G., Rosenbloom, P., and Tambe,
M. 1997. “Intelligent Agents for the Synthetic Battle-
field,” in AAAI-97/IAAI-97, pp. 1006-1012.
Kambhampati, S. and Hendler, J. 1992. A validation-
structure-based theory of plan modification and reuse.
Artificial Intelligence 55, pp 193-258.
Kautz, H. and Selman, B. 1996. “Pushing the Envelope:
Planning, Propositional Logic, and Stochastic Search,” in
AAAI-96, Portland, OR, pp. 1194-1201.

Knoblock, C. 1995. “Planning, executing, sensing, and
replanning for information gathering,” IJCAI-95
McAllester, D. and Rosenblitt, D. 1991. “Systematic
Nonlinear Planning,” in AAAI-91.
Minsky, M. 1985. The Society of Mind. Simon and Schuster
Newell, A. 1990. Unified Theories of Cognition. Harvard Press.
Pednault, E. P. D, 1986. Formulating Multiagent, Dynamic-
world Problems in the Classical Planning Framework. Reasoning
about Actions and Plans, Georgeff, M. and Lansky, L. (eds.).
Morgan Kaufmann Publishers, Inc.
Pollack, M.E., 1992. “The uses of plans,” Artificial Intel-
ligence, 57(1), pp 43-68.
Rickel, J. and Johnson, L. 1997. Intelligent tutoring in
virtual reality,” in Proc. of World Conf on AI in Education.
Traum, D. and Allen, J., 1994. Towards a formal theory of
repair in plan execution and plan recognition. Procedings
of UK planning and scheduling special interest group.
Tambe, M. 1997. “Agent Architectures for Flexible, Prac-
tical Teamwork,” in AAAI-97, pp. 22-28.
Wilensky, R. 1980. “Meta-Planning,” Proceedings AAAI-
80, Stanford, CA, pp. 334-336.
Wilkins D. E. and Myers, K. 1996. Asynchronous dy-
namic replanning in a multiagent planning architecture.
Advanced Planning Technology, Austin Tate, AAAI Press.
Wolverton, M. J. and desJardins, M. 1998. Controlling
Communication in Distributed Planning Using Irrelevance
Reasoning. Proceedings of the Fifteenth National Confer-
ence on Artificial Intelligence (AAAI98). Madison, WI.

