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Abstract 

This paper addresses the problem of automatic facial 
gestures recognition in an interactive environment. 
Automatic facial gestures recognition is a difficult 
problem in computer vision, and most of the work has 
focused on inferring facial gestures in the context of a 
static head. In the paper we address the challenging 
problem of recognizing the facial expressions of a 
moving head. We present a systematic framework to 
analyze and classify the facial gestures with the head 
movement. Our system includes a 3D head pose 
estimation method to recover the global head motion. 
After estimating the head pose, the human face is 
modeled by a collection of face’s regions. These 
regions represent the face model used for locating and 
extracting temporal facial features. We propose using 
a locally affine motion model to represent extracted 
motion fields. The classification consists of a graphical 
model for robustly representing the dependencies of 
the selected facial regions and the support vector 
machine. Our experiments show that this approach 
could classify human expressions in interactive 
environments accurately. 

1. Introduction 
Facial gestures convey rich information of humans’ 
thoughts and feelings. People usually reveal their 
intentions, concerns, and emotions via facial 
expressions. This information is an important 
communication channel between humans’ face-to-face 
interactions. Hence, automatic facial gestures 
recognition is a key step toward intuitive, convenient, 
and multimodal human-computer interaction. Besides, 
it has many other potential applications, such as virtual 
reality and facial animation, humanoid robot, and 
emotion analysis in psychology and behavior science. 

In psychology and behavior science, the most 
famous system is Facial Actions Coding System 
(FACS) [11]. This system defines 44 action units 
(AUs) on the human faces and interprets the human 
expressions as different combination of AUs. However 

the training and coding the human expressions are 
performed manually and very time-consuming. 

In computer vision literatures, there are several 
researches focusing on the automatic facial gestures 
recognition [4][5][6][7][12]. Black and Yacoob [4] 
used local parameterized models to recover non-rigid 
motion of facial features and derived mid-level 
predicates from local parameters. These predicates are 
the inputs of their rule-based classification system. 
Essa et al [12] used optical flow based spatial-temporal 
motion energy template for expression recognition. In 
[9], Donato et al compared the different approaches to 
represent the facial gestures, including optical flow 
analysis, holistic spatial analysis, and local 
representation. The detailed reviews of automatic 
facial gestures recognition could be found in [13][23]. 

More recently, Cohen et al published several papers 
about facial expressions recognition from videos 
[6][7]. In [6], they used Naïve Bayes and Tree-
Augmented Naïve Bayes classifiers for expression 
recognition. They also proposed a new multi-level 
HMM architecture to capture the temporal pattern of 
expressions and segment the video automatically. In 
[7], they introduced a classification driven stochastic 
structure search algorithm to learn the dependence 
structure of Bayesian network and hence applied 
generative a Bayesian network classifier for 
classification. In [5], Chang et al proposed a 
probabilistic model for expression manifold. The idea 
of expression manifold comes from facial expressions 
form a smooth manifold in a very high dimensional 
image space, and similar expressions are points in the 
local neighborhood on the manifold. The expression 
sequences become a patch on the manifold and they 
build a probabilistic transition model to determine the 
likelihood.  

As Pantic and Rothkrantz pointed out, the most 
significant limitation of these systems is they usually 
rely on a frontal view of face images [23]. Varying 
head poses and non-frontal faces decrease system 
performance. Moreover, if the user is in an interactive 
environment, head motion is a natural component of 
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the interaction that cannot be ignored, and solutions 
proposed in the literature do not apply. Recent 
researchers start to work on this limitation. Bascle and 
Blake modeled the facial expression with head motion 
as a bilinear combination problem: each expression is a 
linear combination of key expressions and the head 
motion is approximated linearly by a 2D planar-affine 
transformation with parallax [2]. They used the 
deformable contours with learned dynamics to track 
facial features and decoupled the parameters of pose 
and expression by singular value decomposition. In 
[16], Gokturk et al approximated the face shape as a 
linear combination of basis vectors and defined the 
coefficients as the shape vector. To track the face 
shape with head motion, they constructed a deformable 
face model and extracted the shape vector for SVM 
classification. Wen and Huang proposed a ratio-image 
appearance feature for expression recognition [26]. 
They demonstrated this feature may be used for 
moving head. In [25], Tian et al developed a real-time 
system to automatically recognize facial expressions in 
the interactive environment. They distinguished the 
frontal faces from the non-frontal views. However, 
expression recognition is only performed on the frontal 
or near frontal faces and they did not deal with non-
frontal faces. 

In this paper, we propose recognizing facial 
gestures under natural head motion. Ekman and 
Friesen claimed there are 6 basic “universal emotions”: 
happiness, sadness, fear, anger, disgust, and surprise 
[10]. We follow such 6 universal expression 
categorization and classify examined expressions into 
one of the 6 classes. Our system could be divided into 
3 stages: 3D head pose estimation, modeling facial 
gestures, and classification. Figure 1 shows the 
overview of our approach. The main contribution of 

our work is three fold. We use a 3D head pose 
estimation method to deal with moving heads and non-
frontal faces. Thus it makes our recognition system 
more robust in an interactive environment. The second 
contribution consists of modeling local temporal 
variations of the face using an affine motion model. 
This parametric representation of the motion provides 
a robust description of the local facial deformations. 
The third contribution is the use of a graphical model 
for modeling the interdependencies of the defined 
facial regions for characterizing facial gestures. This 
graphical model provides a feature vector used for 
facial gestures recognition using a support vector 
machine as the classification tool. The region-based 
face model characterizes the human face and it has a 
natural connection to the graphical model. The 
graphical model has great capability to handle 
structured data and is a good tool for facial gestures 
classification. 

 
Figure 1: Overview of the proposed approach.

The rest of this paper is organized as follows: In 
section 2, we describe the 3D head pose estimation 
method. Section 3 addresses modeling facial gestures 
with head motion. The classification framework is 
detailed in section 4. We have tested our system in 
various experiments. These results are shown and the 
performance of our system is analyzed in section 5. 
Finally, summary and conclusion are given in section 
6. 

2. 3D Head Pose Estimation 
Many approaches were proposed for head pose 
estimation. One is using image features for pose 
estimation [17]. This approach will be unreliable when 
good features are not available. On the other hand, 
some other researchers proposed different approaches 
based on tracking the whole head region. In [8], 
DeCarlo and Metaxas used a detailed 3D geometric 
head model to estimate accurate head motion. 
However, this approach requires precise initialization. 
If the initialization is not prefect, the estimation error 
will be large. To address these limitations, some simple 
geometric head models have been proposed [3][4]. 
Black and Yacoob [4] used a 2D planar model with the 
optical flow and yielded good results. Nevertheless, as 
they pointed out, the planar model leads to large 
quantitative inaccuracy for spherical face of the head, 
especially when presence of large rotation. Basu et al 
[3] proposed an ellipsoidal head model to 
accommodate the geometry of human head. However, 
their approach uses Euler angles for rotation. This may 
suffer from singularities and lead to complicated 
formulation in the optimization procedure. 
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In this work, we follow the approach proposed by 
Xiao et al [27]. They used a 3D cylinder as the model 
of the human's head and the full motion parameters 
(3D rotation and 3D translation) are represented by the 
twist representation. The twist representation directly 
maps the 6D motion vector to the transformation 
matrix in homogeneous coordinate. The motion vector 
is estimated through minimizing the energy function 
defined on the brightness constraint. The iterative re-
weight least-square method is applied for the energy 
minimization. 

The adaptive weighting compensates the outlier, 
which comes from the presence of noise, occlusion, 
and lighting change in the image sequence. It improves 
the robustness of the pose estimation. The 
regularization term is also added to preserve the 
smoothness constraint for the aperture problem. The 
cylindrical head model satisfies our intuition for the 
geometry of human's head. Due to the simplicity of the 
cylinder, it is more efficient and more robust for 
initialization error than other detailed geometric head 
models. Moreover, for efficiency concerns, we only 
sample several points from the cylinder surface for 
motion estimation instead of applying this approach on 
all points. Although it may result in the estimation 
error, the error could be bounded via controlling the 
number of sampled points. In practice, our 
experimental results indicate that if we sample 
adequate points, high accuracy of estimation could be 
achieved. Figure 2 shows the head pose estimation 
results. 

3. Modeling Facial Gestures in Presence of 
Head Motion 

 

 

Figure 2: Results of 3D head pose estimation. The 
arrow indicates the direction and the green points are 
the points in the cylinder surface. The sequence starts 
from the upper left frame. The subject turns his head 
counterclockwise till near 45o angle (the upper right
image) and then turns back (the lower right image). 
When he moves his head, he makes a smile at the same 
time. These images show the 3D head pose estimation 
method has high accuracy even when there is an 
expression occurring along with the head movement.

After stabilizing for the head motion by estimating the 
head pose, we focus on identifying and characterizing 
the local deformations of the face to facial gestures. A 
large number of approaches focused on extracting 
facial expression information [9][13][23]. These 
proposed approaches could be roughly categorized as 
feature-based methods and template-based method [23]. 
The feature-based method relies on a set of predefined 
features on the face and extracts the facial gestures 
based on changes of these features. On the other hand, 
the template-based method uses a template or the 
holistic representation for the face. Thus, the 
expression data is identified based on the model. 

In this paper, we propose a new approach using a 
region-based description of the face depicted in figure 
3, a motion model representing local face deformations 
corresponding to the relative motion in each region as 
well as the interrelations between these regions 
features. The idea behind such modeling is that when 
we observe a facial gesture changes are much more 
consistent locally. Therefore, we could use simple 
motion parameters to characterize the gesture in each 
region. Besides, these regions could provide multiple 
cues to determine the expression type. Also, some 
facial gestures are characterized by symmetry 
constraints, while other corresponds to the 
combination of local deformations. Modeling these 
joint dependencies will build a mathematical model for 
representing the associated relations among face 
regions. Along with the local affine motion model, this 
approach will capture the characteristics of the facial 
gestures in the human face. 

3.1. Face Regions 
The human face could be divided into 9 non-
overlapped regions [13]. These regions correspond to 
the characteristics of the human face. Roughly 
speaking, these regions are foreheads, eyes, the nose, 
left and right checks, and the chin. Because we use a 
3D cylinder to model the head, these regions are 
defined in the surface of the cylinder. Figure 3 
demonstrates this region-based face model. 

The expression could be compactly represented by 
this region-based face model. These regions locate the 
key features of human faces and the motions inside 
each region are smoother. For different regions, we 
could also observe that there are some correlations 
between their affine motion parameters. Based on this 
idea, the facial gestures could be represented as the 
combination of relative motion in each region with the 
interaction between different regions. 
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3.2. Affine Motion Model 
To model the local deformation of the face during a 
gesture within each region, we compute the residual 
optical flow and use an affine motion model to 
describe the dynamics of each region. The optical flow 
inside each region represents the gestures changes, 
since the global head motion was already compensated 
for. However, these motion flows are noisy and may 
mislead the classification. 

We propose to use region-based motion properties 
that reflect the local deformation in each region of the 
face. The face is subdivided into 9 regions, and for 
facial gesture analysis, the motion of each region is 
more relevant than pixel-based optical flow 
measurements. Moreover, for common facial gestures, 
the local motion in each of the considered regions of 
the face, are homogeneous and do not possess 
orientation discontinuities. This motivates us to use an 
affine motion model for capturing the underlying 
dynamic behavior of each face region. The main 
advantage in using the affine motion model is that it 
corresponds locally to a first order approximation and 
it can be robustly estimated from a small number of 
measurements. 

Let Xt = [xt yt]T and Xt+1 are the positions of one 
point at time t and t+1 respectively. The affine motion 
model is: 
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2]T, a 6-tuple vector 
for each region Ri. This vector characterizes the intra-
region motions after compensating for the 3D head 
motion. Figure 4 shows the original residual motion 
and the estimated motion for the happiness expression. 
Consequently, the gesture motions of the whole face 

could be represented using the intra-region motion 
vectors themselves, and the inter-region relations. 

  
Figure 3: The 9 face regions considered, as a 
representation of the human facial gestures. The right 
image shows the defined 9 regions on the cylinder 
surface and the left image shows the mapped regions on 
the human’s face. 

  
Figure 4: The original residual motion and the 
estimated motion of the affine motion model for a 
happiness expression. The left image is the intensity 
difference between two frames in a happiness 
expression. The right image shows the estimated motion 
using the affine motion model for face regions. The red 
point indicates the direction of the motion. 

4. Classification Framework 
Classifying affine motion parameters into expressions 
is a typical machine learning problem. We regard the 
extracted affine motion parameters as random 
variables and describing their behaviors via probability 
distributions. Therefore, the classification problem 
could be formulated as: 

spsXPXsP ||  (2) 
where s is the variable indicating the class of 
expressions and X is the vector of extracted motion 
parameters.  P(X|s) measures the likelihood of X given 
the expression s and p(s) represents the prior density of 
gesture s. Making the equal prior assumption, the 
maximum likelihood estimation of equation 2 is: 

)(|| XLsXPXsP  (3) 
where L(X) is the log-likelihood function of X. 

In equation 3, the most critical part of the 
classification is estimating the likelihood function. 
Since the face has 9x6=54 parameters, which form a 
high dimensional space, finding directly the joint 
distribution of all motion parameters is impractical and 
inefficient. However, these parameters come from a 
region-based face model, and this domain knowledge 
inspires us to use a graphical model. 

4.1. Graphical Model of Human Face 
The graphical model is a powerful tool for statistical 
modeling. It provides an elegant way to model the 
interdependencies of a stochastic system. This feature 
is very useful for our region-based face model, since 
when facial gestures are performed, we observe 
interrelationships between face regions. Modeling 
these interdependencies will allow us to infer a robust 
method for the classification of facial gestures.  
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Figure 6: Empirical distribution of data. This figure 
plots the empirical joint pdf of the b2 of V1 and b2 of V2
in a surprise expression.

The graphical model considered is G = (V, E), 
where V is the set of vertices and E is the set of edges. 
A vertex vi represents a face region Ri and a state 
vector xi, corresponding to the affine motion 
parameters of this region. An edge e connecting two 
vertices represents a dependency between these 2 
vertices. Here we choose an undirected graph, because 
we do not impose any causal dependencies on these 
regions. Figure 5 shows the topology of the graph. 
Such topology preserves the spatial structure and 
symmetry of the face regions. Therefore, using this 
graphical model with the affine motion model captures 
the inter-region relations and intra-region motion, 
respectively. The structure of the graph was also 
validated experimentally on a large set of facial 
gestures by analyzing the cross correlation of the intra-
region affine motion between each pair of nodes. 

 
Figure 5: The graphical model associated to the 9 face 
regions for facial gesture analysis. 

Using this graphical model, the likelihood could be 
decomposed as: 

Cc
cxpXLXLikelihood )()(  (4) 

where C is the set of all maximal cliques. In this graph, 
the exact decomposition is: 
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where pi is the joint probability density function. 
Equation 5 indicates the joint pdf of all motion 
parameters could be broken down into pieces of joint 
pdfs of locally neighbor motion parameters. This fact 
confirms our prior knowledge of facial gestures. 

4.2. Training of Graphical Model 
The objective of training the graphical model is to 
estimate the likelihood function. From equation 5, the 
complex likelihood function could be decomposed into 
the product of joint density functions and our interest 
turns to estimate these density functions. Figure 6 plots 
some empirical distributions of these densities. 

Obviously, these densities are not unimodal and could 
not be captured by any single parametric distribution. 
Consequently, instead of using parametric density 
estimation, we use a finite mixture of multivariate 
Gaussians for density estimation: 

m

i
iixGfixp

1
),|()(  (6) 

where m is the number of Gaussians,  is the weight, f 
is the Gaussian density function, and µ and  are mean 
vector and covariance matrix, respectively. 

Gaussian mixture modeling has become a very 
common method in computer vision. Here it used since 
it balances the estimation accuracy and the 
computational efficiency [22]. Using sufficient number 
of Gaussian, it could approximate the true density very 
well. Unlike the nonparametric kernel density 
estimation, Gaussian mixture reduces the complexity 
of the model and makes the learning more efficient. 
Moreover, we can rely on is the very well studied 
statistical tool, the EM algorithm, for estimating the 
parameters of the Gaussians [21] [24]. 

Applying EM algorithm for estimating the 
parameters of the Gaussian mixture has to be done 
with care because of well known numerical instability 
[20]. The numerical instability occurs when it 
converges to the boundary of parameter space. For 
instance, in Gaussian mixture modeling, frequently the 
determinant of estimated covariance matrix and the 
weight will tend to 0 while other parameters become 
very large. We observed that the 6 affine motion 
parameters corresponding to the motion features in 
each sub-region of the face have different numerical 
scales. In such situation the EM algorithm converges 
to a degenerate case and the parameter estimation 
becomes unstable. To overcome this problem, we split 
the 6 affine parameters into 3 sets (a1, a4), (a2, a3), and 
(b1, b2), and each set has the same numerical scale. 
Therefore, we have 3 graphs, G1, G2, and G3, each for 
different sets of motion parameters. 
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Assessing the number of Gaussians needed is an 
important issue of Gaussian mixture modeling. The 
number of Gaussians is a tradeoff between fitting 
accuracy and model complexity. There are many 
approaches for model selection in the literature, such 
as statistical hypothesis test and information criteria. 
Here we adapt an information-theoretic point of view 
and use the AIC (Akaike's Information Criterion) 
[1][19]. AIC comes from optimizing the Kullback-
Leibler information of the true density with respect to 
the fitted density by maximum likelihood estimation: 

bLAIC 22  (7) 
where L is the log-likelihood and b is the number of 

parameters in the model, which will be: 
dddnb 1  

where d is the dimension of the joint pdf. AIC could be 
regarded as an asymptotically bias-corrected log-
likelihood and 2b is the bias correction term. AIC has 
several attractive properties in practice. Since its bias 
correction term is very simple and does not require 
further derivation, it is suitable for the automatic 
selection of the number of Gaussians. 

The optimal number of Gaussians is automatically 
selected based on AIC: 

nAIC
n

noptimal minarg  (8) 

We show the value of AIC and log-likelihood 
versus number of Gaussian in Figure 7. Table 1 shows 
the optimal number selected by AIC for a smiling 
expression. 

4.3. SVM for Final Classification 
The classification of facial features is performed in two 
steps. We first calculate the likelihood of each input 
data according to our graphical model and break the 

likelihood into the product of joint densities. In the 
end, there are 3 log-likelihood values (L1, L2, L3) for 3 
graphs (G1, G2, G3). Therefore, each frame of the 
expression sequence is represented as a point in the 3D 
feature space with the coordinate (L1, L2, L3). The 
gesture type of this point is determined by this feature 
vector. For this end, a linear-kernel support vector 
machine is used [18]. SVM is well known for its 
kernel trick and large margin separation, and is 
suitable for our purpose. Besides, since this is a multi-
class classification task, we use the one-against-rest 
setting and train 6 binary SVM classifiers. 

 
Figure 7: The information criteria for selecting 
number of Gaussians. This figure shows the value of 
AIC and log-likelihood versus the number of Gaussians. 
As the number of Gaussians increases, the log-
likelihood increases while AIC varies, since the formula 
of AIC takes the model complexity into account.

 P1 P2 P3 P4 P5 P6 P7 P8 P9 
a1a4 3 4 6 2 4 3 2 1 1 
a2a3 5 6 5 5 4 2 2 2 4 
b1b2 6 5 5 2 5 5 2 6 2 

Table 1: Optimal number of Gaussians for mixture 
modeling. This table shows the number of Gaussians 
selected by AIC for the “happiness” expression.

5. Experiments 

5.1. Setting of Experiments 
All of our videos are recorded in 320x240 
uncompressed AVI video formats using a CCD web 
camera. The recording environment is indoor office 
environment. In each experiment, people are instructed 
to make different expressions. In each sequence, 
people start from the neutral expression in near frontal 
view and move their head as they perform a facial 
gesture. Our training database contains 8 subjects. For 
each person, we record 5 sequences for each 
expression: 4 for training and 1 for test. The duration 
and intensity of the expression varies; it depends on 
the characteristics of subject’s facial gestures. Figure 8 
shows some frames for each of the expressions 
considered in this paper. 

5.2. Performance Evaluation 
We have conducted an evaluation of the proposed 
method on the collected samples. Table 2 shows the 
confusion matrix of the classification. We could see 
the happiness and surprise expressions have highest 
recognition rate. The other 4 expressions have a lower 
recognition rate; the disgust and sadness expressions 
have worst performance and they are more likely to 
confuse with each other. To our knowledge this 
constitutes the first evaluation of facial gestures 
recognition in presence of significant head motion. In 
[16], although they proposed an approach for view-
independent expression recognition, they evaluated 
their approach on a different set of expressions, neutral, 
opening / closing mouth, smile, and raising eyebrow, 
instead of the emotion-specific expression prototypes. 
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6. Conclusions 
In this paper, we propose an approach for the facial 
gestures recognition problem in an interactive 
environment. We use a 3D head pose estimator to deal 
with the moving heads and non-frontal faces. The 
region-based face description and affine motion 
models are applied to capture the expressions changes. 
To encode the interdependency between 9 face 
regions, we build a graphical model for these regions. 
This graphical model is learned from the training 
database via finite mixture modeling of multivariate 
Gaussian distributions. The log-likelihoods of 
expression sequences are computed using such 
graphical models. Facial gestures are classified based 
on the value of log-likelihood functions and the SVM 
is applied for this classification task. As experimental 
results show, this approach could classify the facial 
gestures in presence of 3D head motion. 

For future research direction, we plan to further 
incorporate temporal information into our system, such 
as combining the proposed model to a HMM and 
recognizing facial gestures in presence of partial 
occlusions of the face. 
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