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Abstract 
This paper describes a method for building a cognitive map 
of a virtual urban environment. Our routines enable virtual 
humans to map their environment using a realistic model of 
perception. We based our implementation on a 
computational framework proposed by Yeap and Jefferies 
(Yeap & Jefferies 1999) for representing a local 
environment as a structure called an Absolute Space 
Representation (ASR). Their algorithms compute and 
update ASRs from a 2-1/2D 1 sketch of the local 
environment, and then connect the ASRs together to form a 
raw cognitive map. Our work extends the framework 
developed by Yeap and Jefferies in three important ways. 
First, we implemented the framework in a virtual training 
environment, the Mission Rehearsal Exercise (Swartout et 
al. 2001). Second, we describe a method for acquiring a 2-
1/2D sketch in a virtual world, a step omitted from their 
framework, but which is essential for computing an ASR. 
Third, we extend the ASR algorithm to map regions that are 
partially visible through exits of the local space. Together, 
the implementation of the ASR algorithm along with our 
extensions will be useful in a wide variety of applications 
involving virtual humans and agents who need to perceive 
and reason about spatial concepts in urban environments. 

Introduction 
Our goal is to develop virtual humans with believable 
perceptual and spatial behaviors. For a growing number of 
computer games, military training simulations, and 
immersive learning environments, the willingness of the 
participant to suspend disbelief hinges on the realism of 
the behavior of the virtual humans. Behaviors such as self-
location and way-finding have been investigated 
extensively in mobile robot applications, but there are 
numerous other spatial tasks more human in nature that 
need to be simulated in these applications. Interesting 
examples include communicating spatial information in 

1 Marr (1982) defines a 2-1/2D sketch to be a list of surfaces and 
their spatial layout. The sketch only includes the visible 
portions of the surfaces in the agent�s field of view. 

Copyright © 2002, American Association for Artificial Intelligence 
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natural language and social conventions such as initially 
blocking a doorway with your body and then stepping back 
to invite the visitor in. In military training simulations 
these include coordinated tactical movements, crowd 
control, avoiding snipers and ambushes, selecting 
helicopter landing zones, and establishing a security 
perimeter, to name a few. Underlying all these behaviors 
is the ability to perceive and build a spatial representation 
of the environment. 

Humans are quite good at remembering the layout of 
the places they inhabit or have visited and using this 
information to reason about everyday tasks such as finding 
the local grocery store and locating a parking space in spite 
of the traffic jam at one end of the parking lot. Becoming 
familiar with the configuration of a place like a town is a 
process that involves walking around, looking at buildings, 
trees, landmarks, streets and other details of the 
environment that are subsequently encoded into memories 
that make the place recognizable and easily navigated. 
The process of forming these spatial memories is called 
cognitive mapping (Chown & Kaplan & Kortenkamp 
1995; Kuipers 1978; 2000; Yeap 1988; Yeap & Jefferies 
1999). The ability to build a cognitive map is useful for 
any agent that has a need for tracking its location, 
navigating, and determining where places are located with 
respect to one another (Chown & Kaplan & Kortenkamp 
1995; Kortenkamp & Bonasso & Murphy 1998; Kuipers 
1978; 2000; Levitt & Lawton 1990). 

This paper describes a method for building a cognitive 
map of a synthetic urban setting based on the realistic 
limits of human visual perception. Humans have a limited 
field of view and cannot see through solid objects like 
walls and these same limitations are imposed on our virtual 
agents. Only by making a series of observations from 
different perspectives over time can a cognitive map be 
built. 

We based our implementation on a computational 
framework proposed by Yeap and Jefferies (Yeap & 
Jefferies 1999) that represents a local environment as a 
structure called an Absolute Space Representation (ASR).  
Building an ASR involves perceiving the local 
surroundings, the area immediately visible to the viewer, 
and computing the boundaries and exits of this space. The 
boundaries are obstacles that prohibit movement through 

www.aaai.org
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the space such as walls. Exits are gaps in the boundaries  
that permit the agents to leave one local space and enter 
another. For example, a room would be a single ASR with 
a number of boundaries (walls) and a single exit (the door).  
The exit would connect to another ASR (the hallway) with 
a number of boundaries and exits (doors) connecting to 
more ASRs representing other offices. By exploring a 
series of local spaces, representing them as ASRs, and 
connecting them together via their exits, a viewer builds a 
raw cognitive map2. We have taken this framework and 
extended it in a number of ways: 

 We applied a theoretical computational framework of 
cognitive mapping to a training application that 
includes virtual humans in a virtual environment. To 
date most cognitive theories have been implemented in 
mobile robots, whose perceptual abilities are 
somewhat different than a human�s, and whose 
purpose is not to exhibit human-like behavior. Yeap 
tested his theory with a simulated robot in a 2D world. 
Our cognitive mapping is done in the urban 
environment of the Mission Rehearsal Exercise 
(Swartout et al. 2001). Urban environments are of 
particular interest to game developers and the military 
simulation community. 

 We extract a 2-1/2D sketch from a scene in a 
graphically rendered virtual world. Yeap finesses the 
issue of perception by assuming that a 2-1/2D map is 
going to be available. Computer games and military 
simulations generally also avoid the perception step by 
using a database of 3D models. 

 We extended Yeap and Jefferies� cognitive mapping 
algorithms (Yeap & Jefferies 1999). Instead of 
limiting the agent to only building one ASR at a time, 
focusing only the immediate surroundings, we save 
the residue of what has been perceived through the 
exits in the local environment and begin the 
construction of the new ASRs before the areas are 
visited. This particular extension was made because 
we believe that cognitive mapping must not be limited 
to places that have been physically explored. Virtual 
humans need to build cognitive maps in anticipation of 
the next space they will enter. 

Figure 1: View of a street in a virtual urban environment. 

2 A raw cognitive map contains just information about the local 
environment without the addition of semantic interpretation 
(Yeap 1988; Yeap & Jefferies 1999). 

Motivation 
As previously stated, we are developing virtual humans for 
an immersive military training environment called the 
Mission Rehearsal Exercise (MRE) System. In the MRE 
the participants interact with virtual soldiers to perform 
missions involving tasks such as securing an area from 
attack, controlling an angry crowd, tending to an injured 
child, and securing a landing zone for a medevac 
helicopter. To perform these tasks the virtual soldiers must 
explore their surroundings, locate a suitable clear space, 
identify the potential lanes of attack into that space, and 
position themselves to block these lanes of attack.  
Performing these tasks requires spatial knowledge about 
landing zones and lanes of attack as well as perception of 
the environment to locate regions and exits that match 
those spatial concepts. 

Many current applications finesse perception and 
spatial reasoning as much as possible. Computer games 
(Liden 2001) and military simulations (Reece & Kraus & 
Dumanoir 2000; Stanzione et al. 1996) often require a 
designer to annotate the environment with invisible spatial 
references to help virtual humans behave believably.  
Another approach is to give agents omniscient perception, 
giving them a complete map of the static environment and 
the current location of every dynamic entity. The 
alternative, demonstrated by the research presented here 
and the research of Terzopoulos and Rabie (Terzopoulos & 
Rabie 1995), is to give virtual humans realistic perception 
of their environment. Perception would be realistic both in 
the types of information sensed (no invisible spatial cues, 
no map) and the limitations on that sensing (no 360 degree 
field of view, no seeing through walls). As the virtual 
human moves around and views the environment from 
different perspectives, it constructs a cognitive map of its 
surroundings and uses that map for spatial reasoning. 

Creating a cognitive map of the virtual environment, 
based on realistic perception, has a number of advantages 
over annotating the environment with spatial references. 
Different virtual humans can represent the environment 
with different cognitive maps based on their roles and 
knowledge. While the underlying ASR representation may 
be the same, the annotations placed on the spatial map 
would depend on the role and knowledge of the virtual 
human. A local resident�s cognitive map of their home 
city, including street names and friend�s houses, would be 
very different from the cognitive map of a soldier sent to 
defend that city which might include lines of attack and 
defensive strong points. Different map representations, 
based on different roles, will have far-reaching  
implications on the behavior of the virtual humans, 
affecting everything from natural language understanding 
and generation to movement and goal selection. In 
addition, cognitive mapping doesn�t require the 
environment designer to embed spatial information in the 
environment, which can be a time consuming process. 
When spatial knowledge is encoded in the model, the 
designer must anticipate every behavior that could be 



      

   

         
    

   
       

 
    

   
       

       
   

     
   

   
          

    
 

  
  

   

      
  

     
         

  
     

  

   
  
 
  

  
  

           
 

           
    

   
  

       
 

  
 

 
 

            
        

     
 

  

 
           

    
         

       

     
           

     
    

   
  

    
 

 

  
            

    
         

  
 

  
 

  
  

      
  

  
   

      
            

 
 

   
        

   

     

          

potentially associated with a feature, leaving little for the 
agent to decide. 

A cognitive map built from realistically limited 
perception also has a number of advantages over giving 
agents omniscient perception. At first it might seem that 
omniscient agents are simpler since they don�t require a 
realistic model of perception. However, for their behavior 
to be believable, omniscient agents must pretend to ignore 
the sensory information they wouldn�t realistically 
perceive. Differentiating between the information they 
should and should not pretend to ignore requires a model 
of realistic perception at some level. In fact, realistically 
limited perception can help to guarantee that a virtual 
human is behaving believably by not allowing behavior to 
be affected by information a real human won�t know. 
Realistic perception will lead to virtual humans that 
explore the environment and look around realistically to 
map their environment. In addition, these agents will get 
lost and make realistic mistakes based on their limited 
knowledge of the environment. 

Building A Cognitive Map 
Based on the Absolute Space Representation (ASR) 
algorithm developed by Yeap and Jefferies (Yeap & 
Jefferies 1999), our virtual human maps the local 
environment by continuously perceiving a scene, 
constructing a 2-1/2 D sketch of the surfaces, building a 
local map, and connecting it with other local maps that it 
has already constructed in the process of exploring a 
virtual town. Our mapping algorithm takes into account 
major static objects (i.e. buildings and trees) that exist 
anywhere in the urban environment. Buildings are 
represented in the virtual environment by polygons that 
form the walls and roof of each building. Features on the 
walls (i.e. doors and windows) are texture-mapped onto the 
polygons and are thus ignored by our system. Each tree is 
represented by two or three polygons arranged in an X or 
star-shape with the image of the tree texture-mapped onto 
each polygon. The perception system constructs a 2-1/2D 
sketch from these static objects as described below. 

The basic idea behind Yeap�s theory of cognitive 
maps (Yeap 1988) is to build a representation of the open 
space around the viewer. As previously mentioned this 
space is defined by the boundaries and exits that surround 
the viewer. The key to Yeap�s construction of a raw 
cognitive map is the identification of the exits, which are 
defined as gaps between obstacles. This is the 
commonsense definition of an exit. But how does one 
compute it? We need to start by looking for gaps in the 
surfaces surrounding the viewer, beginning by looking for 
occluded edges. An exit is a way of leaving a local space. 
It is also a signal to compute a new ASR. Exits serve 
another important purpose in that they identify places in 
the space that have not been uncovered yet. These are 
places that are occluded and the viewer is not sure of. It 
may not actually be an exit, merely a place that has not 
been explored yet. If the goal is to build a complete raw 

cognitive map of an area, then the exits may actually be 
areas one needs to explore more fully, thus guiding the 
mapping process. 

Figure 2: Detecting the edges in the urban scene from Figure 
1. 

Constructing a 2-1/2D sketch 
Yeap and Jefferies� cognitive mapping algorithm takes as 
input a 2-1/2D sketch of the scene (Marr 1982; Yeap & 
Jefferies 1999). The sketch is the set of boundary surfaces, 
including depth information, currently perceived by the 
viewer. These surfaces are represented as an ordered list of 
edges (with vertices), as they appear from left to right in 
the field of view. But how is this sketch constructed? The 
answer depends on the domain of the application. Yeap 
tested the algorithm in a relatively simple 2D simulated 
domain but gives no details about how the sketch was 
derived. In a mobile robot domain, the sensors and 
computer vision system detect the edges and surfaces and 
recognizes objects in an effort to determine that the 
obstacles are indeed buildings or other real things. Much 
progress has been made in this area (e.g., see Kortenkamp 
& Bonasso & Murphy 1998 on mobile robotics), but it still 
remains a significant challenge. One of the contributions 
in this paper is an approach to building a 2-1/2D sketch in 
graphically rendered virtual environments. 

We took a hybrid approach to building the 2-1/2D 
sketch that combines the use of the graphical model 
(known as the scene graph), which is represented as a 
graph of nodes corresponding to the objects in the scene, a 
graphics-rendering engine, and visual routines for edge 
detection. Each of the buildings and other objects in 
Figure 1 are represented as nodes in the scene graph that 
will be rendered in real time. Rather than relying on 
computer vision to recognize that these are buildings or 
trees, we simplify the process by using the scene graph to 
differentiate between individual buildings, individual trees 
and the ground. But this only takes us part of the way 
toward building a 2-1/2D sketch. To do this, we take the 
following steps: 
1. Traverse the scene graph and assign a unique number 

to each node corresponding to a static object (i.e.,  
building or tree). This is done by taking advantage of 
the node pre-draw callback function in the graphics 
routines. The advantage of this is that each of the 
static objects, which are fairly simple boxes or star-
shaped �trees� underneath the texture maps, will be 
assigned a unique number, which will be used later for 
edge detection.  

2. Cull the nodes, leaving only the visible ones. This step 
creates the occlusions that the viewer would 



     
   

          
        

  
 

   
  

      
  

    

    
   

  
    

 
     

 

     

    

 

       
 

          
         

                                                                 
           

   
     

     
   

    
 

 

          
  

          
         

    

  

 

  
 

   
 

  
      

 
   

 
 

           
 

  
 

  
   

            

experience in the real world. Without this step the 
model would be transparent to the viewer, enabling 
the virtual human to see through solid walls. This step 
is essential for creating a 2-1/2D sketch. Without the 
occlusions the viewer would have be able to create a 
full 3D model. 

3. Draw each node with its assigned number (color). The 
result of this step can be seen in Figure 2, where the 
static objects appear as different colors, corresponding 
to the unique numbers that were assigned. 

4. Find the edges between the ground and the static 
objects using standard edge detection techniques. 

 Use the graphics z-buffer to get the depth into the 
picture�we need the (x,y,z) positions of the 
points. 

 Assume you know the color / # of the ground. 
Scan from the sky downward to find the ground 
edge. Do this across the image. 

The result is a set of line segments along the 
boundaries between the static objects and the ground. 
Pixelation may result in short line segments that have to be 
joined together to form longer lines. These longer lines are 
smoothed out using standard edge detection techniques. 

The output from this step is a 2-1/2D sketch, which is 
a set of edges and vertices in a format that can be used for 
Yeap�s ASR algorithm, which we will describe in the next 
section3. 

(a) (b) (c) 
Figure 3: (a) A result of 2-1/2D sketch. (b) Boundary 
segments representing trees are identified with red bold line. 

(c) The boundary segments overlaid onto the urban 
environment with trees indicated by circles. 

Mapping the local space 
Once a 2-1/2D sketch has been built, the key to computing 
an ASR is detecting where the boundaries and exits are 
located in the local space. Exits serve not only the obvious 
functional role of providing egress from a local space, but 
passing through an exit also triggers the construction of a 
new local map, which is represented as an ASR (Yeap & 
Jefferies 1999).  Exits serve as the connections between the 
maps of local spaces (ASRs), and the raw cognitive map 
ends up being a network of exit nodes connecting local 
maps. Finding the boundaries of the local space is 
important for defining the extent of the area. Locating the 
exits is essential, both as a way of indicating how to leave 
a local space, and as a way of connecting pieces of the 
cognitive map together into a whole. 

Exits are detected by looking for places in the scene 
where one surface partially occludes another. The gap 
between the two surfaces is what Yeap and Jefferies (Yeap 
& Jefferies 1999) call an occluded edge. An occluded 
edge has a visible vertex, which is also called the 
occluding vertex and is closest to the viewer, and an 
occluded vertex, which is where the occluded edge 
intersects with the backmost surface. Let�s assume we 
want to calculate an exit in Figure 4. An occluded edge, 
CD divides the surfaces in current field of view. Thus, we 
split the surfaces into two groups: one containing all the 
surfaces left of vertex C and the other containing all the 
surfaces right of vertex C. An exit is the shortest span 
between the occluding vertex (i.e., C) and a point in the 
second group of surfaces. In this example, CJ is selected 
as the shortest span. Other candidates that were rejected as 
longer spans include CD, CE, CF, CP, CG, CH, CI, CJ, 
CK, and CL. Point P is identified because CP is normal 
line to FG. In this case, CJ is a doubtless exit because J,  
the selected vertex, is not the occluded vertex. The CJ exit 
is the gap that must be crossed in order to reach the 
occluded edge. If CD were the shortest span this exit 
would have been a doubtful exit. 

3 For the details of the algorithm see Yeap and Jeffires. 
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Figure 4: Calculating an exit in a 2-1/2D sketch. 

To identify an exit, the surfaces from the current 2-
1/2D sketch are scanned in order, from left to right, in a 
search for occluding vertices. Since the exit is the gap that 
must be crossed in order to reach an occluded edge, 
identifying the exit starts with the occluded edge. Each 
unoccluded vertex is chosen and the closest point on a 
surface contained in the opposite group is found. The exit 
is the edge formed by the unoccluded vertex and the 
closest point. Once identified, it is then inserted into the 
list of surfaces in its logical place adjacent to the surfaces 
contributing the vertices. The surfaces beyond the exit are 
trimmed from the ASR. They are no longer taken into 
consideration for mapping local space since they have been 
determined to be outside the exit. Yeap discards the 
trimmings�but in our implementation this residue is saved 
and used to map spaces outside of one�s local space. This 
will be discussed in more detail in the section on mapping 
outside the local space. Figure 5 shows a 2-1/2D map of a 
virtual urban environment before the exits are identified.  
Figure 6 shows the same 2-1/2D map with the doubtless 
and doubtful exits identified and displayed. The slight 
differences between the boundaries in the two images are 
the result of slight variations in the edge detection between 
runs. 

Updating the local map 
Since the viewer�s perspective changes over time the ASR 
must continually be updated. Even a simple shift in gaze 
will uncover more details about the environment. Moving 
through the environment will cause some occlusions to be 
uncovered and others to be formed, so the question is how 
to incorporate this information into the raw cognitive map. 

Figure 5: A top-down perspective of a 2-1/2D sketch of the 
virtual environment as perceived from the position marked 
by the end of the red line on the right. 

Figure 6: The 2-1/2D sketch from Figure 5 after exit  
identification. The building boundaries are shown as dark 
lines, the doubtless exits as thin lines, and the doubtful exits as 
dotted lines. The viewer�s position is shown by the rightmost 
red line. 

Yeap and Jefferies (Yeap & Jefferies 1999) 
distinguish between two kinds of exits: doubtful and  
doubtless. A doubtless exit is one that takes the viewer out 
of the local space. It consists of two unoccluded 
vertices�they must both have been visible sometime 
during the mapping process. In determining a doubtless 
exit, it is the shortest possible span between two surfaces. 
Once Yeap�s algorithm has determined that an exit is 
doubtless it not longer needs to be updated. 

When one of an exit�s vertices is occluded, it is a 
doubtful exit. As  the  viewer  moves  through  the  
environment, this type of exit must be updated. This is 



 
      

        
   

     
 

   
    

    

   
 

   
     

    
    

    
  

   
       

 

 
     

  
  

    
    

  

      

  

          
 

  
  

  

    

   
  

  
  

     
           

                                                                 
           

    
  

 
          

   
   

  
  

    

 
          

           
         
        

 
      
 

   
 

          
 

 

 
   

         

        
 

  

 

because as one�s perspective changes, more of the 
occluded edge may be uncovered and the location of the 
occluded vertex will also change to be the shortest distance 
spanning the gap. This goes on until one of two things 
happens: either the exit is identified as doubtless (i.e., both 
vertices are unoccluded) or the occluded surface is 
completely uncovered and it is discovered that there is no 
exit. 

The ASR is updated once per frame, where the frame 
rate may be as high as 20-30 frames per second. This may 
prove to be excessive in the long run, but it works for now.  
Each update involves taking the following steps4: 
1. Sense the environment and construct a 2-1/2D sketch. 

Call this perspective CURRENT-VIEW. 
2. Check whether the viewer is still inside the current 

ASR. This can be achieved with a simple intersection 
test: draw a line from the viewer�s current location to 
the initial position in the ASR and check whether this 
line intersects with the surface of the ASR. 

3. If an exit has NOT been crossed, update the doubtful 
exits based on the CURRENT-VIEW. If the change 
in perspective uncovers an occlusion, this will cause 
the size of the corresponding doubtless exit to 
decrease. 
For each doubtful exit: 
a. Label the two surfaces that contribute vertices to 

the doubtful exit as S1 and S2. 
b. If CURRENT-VIEW includes S1 and S2, then 

replace the doubtful exit with the surfaces that lie 
between S1 and S2. Note: We found that we had 
to relax this condition somewhat because there are 
cases where the vertices of the doubtful exit are 
outside of the field of view of the agent.      

4. Else, if an exit has been crossed, this means that the 
viewer is no longer in the local space represented by 
the current ASR. The next section deals with this 
situation, which involves extending the raw cognitive 
map with the current ASR and either starting a new 
ASR or using a previously computed one. 

Extending the Cognitive Map 
As new areas are mapped they are added to a network of 
ASRs that comprise the raw cognitive map. Whenever the 
viewer crosses an exit and enters a previously unexplored 
area, a new ASR is computed. Figure 7 shows a raw 
cognitive map with three ASRs. In this example the 
viewer starts where the arrows begin and proceeds up the 
street, turns left at an alley, goes between two buildings, 
and enters an open area surrounded by some buildings.  
The first ASR maps the street and ends when the street 
enters an intersection with another street, the second ASR 
represents the alleyway between the buildings, and the 
third ASR is still being formed for the open area as shown 
on the left side of Figure 7. Note that the third ASR 

4 These steps are based on the extend-ASR algorithm in Yeap and 
Jefferies (1999). 

contains doubtful exits on the left and right sides of the 
viewer. This indicates that the area has not yet been 
completely mapped. Once the viewer�s perspective has 
been rotated, these areas will be filled in with surfaces and 
doubtless exits. Figure 8 shows a more complete map of 
the third ASR overlaid onto the image of the town. 

Extending a raw cognitive map requires the ability to 
recognize that an area that has previously been visited, 
otherwise areas would be re-mapped every time they were 
visited. The recognition routine is triggered when the 
viewer crosses an exit. 

When the viewer crosses an exit, there are three 
possible cases: 
1. The newly entered space was previously mapped and 

the exit is a known connector between the two ASRs. 
When this is the case, no updates to the raw cognitive 
map are required. Use the ASR from the raw cognitive 
map as a map of the local space. 

2. The newly entered space was previously mapped, but 
it was not known that this exit connected these two 
ASRs. In this case update the raw cognitive map to 
reflect the fact that this exit is a connector, and use the 
ASR from the raw cognitive map. 

3. The newly entered space is unexplored, so the viewer 
must begin mapping it. The steps in mapping this 
space are: (1) place the just exited ASR into the raw  
cognitive map, (2) create a new ASR, and (3) connect 
the ASR the viewer just departed with the new ASR at 
the exit point. 

Figure 7: Three ASRs are shown connected together. The 
third ASR contains both doubtless (thin lines) and doubtful 
(dotted lines) exits. 

Mapping Outside the Local Space 
We developed an extension to Yeap and Jefferies� 
algorithm that enables the viewer to map spaces outside the 
current ASR.  In their version, the ASR algorithm maps the 
local space by iteratively identifying exits and trimming off 
the surfaces beyond the exit.  The only thing that is  



            

 
          

        
 

    

           
   

   

 
   

    
 

 
  

 
 

  
    

 
   

     
  

  
       

 
  

      

    
  

 
 

 

      
        

  

 
    

     
   

       
 

  
      

 
  

 
    

 
  

 

     
 

   
        

       
   

 
  

   
  

     
  

         
 

      
 

  
  

  
         

  
 

 

            
   

 
     

    
                                                                 

      

 

mapped is what is in the current local space as they define 
it. Our extension to Yeap�s approach is to use the surfaces 
beyond exits to create a preliminary map of spaces that 
aren�t local to the agent. 

We do not believe that humans discard what they see 
on the other side of an exit. The cognitive mapping 
process is not confined to one�s local space. A person 
walking around in an unfamiliar building will probably 
focus their attention on perceiving and mapping the local 
space, but it seems highly improbable that they would 
ignore the layout of a room that happens to be on the other 
side of a door or down a hallway. In fact, what is seen 
down the hallway (or down the street), which is a different 
local space, may provide important information that will 
impact the behavior of the viewer even before that space is 
entered. 

An example of this arises in the context  of  an  
application that we have been working on for a military 
peacekeeping operation training exercise. Some virtual 
soldiers are looking for an open area that would be suitable 
for a medevac helicopter to land. A quick glance down an 
alley or street may reveal that there is no open space in the 
immediately adjacent spaces, but further down the street  
there is a major intersection where it may be possible for a 
helicopter to land. The intersection can be observed and 
partially mapped without physically leaving the current 
local space. If we restricted the cognitive mapping to only 
areas that had been physically visited, then the soldiers 
would have to behave unrealistically to acquire knowledge 
that is literally right before their eyes. For example, a 
soldier standing on the upper end of the first ASR shown 
in Figure 8 would be able to see into the intersection that is 
covered by the red shading. But according to Yeap & 
Jefferies 1999 this would not be mapped and therefore 
would not be accessible unless the soldier took a step out 
of the current ASR toward the intersection. 

To map areas outside of the current local space, we 
modified the ASR algorithm so that the areas outside the 
exits are not discarded. These are saved to form partial 
ASRs of the adjacent local spaces. 

Figure 8: A cognitive map, including residual-ASRs (shaded 
regions) constructed from the residue of local computations 

The basic idea is to not only compute an ASR of the 
current local space, but at the same time also map the 
perceivable surroundings outside the local space. We call 
this set of surroundings outside the local space residual-
ASRs since they are built by trimming the residue off of 
the current ASR. Residual-ASRs are updated every 
perception cycle, and their composition relies completely 
on the successive visual perspectives of the viewer. 
Computing a residual-ASR involves the following steps: 
1. Each perception cycle create a 2-1/2D sketch of the 

area in the agent�s field of view5. We refer to this 
sketch as the CURRENT-VIEW. 

2. Subtract the current ASR from the CURRENT-VIEW. 
Call the remainder the residue. This computation 
involves two steps: 
a. For each currently visible exit in the ASR, 

identify the surfaces and gaps in the CURRENT-
VIEW that appear through that exit. Designate 
these surfaces and spaces as the residue for that  
exit. 

b. Once the residue for an exit has been identified, 
use it to compute an ASR, i.e., identify the exits 
(doubtless and doubtful) and the surfaces using 
the same algorithm described previously. The 
result is the current-residual-ASR for that exit. 

3. After each perception cycle, update the cumulative 
residual-ASR for each of the exits.  The  current-
residual-ASR is only a snapshot.  Its results are used to 
update the cumulative residual-ASR. The updating 
may involve adding new surfaces, changing exits from 
doubtful to doubtless, or reducing the size of doubtless 
exits where occlusions are uncovered. 
With this extension to the basic ASR algorithm, a 

virtual human can map the perceivable areas outside of the 
local space while retaining the spatial interpretation 
afforded by the ASR. But what happens to these residual 
ASRs as the viewer travels from one local space to 
another? There are three cases we have considered: 
1. As the viewer moves from one local space (ASR) to 

another, all of the residual-ASRs are saved and 
indexed by the location of the exit through which the 
residue was collected. An ASR may have multiple 
residual-ASRs, one for each exit. When the viewer re-
enters an ASR, the residual-ASRs become available 
again. 

2. When a viewer goes through an exit into an area that 
was not previously visited, it will likely have a 
residual-ASR that it computed for that space. At this 
point the residual-ASR is discarded and an ASR is 
computed. In our future work we will use the 

5 This is the same 2-1/2D sketch that is used as input to the ASR-
update algorithm. 



  

           

          

     
  

    
    

  
     

   

   
           

    
          

 

 
    

  
    

   
        

 
 

 
 

   
  

 
  

  
  

 
       

   
       

         
  

         
       

     
         

    

 

      
    

   
     

 
  

    
     
 

    

 
     

      
   
      

 
     

   
 

   

   

 

  
     

        
 

 
    

    
  

      
           

   
     

   
     

  
     

        
     

   
   

   
  

   
 

    
     

    

residual-ASR as a starting point for computing a new 
ASR. 

3. When the viewer looks through an exit into a local 
space that has already been visited, then the viewer 
will recognize the space as having already being 
mapped, so it will not create a residual-ASR. It 
recognizes the space by taking the coordinates of the 
exit and indexing into the raw cognitive map, which 
contains all the exits and their locations. 
This extension to Yeap and Jefferies� theory and 

algorithms provides the viewer with the ability to map 
areas outside of its local space. Figure 8 shows some 
residual-ASRs shaded in red. For example, on the right 
hand side of Figure 8 there is a residual-ASR for the exit 
between the two buildings, looking out to the space 
beyond. In some cases phantom edges were detected due 
in part to the occlusions in the environment. In Figure 8, 
there is a slight mismatch between the lines of cognitive 
map and the background urban image due to scaling and 
alignment differences in the two software packages used to 
produce the two images. 

Applications Of Cognitive Maps 
Once a cognitive map of an area of the environment has 
been generated, the virtual human who generated that map 
can use it in a number of ways. In the Mission Rehearsal 
Exercise (Swartout 2001) mentioned in Section 2, many of 
the predicates used by the virtual human�s planner involve 
spatial concepts. These predicates represent concepts such 
as individuals or groups occupying a specific region 
(medic-at-injury-site, crowd-in-landing-zone) and 
exits/entrances to a region being covered (landing-zone-
secure, injury-site-secure). Currently the status of these 
predicates is updated through the script that drives the 
exercise. However, we are currently updating how these 
predicates are calculated within the virtual human�s 
perception and spatial reasoning. In the new approach the 
virtual human will create a cognitive map that includes 
ASRs corresponding to regions such as the landing zone 
and injury site. Updating a predicate such as medic-at-
injury-site will involve visually locating the medic and 
comparing the medic�s location to the boundaries of the 
injury site ASR. Updating the landing-zone-secure 
predicate will involve visually inspecting each exit  of  the  
landing zone ASR to ensure that friendly soldiers are 
protecting the exits.  

In addition to updating spatial predicates, a cognitive 
map can also be used to implement spatially oriented 
strategies. For example, a flanking maneuver might 
involve locating the ASR the enemy is in and attacking 
through two of that ASR�s exits simultaneously. Inherent 
in this strategy are the concepts of scouting, examining 
many ASRs to locate the enemy, and desirable defensive 
positions, ASRs that have a small number of exits. An 
ASR with a single exit may not be desirable, as it leaves no 
escape route. 

Cognitive maps will also be useful in communicating 
spatial information between agents. If both agents have 
similar cognitive maps then, once a common set of names 
for ASRs and exits has been negotiated, the agents can 
reference features of each other�s cognitive maps. 
Furthermore, one agent can add to another agent�s 
cognitive map (at an abstract level) by communicating 
spatial information about areas that the second agent hasn�t 
seen. For example, a sergeant might report to his 
lieutenant �We�ve located a suitable space for a landing 
zone. It�s an open area through the west exit of this area. 
It has three lanes of approach which have been secured.� 

Related Work 
Cognitive mapping research has been applied in the areas 
of mobile robotics, military simulations, and computer 
games. We briefly summarize the relationship of the 
research in these three areas to our own research (Hill & 
Han & van Lent 2002). 

Kuipers (Kuipers 1978) did some of groundbreaking 
work in cognitive mapping. He recently proposed a spatial 
semantic hierarchy (Kuipers 2000) as a way of 
representing knowledge of large-scale space. The spatial 
semantic hierarchy is actually a set of distinct but related 
ways of describing space, including sensory, control, 
causal, topological and metrical representations. He and 
Remolina recently also developed a formal logic for causal 
and topological maps (Remolina & Kuipers 2001). Kuipers 
has tested his approach on simulated robots. There are 
numerous other researchers in mobile robotics who have 
also developed and implemented cognitive mapping 
techniques, e.g., see (Kortenkamp & Bonasso & Murphy 
1998; Levitt & Lawton 1990). Chown et al. (Chown & 
Kaplan & Kortenkamp 1995) developed the PLAN system, 
which also uses viewer-based information to build a 
cognitive map. PLAN was implemented with a 
connectionist network with the purpose of integrating 
wayfinding with cognitive mapping. While the research in 
mobile robotics has a lot in common with our domain, one 
of the chief differences is that many of their methods were 
developed to deal with noisy sensors and the difficulty of 
discerning one�s location. Our emphasis is somewhat 
different in that we are trying to build agents with 
believable human-like behaviors. The sensors are not 
noisy, but they do operate with limitations. The end use of 
our cognitive maps is also somewhat different in that we 
are not just concerned about wayfinding but also about 
spatial awareness for a wide variety of tasks that robots are 
not normally concerned about. 

Computer game characters commonly have perceptual 
omniscience. Their perception is not modeled after human 
capabilities and limitations. To achieve human-like 
behavior the designers have to give the appearance of 
limited perception. Alternatively their superhuman 
capabilities are either attributed to superior ability or to 
cheating, which can be disheartening for human players. 
Spatial reasoning is frequently programmed into the 



  
   

     
  

  
      

   
  

    
         

    
    

  
 

    
  

  
  

   
  

 

 

  
    

 
           

           

   
       

   

       
      

      
  

  
    

 

 
   

    
         

        
 

   
  

     

   

   
 

  
 

    
   

 
    

    
 

  

     
      

    
       

 

  
 

 

          
   

     
 

         

environment rather than into the game�s characters (Liden 
2001). The game map consists of nodes linked together 
into a graph structure, which are then used as paths for the 
characters. For the characters to exhibit intelligent 
behavior, knowledge is encoded into the nodes and links 
about what behavior is appropriate at those locations. So a 
node or link may have information saying that a location is 
good for an ambush or that the character should crawl 
when traversing this link to remain undercover. As we 
mentioned earlier in this paper, the designers have to 
encode everything into the environment. While this is 
efficient in terms of runtime computation, it does not 
address the issue of generality. It is a labor-intensive 
process that must be done for each new game environment.  
An alternative to real-time spatial reasoning is to 
automatically pre-compute and store information about the 
environment using the methods described here. This would 
avoid the problem of having to analyze and hand encode 
the spatial characteristics of the environment into the map 
representation. Laird (Laird 2001) is the one exception in 
the computer games world. He combines the use of 
simulated perception (to trace the walls) and mapping to 
support more sophisticated AI-based behaviors such as 
ambushing and trapping. 

Military simulations generally require a lot of spatial 
reasoning. Research on virtual humans for military 
simulations has addressed the issue of spatial reasoning 
more broadly than in games. For example, Reece et al. 
(Reece & Kraus & Dumanoir 2000) have built on the work 
in path planning from AI and robotics. For areas outside 
of buildings they use A* search and represent the space 
with cell decomposition, and graph planning (which is 
somewhat similar to what games do.) But the characters 
are not limited to the graph when moving through most 
environments. Forbus et al. (Forbus & Mahoney & Dill 
2001) are striving to apply qualitative spatial reasoning to 
both military simulations and to strategy games. They are 
currently looking at ways to improve path planning to take 
into consideration trafficability, visibility, and fields of fire. 
They use a hybrid approach that combines the 
representations from cell decomposition and 
skeletonization. Up until now, however, they have focused 
on analyzing terrain rather than urban environments. 
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