
Design Recommendations to Support
Automated Explanation and Tutoring

Dave Gomboc
Steve Solomon
Mark G. Core
H. Chad Lane

Michael van Lent

Institute for Creative Technologies
University of Southern California

13274 Fiji Way
Marina del Rey, CA, USA 90292

Keywords:

Automated Explanation, Automated Tutoring, Behavior, Computer-Generated Forces, Simulation

ABSTRACT: The after-action review is an essential component of military training exercises. The use of constructive
simulations for training poses a challenge when conducting such reviews, because behavior models are typically
designed to simulate satisfactorially, without explicit concern for the interrogation of synthetic entities afterward.
Ideally, users could obtain knowledge about not only the choices made by a simulator�’s behavior models, but also the
rationale for those choices. This requires a rich representation of behavioral knowledge within the software system.

We have integrated our explainable AI system with behavior models and log information from two simulation systems.
Selecting examples from these simulators, we identify areas for improvement to facilitate the automation of explanation
and tutoring.

1 Introduction
The after-action review (�“AAR�”) is an essential part of
any military training exercise, be it live training or
training via simulation. Reviews of exercises conducted
by way of constructive simulation1 pose a particular
challenge. Specifically, the introduction of synthetic
entities, often called computer-generated forces
(�“CGFs�”), controlled by a simulator�’s artificial
intelligence (�“AI�”) system, impedes the process of
understanding what happened, why it happened, and how
trainees could do better. U.S. Army Field Manual 25-101
on �“Battle Focused Training�” states:

�“The OPFOR2 can provide valuable feedback on the
training based on observations from their perspectives.
�…the OPFOR can provide healthy insights on:

 OPFOR doctrine and plans
 The unit�’s actions.
 OPFOR reactions to what the unit did.�”

What if the OPFOR are either fully or in part computer-
generated? Current best practice for gathering their

1 Constructive simulations are those that involve
simulated people operating simulated systems.
2 OPFOR stands for the opposing forces.

perspectives, feedback, and insights is limited to an
analysis of the simulation log files by a technical expert.
Similarly, when validating CGF behaviors, it can be
difficult for a subject matter expert (�“SME�”) to fully
comprehend and judge those behaviors based only upon
examining logs and observing CGFs in a plan-view
display.3

A fully-capable explanation system is a valuable tool not
only for AARs and CGF validation, but also for
debugging, causality analysis, and automated tutoring. To
support this wide range of applications, explanations are
required that go beyond just presenting the available
logged information. The generation of more satisfying
explanation requires additional information be logged,
plus access to the underlying behavior models that drive
CGF behavior.

With such extended logs, an AI system can answer who-,
what-, where-, and when-style questions. The behavior
models are necessary to answer the how- and why-style
questions that are sometimes the most useful. Natural
language generation is a valuable component of our
explainable AI (�“XAI�”) system, for it allows the system to
answer questions from trainees, instructors, and SMEs in

3 A plan view is a two-dimensional overhead view.

easily understandable English, and supports a dialogue-
style interaction with the user.

The XAI system described herein is able to interface with
two simulators: Full Spectrum Command (�“FSC�”), and
the OneSAF Objective System4 (�“OOS�”). Additionally,
an earlier XAI implementation of FSC was done at our
institution under our project leader (van Lent et al., 2004).
Our experiences in developing these systems has provided
us with insights into the benefits of designing simulation
environments and AI systems with explanation in mind,
rather than attempting to add explanation capabilities after
the system has already been built.

In particular, we recommend that simulators intended for
use in explanation and tutoring contexts provide external
visibility of the logic that underlies all behaviors, and that
this be provided in a declarative form that specifies the
goals of synthetic entities, and the preconditions and end
effects of their actions. Detailed reporting of the internal
state of the simulator throughout execution is also
necessary. Furthermore, this reporting should extend to
user interactions with the simulator in tutoring contexts.

We begin by describing our current XAI system. We then
discuss the necessary extensions made to the behavior
representations in OOS to support explanation. Section
four describes the effects of simulation logging code on
explanation. We then discuss additional issues introduced
by the use of XAI for tutoring, and conclude by
summarizing our recommendations.

2 XAI Proof-of-Concept System Overview
Our XAI system, depicted in Figure 1, requires three
kinds of information from the simulator. Firstly, the
definitions of all behaviors that CGFs may perform must
be available. �“Patrol Area�”, �“Ambush�”, and �“Clear
Building�” are three examples of such tasks from FSC.

The second kind of required information describes the
current scenario. This category includes the initial state
of the simulated world, the rules of engagement, the types
and amounts of personnel and equipment that will be
employed, and the initial assignments of CGFs to tasks by
the simulation user.

The third kind is the dynamic state of the simulated
world. This includes, for example, the location and status
of all synthetic agents, manipulable objects, and the
dynamic state of the world environment. Items such as
the location of soldiers may change extremely frequently
and do not necessarily follow easily-formulated

4 We used the Block B release of OOS, which was the
latest available version at the time.

Explainable AI System

Explainer Subsystem

XAI Database

Scenario
Definition

Dynamic
StateAI Behaviors

Simulation Environment

GUI Subsystem

Query Manager

Natural
Language
Generation

Dialogue
Manager

Student

trajectories, so instead of having perfect information at
our disposal, we require only that it be sampled at regular
intervals.

Figure 1: XAI System Architecture Diagram

The simulator log often does not provide all the required
information. We extracted what we could from the log
into the XAI system�’s relational database, and in certain
cases, manually augmented that data.

At program start, the AAR arbitrarily begins with the first
CGF. When beginning to speak with a CGF, the
�‘interesting�’ time point for that CGF are identified. For
example, our OOS version deems all task start, mid-point,
and completion times as interesting, as well as all times
when the entity fired a weapon. The time point menu on
our graphical user interface (�“GUI�”) makes these points
of interest available to the user.

The dialogue manager component generates a menu of
questions based upon the CGF being interviewed and the
current time point of interest. Some questions concern the
state of entities (�“What is your health?�”), while others
deal with task information (�“What is your unit's task?�”;
�“How do you execute your task?�”). Most questions may
be asked at any time, but certain questions are context-
dependent. For instance, one may ask �“What are you
shooting at?�” only when speaking to an entity about a
moment at which it fired its weapon.

The database is queried on demand as the user interacts
with the application; the natural language generator
component uses domain-specific XSLT templates to
transform query results into English responses. The
dialogue manager records prior questions, answers, and
other state information about the conversations that take
place, enabling context-sensitive responses that reduce the
frequency of repetitious dialogue. Together, the query
manager, dialogue manager, and natural language
generator constitute the explainer subsystem.

The dialogue manager sends all required information via
XML to the stateless GUI servlet, which in turn produces
HTML that is rendered by the user�’s web browser. Figure
3, on the following page, is a screenshot of our HTML-
based XAI proof-of-concept GUI. The top frames contain
header and simulator information. The session�’s dialogue
history is available mid-screen; a vertical scroll bar
appears when necessary so that the entire dialogue may be
consulted at any point. The bottom frame provides menus
by which the user may guide the dialogue. The servlet
submits the user�’s input to the explainer, causing the
system to prepare a new response, which begins the cycle
anew.

3 Behavior Simulation
Behaviors in OOS are classified either as composite or as
primitive. Composite behaviors are constructed by
visually specifying procedural expressions that reference
other behaviors; these are represented in XML. Primitive
behaviors are directly coded in Java, and are considered to
be atomic by the behavior composition system. A thin
XML wrapping is provided for these, so that they may be
referenced by OOS�’s visual behavior specification tool.

Primitive behaviors are always assigned to individual
entities. Composite behaviors may also be assigned to

individuals or to groups of entities, as appropriate. Figure
2 shows the composition hierarchy for the �“Fire Team
Clear Room�” behavior, a task used by fire teams in the
OOS scenario for our XAI proof-of-concept system.
Regarding the primitive behaviors: �“Entity Move on
Route�” is performed by every CGF of the fire team;
�“Throw Grenade and Wait for Detonation�” is assigned to
the grenade thrower of the clear room task; �“IC5 Enter and
Clear Room�” is also assigned to each CGF.

Fire Team Clear Room

Plan Fire Team Clear Room

Set Speed

Determine Grenade Thrower

Get Subordinates

Determine Entry Order

Determine Clear Room Points

Entity Move on Route

Throw Grenade and Wait for Detonation

IC Enter and Clear Room

 Figure 2: OOS Behavior Hierarchy for
Fire Team Clear Room

The composite behavior �“Plan Fire Team Clear Room�”
consists of several primitive behaviors. In contrast to
non-planning behaviors, this behavior does not affect the
simulation world. Rather, it binds variables within the
scope of the main behavior that will be used in the task�’s
further execution.

ICT has enjoyed access to early versions of OOS, an
advantage in that we have visibility into the development
process. This allows us to provide feedback to OOS
developers on ways to improve the suitability of OOS for
automated explanation of behaviors. It is also a
disadvantage in that we must rely upon a behavior
architecture that is not fully implemented. Here, we
discuss three areas where we have encountered challenges
in the explanation of behaviors with OOS Block B.

5 IC stands for an individual combatant.

Figure 3: XAI for OOS Proof-of-Concept Graphical User Interface

3.1

3.2

3.3

4.1

Absence of Declarative Information
While the behavior generation system in OOS represents
a significant advance over previous simulation
architectures, it does not include every feature necessary
for explainable AI. In OOS, like many other CGF
architectures, behaviors are derived from the goals of the
simulation user. These high-level goals are not directly
encoded into the behavior model. Similarly, declarative
preconditions are not fully specified, as required by
explanation. Consequently, it is not possible to reason
about the long-term motivations of an entity.

Furthermore, while alternative actions may be specified
by using conditional expressions within the behavior
composer, all alternatives must be completely foreseen by
the behavior designer. This limits the ability of an XAI
system to answer �“what-if�” questions; it would be
preferable if the behavior model could explore unforeseen
alternatives.

How can reasoning directly about preconditions, goals,
and alternative actions that satisfy goals allow for more
effective explanation? Consider the example of a fire
team clearing a room. Once the fire team is positioned
outside the room, the grenadier throws a grenade into the
room to suppress enemy fire before the team enters the
room. Currently, XAI cannot answer the question �“Why
did you throw a grenade into the room?�” because there is
no representation in the parent composite behavior of the
goal or motivation for the grenade toss.

XAI also cannot reason about alternative behaviors that
could satisfy the goal of suppressing enemy fire, because
the parent behavior makes no options available. Generic
questions about alternatives, e.g. �“What else could you
have done to suppress enemy fire?�” are therefore not
supported. Finally, it is also difficult for XAI to answer
�“Why not?�” questions, e.g. �“Why didn�’t you use non-
direct fire?�”, because preconditions are implicit in the
procedural representation of the behaviors, whereas XAI
requires explicit representation in a declarative form.

Opacity of Primitive Behaviors
As previously mentioned, composite behaviors are
provided in an XML format. This format is high-level,
descriptive, and is easily understood. Consequently, our
XAI system is able to answer questions such as �“How do
you perform your task?�”, when the question is asked of a
composite task.

In contrast, primitive behaviors are developed in Java,
and, at least in the Block B version, did not contain
metadata. Consequently, our XAI system cannot know
the preconditions and end effects of actions.

Currently, some of the most interesting actions for
explanation, particularly primitive behaviors that perform
planning behaviors, cannot be reasoned about by the XAI

system. For instance, in the �“Fire Team Clear Room�”
task, we would like to be able to answer the question
�“Why are Morphy and Bisguier the first ICs in?�”, but to
answer this question, the XAI system would have to
comprehend the Java implementation of the behavior.

Multiple Behavior Sources
In addition to the behavior execution engine of OOS that
executes behaviors assigned to units in the task execution
matrix, OOS also uses behavior agents that are not tied to
specific orders. Rather, these agents are composite
attributes of entities that are capable of performing
reactive actions based upon the current state of the
simulation world as perceived by the CGF.

For example, the behavior agent that controls an entity's
weapon will automatically aim and then fire the weapon
whenever the CGF holding the weapon perceives an
enemy soldier, the rules of engagement permit firing, and
the entity has ammunition. Thus, the entity's actions are
not necessarily the consequence of a task that it is
performing (other than the rules of engagement which
may be specified as part of the task).

Behavior agents are implemented similarly to primitive
behaviors: procedurally, and without hooks to show why
specific actions are performed. We do not doubt there are
valid software design considerations that suggested this
division of handling behavior. We merely remark that the
difficulty of explanation increases when not all sources of
behavior reflect intent by the entity.

4 Simulator Record-keeping
In the previous section, we discussed the challenges of
supporting explanation in the behavior representation and
generation components of a simulation. However, it is
not enough to represent the necessary information; it must
also be made available to the XAI system. While this
could be done at run-time given sufficient support for
introspection, our focus is on the use of the XAI system as
an AAR tool, so we frame this as an issue of information
logging.

First, we list several deficiencies with logging that we
identified while connecting simulators to our XAI system.
Then, we contrast the information acquired from OOS
and from FSC, and describe the different sets of questions
our XAI system can answer as a consequence.

Logging Issues
Here we selectively discuss concrete logging issues,
particularly in cases where an attempt has been made to
store the information, but what has been stored is, for our
purposes, incomplete.

One interesting facet of FSC is that its source code
contains a considerable degree of debug information �–

almost all of it disabled. Much of that information would
have been valuable to an enhanced XAI system.

Also, recall that the original XAI implementation of FSC
was done at our institution under our project leader: in
this respect, we are learning from our own mistakes.

4.1.1 Task Execution Matrix
The step-by-step plans of the forces under the control of
the trainee are recorded in the task execution matrix.
Such information is required to ask virtually any question
relating to the planning of the operation. This information
is of course modeled in FSC, but it is not logged.
Therefore, we have had to go back and modify the source
code to log this data.

4.1.2 Event-Driven Architecture
During the AAR, we may wish to know the route that an
entity took to a target, and how far along that route it was
at an arbitrary simulation time point. However, FSC
takes an event-driven approach to logging, rather than
recording log information at fixed time intervals.
Therefore, we usually cannot even know where an entity
is, unless an event such as firing a weapon or a shift to a
new task takes place at that point in time. 3 63233968.000000 3 Assign Roles 4 0 0 -1 0 0 0 0

3 63234296.000000 3 Assign Roles 4 0 0 -1 0 0 0 0
3 63234652.000000 3 Assign Roles 4 0 0 -1 1 90052
0 0 1 50006
3 63235092.000000 3 Assign Roles 4 0 0 -1 2 90052
90053 0 0 1 50006
3 63235548.000000 3 Assign Roles 4 0 0 -1 3 90052
90053 90054 0 0 1 50006
3 63236052.000000 3 Assign Roles 4 0 0 -1 4 90052
90053 90054 90055 0 0 1 50006

Figure 4: Sample from FSC XAI Text Log

4.1.3 Composite Behaviors
Block B of OOS does not log dynamic state information
regarding composite behaviors that are being executed.
Therefore, it is impossible to ascertain which composite
behavior is executing at arbitrary simulation time points.

To answer questions such as �“What is your unit�’s current
task?�”, we manually recorded the active mission phases,
plus their start and end times, then used this information
in conjunction with the task execution matrix. However,
this method is not correct when the scenario does not
execute according to the original plan, for instance, if a
unit is forced to withdraw.

4.1.4 Variable Bindings
Block B of OOS does not store the variable bindings of
behaviors.6 For example, in the composite behavior �“Fire
Team Clear Room�”, the unit task roles include �“Team
Lead�”, �“Grenade Thrower�”, �“First ICs In�”, and
�“Remaining ICs In�”. These variables are bound at
runtime by child planning behaviors, but are not logged,
necessitating that we observe a simulation run and
manually add this information.

4.2

6 Newer versions of OOS do store this information. This
may also be true of other items we have listed.

4.1.5 Pathfinding
Neither FSC nor OOS log pathfinding details, whether for
units or individual entities. Therefore, the XAI system
cannot answer questions about the planned routes of
travel. However, even if this information were logged, it
is doubtful that the XAI system could provide compelling
explanations. Variations of the A* search algorithm are
typically used to compute paths; this algorithm is not
similar to human methods of tackling the problem.

4.1.6 Inscrutableness of Log Format
Figure 4 contains a small sampling of the text version of
the XAI log emitted by FSC. During the corresponding
0.002 seconds of the program run, a task object was
created, then updated four times. Conceptually, though,
the task was merely being defined. Tracking the
implementation too closely would lead to the
misinterpretation that the CGF repeatedly changed its
mind about what the task ought to encompass. However,
once the simulation is underway, it might well be that a
CGF would exhibit such indecision, so distinguishing
between the two cases could be problematic.

After attempting to extend the original XAI logging, we
found it more useful to write additional, but separate code
that logs the information we were interested in for our
current XAI system. This newer log format uses XML so
that the data description is implicit in the log itself.

Answerable Questions
Figure 5 provides a chart relating the information made
available to the XAI system with the questions that it is
therefore able to answer. The lack of exposure of
underlying behavior reasoning is reflected in the total
absence of why-style questions.

The information made available to XAI is not the same as
the information modelled by the simulator. For instance,
FSC models stance information, but as we chose not to
log this, we were unable to answer the two posture
questions. Also, we hand-augmented the OOS unit task
information, as previously discussed.

entity targeting
status entity landmark entity unit information

What is your health/damage status?
What weapons do you have?
What is your location? (referring to landmark)
What is your location? (referring to coordinates)
What is your unit's task?
What is your current task?
When did you start your current task?
When will you complete your current task?
How do you execute your task?
Who are the other members of your unit?
Which are the other squads in your platoon?
What are the unit roles of the members of your unit?
What are the task assignments of the members of your unit?
Can you give more detail?
What are your rules of engagement?
Who are you shooting at?
What is your posture?
What is your target's posture?

 OneSAF Objective System
 Full Spectrum Command
 Both OOS and FSC

Questions Answered by XAI task informationcoordinate triples

Information Available to XAI

Many questions are available to the user when using
simulation data from OOS, but not FSC, because OOS
provides unit task information in a readily-usable form.
In contrast, while FSC represents platoons and squads to
the user, its internal code refers to task-oriented elements
that typically do not coincide with U.S. Army units.

The differing treatment of the question �“What is your
location?�” between XAI for OOS and XAI for FSC is also
of interest. In the case of FSC, the response is
rudimentary: the XAI system provides the (x, y, z)
coordinate triple of the entity. In the case of OOS,
information about landmarks and the task objective is
available, so we can offer a more useful response that
expresses the distance and angle of the soldier from their
target, as shown in Figure 3.

5 Logging for Automated Tutoring
The presence of or desire for an automated (a.k.a.
intelligent) tutor is a significant factor when deciding
what information to record. Interestingly, many of the
lessons learned in the construction of an explainable AI
system also have implications for intelligent tutoring.

Intuitively, teachers should have the ability to explain
material in a way that makes sense to the student.
Additionally, good teachers do not quietly solve problems

on the board, they engage their students. They pause to
ask questions, connect their activities to principles, and
elicit answers from students rather than just giving them
away (Leinhardt and Schwartz, 1997). An automated
tutor for a training simulator likely must also be able to
similarly engage the student.

Figure 5: Comparison of Information Flow Into and Out from the XAI System

Behavior models consisting of only procedural
information and logs containing only the raw events of a
simulation are insufficient for intelligent tutoring:
knowledge that is critical for a tutor to have is not present
in such models. To produce �“tutoring-friendly�” logs,
several suggestions derived from our work appear below.
Before discussing them, however, it is important to note
one important historical example of the general problem
of retroactively augmenting an AI system for pedagogical
purposes (Clancey, 1984).

5.1 Background
GUIDON, a tutoring system built on top of the medical
diagnostic expert system MYCIN, attempts to teach
students the rules in its knowledge base through limited
dialogue. Using a record of the inferences made by the
MYCIN reasoning engine, GUIDON walks the student
through each rule application until a final diagnosis is
reached. Although it was able interact effectively with

students on individual problems, there was no
representation of general skills involved with medical
diagnosis. In addition, no higher level organization of the
rules was made available by MYCIN. The knowledge
base was essentially authored, debugged, and applied for
the sole purpose of producing diagnoses. With no global
organization on the set of rules, GUIDON was not able to
help students synthesize or organize what appeared to
them to be a large, jumbled body of knowledge (Clancey,
1984).

The key lesson from GUIDON was that if pedagogical
goals are in the horizon for an AI system, its knowledge
base should be built with these goals in mind from the
outset. Not doing so risks overlooking important
knowledge representation and pedagogical issues. When
intent exists for a simulator to be used for pedagogical
purposes, similar organizational measures ought to be
taken when authoring its AI behaviors.

The tutoring component of our research is nascent, so we
are not yet able to propose specific changes to behavior
representations beyond those described above in support
of explanation, but we do explore some additional
considerations in a general manner below.

5.2

5.3

5.4

Recording Rationale
To provide an explanation of actions taken in a traditional
expert system, it is necessary to record the chain of
inferences that led to an action or conclusion. Performing
an explanation from a log alone implies that not only
should it include events, but also the �“thinking�” that
occurred between events. Just as an explainer requires
such inference chains, so does a tutor. In addition to
selected operators and facts used during the inferences,
novices often need explanations as to why certain
operators did not apply, and reminding of what facts are
true at certain times during a simulation to help the
student understand why some inferences can or cannot be
made. The suggestion for log files, then, is to record in
great detail, behavior selections and the details of their
application or non-application. Armed with such
knowledge, a tutor would be able to give negative or
positive feedback about student suggestions and answers,
lessening any need to persistently run re-simulations in
the background.

Alternative Outcomes and Negative Evidence
Tutorial decision making often involves events that did
not happen during a problem solving episode (McArthur
et al., 1990). In addition, representing events that provide
negative evidence against some problem solving path or
critical decision is also very valuable in teaching domain
knowledge effectively (Suthers et al., 2001). Knowing
how different decisions by a user in a simulation may
have played out could help a tutor defend a suggested
alternative to the student�’s chosen path. Similarly,

pointing out observations that the student should have
made during a simulation (as negative evidence) has
pedagogical benefits for teaching decision making.

Certainly, logging all possible alternative outcomes is not
feasible, nor is re-simulating everything on-the-fly during
an AAR. We suggest pre-compiling common novice
mistakes and problems encountered during specific
scenarios, and identifying sets of critical mistakes. Also,
the simulator can compute and log alternative outcomes
as processor availability permits. An automated tutor can
exploit even a single instance of such.

Usage Data
Many tutoring systems model the student�’s evolving
knowledge of the domain, learning characteristics, and
skill using the interface. This assists the tutor when
deciding which tutoring strategies to employ and when
formulating appropriate feedback messages. When
tutoring is based on a log of previous use of a simulation,
as is the case with OOS and FSC described above, it is
important this log include as much information about the
user�’s state as possible to initialize a student model for
use during the tutored AAR. For example, knowing if an
execution matrix was correct upon its initial design, but
changed to a sub-optimal plan for some reason would
enable the tutor to remark that the student�’s first
impression was correct. Depending on how advanced the
tutorial model is, a discussion of the importance of
following one�’s instincts could even follow.

A second example of logging user usage data is to record
all interface activities (e.g. menu selections, typed input,
button clicks) and the timings thereof. This permits the
detection of floundering, the almost random exploration
in response to an impasse. Knowing that a student has
struggled in this way, and what events during the
simulation preceded, or possibly caused such a response
can be of great help in building a more accurate student
model.

6 Planning for Explanation and Tutoring
External visibility of the logic that underlies synthetic
entity behavior, plus detailed reporting of internal
simulation state, are necessary to enable an XAI system to
answer a full range of AAR questions. Detailed reporting
of user interaction with the user interface will contribute
to achieving tutoring objectives.

Specific recommendations for �“XAI-friendly�” logs
include:

 Employ a rich behavior model within the simulator,
and make it visible to external software. Include
declarative representations of goals, preconditions,
end effects, and conditional and repetition constructs
within tasks.

 Produce a high-fidelity log file.
o Include all scenario information, including the

initial state of the world, and all predefined
orders to entities.

o Distinguish between reactive behaviors, planned
behaviors, and orders.

o Include details regarding the satisfied conditions
that caused reactive behaviors to occur.

o Record the specific subgoals that planned
behaviors are intended to fulfill; include details
of the satisfied conditions that cause them to be
aborted.

o Log changes to state variables that appear in
behavior preconditions and end effects.

o Delimit meta-events in the log, i.e., indicate the
set of actions that together denote an action at a
higher level of abstraction.

 Use a self-documenting log file format that is easy to
comprehend by both humans and machines.

 Include the consequences of what-if scenarios, as
processor time permits.

If there are multiple ways to execute a behavior, the XAI
system needs to know why one approach was chosen over
another. If a behavior consists of a series of repeated
actions, the XAI system needs to know why the repetition
ended.

These design considerations are crucial not only for why-
style questions, but also for queries about how to perform
behaviors and queries about entity state. If the simulator
does not provide task decompositions, or the log file does
not contain the relevant data about entity state, then such
queries cannot be answered.

As discussed in section five, the inclusion of automated
tutoring introduces additional considerations. Events that
did not happen may be more important than those that
did, for instance, the trainee failed to provide adequate
troop cover. For a particular domain, subject matter
experts need to identify these common mistakes so that
simulation builders can design logging capabilities to
capture them.

The trainee�’s interaction with the simulator is not limited
to the orders given to CGFs. Even if perfect orders are
given, ongoing activities such as monitoring the progress
of troops under the user�’s command are also important.
As a first step, simulation designers should log the
trainee�’s interaction with the user interface; future work
would involve recognizing user activities, such as when
the user observes the progress of synthetic entities under
the user�’s command, plan recognition, and real-time
pedagogical support.

7 Conclusion
Explainable AI and intelligent tutoring have been active
topics of research in the AI community. Both
technologies have a great deal of promise to increase the
effectiveness of constructive simulations that include
complex behavior models as training tools. However, in
order to support automated explanation and tutoring,
simulation and behavior model developers must take
these features into account early in the development
process. Adding the necessary features retroactively is
not feasible without extensive system revision.

We hope that the recommendations presented here, as
well as previous research on the topic (Swartout, Paris
and Moore, 1994), will be of benefit to the modeling and
simulation community as they design and develop new
simulation systems and behavior architectures for
automated explanation and tutoring applications.

Acknowledgements
We thank the members of the OOS and FSC development
teams for assisting us by answering technical questions
about their simulation systems. We thank RAND�’s
Arroyo Center for providing access to an SME to address
our subject-matter questions. We also thank the
anonymous reviewers for their constructive comments.

This research was sponsored by the U.S. Army Research,
Development, and Engineering Command (RDECOM).
Statements and opinions expressed herein do not
necessarily reflect positions or policies of the U.S.
Government; no endorsement should be inferred.

References
Clancey, W. (1984). Methodology for Building an

Intelligent Tutoring System. In W. Kintsch, P.
Polson, & J. Miller (Eds.), Methods and Tactics
in Cognitive Science, (pp. 51-83). Hillsdale:
Lawrence Erlbaum Associates.

Courtemanche, A. and Wittman, R. (2002). OneSAF: A
Product-Line Approach for a Next-Generation
CGF. In Proceedings of the Eleventh SIW
Conference on Computer-Generated Forces and
Behavioral Representations, 349-361.

Leinhardt, G. and Schwartz, B. (1997). Seeing the
Problem: An Explanation from Polya. Cognition
and Instruction, vol. 15(3), 395-534.

McArthur, D., Statz, S., and Zmuidzinas, M. (1990).
Tutoring Techniques in Algebra. Cognition and
Instruction, vol. 7(3), 197-244.

Swartout, W., Paris, C., and Moore, J. (1994). Design for
Explainable Expert Systems. IEEE Expert, 6(3),
58-64.

Swartout, W. and Moore, J. (1993). Explanation in
Second-Generation Expert Systems. In J. David,

J. Krivine, and R. Simmons (Eds.), Second
Generation Expert Systems, (pp. 543-585). New
York: Springer-Verlag.

Suthers, D., Connelly, J., Lesgold, A., Paolucci, M., Toth,
E., Toth, J., and Weiner, A. (2001).
Representational and Advisory Guidance for
Students Learning Scientific Inquiry. In Forbus,
K. and Feltovich, P. (Eds.), Smart Machines in
Education: the Coming Revolution in
Educational Technology, (pp. 7-35). Menlo
Park, Calif.: AAAI/MIT Press.

van Lent, M., Fisher, W., and Mancuso, M. (2004). An
Explainable Artificial Intelligence System for
Small-unit Tactical Behavior. In Proceedings of
the Sixteenth Conference on Innovative
Applications Innovative Applications of Artificial
Intelligence (IAAI-04), 900-907.

Author Biographies
DAVE GOMBOC is a Research Programmer/Analyst at
the ICT. He received a M.Sc. in Computing Science from
the University of Alberta.

STEVE SOLOMON is a Research Programmer/
Analyst at the ICT. He received an M.A. in Linguistics
from the University of California, Los Angeles.

MARK G. CORE is a Research Scientist at the ICT. He
received a Ph.D. in Computer Science from the University
of Rochester. His current research focuses on dialogue
management and natural language generation technology
for the XAI project.

H. CHAD LANE is a Research Scientist at the ICT. He
received a Ph.D. in Computer Science from the University
of Pittsburgh, specializing in artificial intelligence and
tutoring systems. His current research involves the use of
XAI to drive tutoring and enhance the reflective activities
of student users.

MICHAEL VAN LENT is a Project Leader at the ICT
and Research Assistant Professor of Computer Science at
USC. He received a Ph.D. in Computer Science from the
University of Michigan. His current research focuses on
explainable AI, adaptive forces, and combining game and
simulation technologies.

	Design Recommendations to Support�Automated Explanation and
	Absence of Declarative Information
	Opacity of Primitive Behaviors
	Multiple Behavior Sources
	Logging Issues
	Task Execution Matrix
	Event-Driven Architecture
	Composite Behaviors
	Variable Bindings
	Pathfinding
	Inscrutableness of Log Format

	Answerable Questions
	Background
	Recording Rationale
	Alternative Outcomes and Negative Evidence
	Usage Data

