

Applying Perceptually Driven Cognitive Mapping
To Virtual Urban Environments

Randall W. Hill, Jr. Changhee Han Michael van Lent

USC Institute for Creative Technologies
13274 Fiji Way, Suite 600, Marina del Rey, CA 90292-7008

{hill, changhee, vanlent}@ict.usc.edu

Abstract
This paper describes a method for building a cognitive map
of a virtual urban environment. Our routines enable virtual
humans to map their environment using a realistic model of
perception. We based our implementation on a
computational framework proposed by Yeap and Jefferies
(Yeap & Jefferies 1999) for representing a local
environment as a structure called an Absolute Space
Representation (ASR). Their algorithms compute and
update ASRs from a 2-1/2D 1 sketch of the local
environment, and then connect the ASRs together to form a
raw cognitive map. Our work extends the framework
developed by Yeap and Jefferies in three important ways.
First, we implemented the framework in a virtual training
environment, the Mission Rehearsal Exercise (Swartout et
al. 2001). Second, we describe a method for acquiring a 2-
1/2D sketch in a virtual world, a step omitted from their
framework, but which is essential for computing an ASR.
Third, we extend the ASR algorithm to map regions that are
partially visible through exits of the local space. Together,
the implementation of the ASR algorithm along with our
extensions will be useful in a wide variety of applications
involving virtual humans and agents who need to perceive
and reason about spatial concepts in urban environments.

Introduction
Our goal is to develop virtual humans with believable
perceptual and spatial behaviors. For a growing number of
computer games, military training simulations, and
immersive learning environments, the willingness of the
participant to suspend disbelief hinges on the realism of
the behavior of the virtual humans. Behaviors such as self-
location and way-finding have been investigated
extensively in mobile robot applications, but there are
numerous other spatial tasks more human in nature that
need to be simulated in these applications. Interesting
examples include communicating spatial information in

1 Marr (1982) defines a 2-1/2D sketch to be a list of surfaces and
their spatial layout. The sketch only includes the visible
portions of the surfaces in the agent�s field of view.

Copyright © 2002, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

natural language and social conventions such as initially
blocking a doorway with your body and then stepping back
to invite the visitor in. In military training simulations
these include coordinated tactical movements, crowd
control, avoiding snipers and ambushes, selecting
helicopter landing zones, and establishing a security
perimeter, to name a few. Underlying all these behaviors
is the ability to perceive and build a spatial representation
of the environment.

Humans are quite good at remembering the layout of
the places they inhabit or have visited and using this
information to reason about everyday tasks such as finding
the local grocery store and locating a parking space in spite
of the traffic jam at one end of the parking lot. Becoming
familiar with the configuration of a place like a town is a
process that involves walking around, looking at buildings,
trees, landmarks, streets and other details of the
environment that are subsequently encoded into memories
that make the place recognizable and easily navigated.
The process of forming these spatial memories is called
cognitive mapping (Chown & Kaplan & Kortenkamp
1995; Kuipers 1978; 2000; Yeap 1988; Yeap & Jefferies
1999). The ability to build a cognitive map is useful for
any agent that has a need for tracking its location,
navigating, and determining where places are located with
respect to one another (Chown & Kaplan & Kortenkamp
1995; Kortenkamp & Bonasso & Murphy 1998; Kuipers
1978; 2000; Levitt & Lawton 1990).

This paper describes a method for building a cognitive
map of a synthetic urban setting based on the realistic
limits of human visual perception. Humans have a limited
field of view and cannot see through solid objects like
walls and these same limitations are imposed on our virtual
agents. Only by making a series of observations from
different perspectives over time can a cognitive map be
built.

We based our implementation on a computational
framework proposed by Yeap and Jefferies (Yeap &
Jefferies 1999) that represents a local environment as a
structure called an Absolute Space Representation (ASR).
Building an ASR involves perceiving the local
surroundings, the area immediately visible to the viewer,
and computing the boundaries and exits of this space. The
boundaries are obstacles that prohibit movement through

www.aaai.org
mailto:vanlent}@ict.usc.edu

the space such as walls. Exits are gaps in the boundaries
that permit the agents to leave one local space and enter
another. For example, a room would be a single ASR with
a number of boundaries (walls) and a single exit (the door).
The exit would connect to another ASR (the hallway) with
a number of boundaries and exits (doors) connecting to
more ASRs representing other offices. By exploring a
series of local spaces, representing them as ASRs, and
connecting them together via their exits, a viewer builds a
raw cognitive map2. We have taken this framework and
extended it in a number of ways:

 We applied a theoretical computational framework of
cognitive mapping to a training application that
includes virtual humans in a virtual environment. To
date most cognitive theories have been implemented in
mobile robots, whose perceptual abilities are
somewhat different than a human�s, and whose
purpose is not to exhibit human-like behavior. Yeap
tested his theory with a simulated robot in a 2D world.
Our cognitive mapping is done in the urban
environment of the Mission Rehearsal Exercise
(Swartout et al. 2001). Urban environments are of
particular interest to game developers and the military
simulation community.

 We extract a 2-1/2D sketch from a scene in a
graphically rendered virtual world. Yeap finesses the
issue of perception by assuming that a 2-1/2D map is
going to be available. Computer games and military
simulations generally also avoid the perception step by
using a database of 3D models.

 We extended Yeap and Jefferies� cognitive mapping
algorithms (Yeap & Jefferies 1999). Instead of
limiting the agent to only building one ASR at a time,
focusing only the immediate surroundings, we save
the residue of what has been perceived through the
exits in the local environment and begin the
construction of the new ASRs before the areas are
visited. This particular extension was made because
we believe that cognitive mapping must not be limited
to places that have been physically explored. Virtual
humans need to build cognitive maps in anticipation of
the next space they will enter.

Figure 1: View of a street in a virtual urban environment.

2 A raw cognitive map contains just information about the local
environment without the addition of semantic interpretation
(Yeap 1988; Yeap & Jefferies 1999).

Motivation
As previously stated, we are developing virtual humans for
an immersive military training environment called the
Mission Rehearsal Exercise (MRE) System. In the MRE
the participants interact with virtual soldiers to perform
missions involving tasks such as securing an area from
attack, controlling an angry crowd, tending to an injured
child, and securing a landing zone for a medevac
helicopter. To perform these tasks the virtual soldiers must
explore their surroundings, locate a suitable clear space,
identify the potential lanes of attack into that space, and
position themselves to block these lanes of attack.
Performing these tasks requires spatial knowledge about
landing zones and lanes of attack as well as perception of
the environment to locate regions and exits that match
those spatial concepts.

Many current applications finesse perception and
spatial reasoning as much as possible. Computer games
(Liden 2001) and military simulations (Reece & Kraus &
Dumanoir 2000; Stanzione et al. 1996) often require a
designer to annotate the environment with invisible spatial
references to help virtual humans behave believably.
Another approach is to give agents omniscient perception,
giving them a complete map of the static environment and
the current location of every dynamic entity. The
alternative, demonstrated by the research presented here
and the research of Terzopoulos and Rabie (Terzopoulos &
Rabie 1995), is to give virtual humans realistic perception
of their environment. Perception would be realistic both in
the types of information sensed (no invisible spatial cues,
no map) and the limitations on that sensing (no 360 degree
field of view, no seeing through walls). As the virtual
human moves around and views the environment from
different perspectives, it constructs a cognitive map of its
surroundings and uses that map for spatial reasoning.

Creating a cognitive map of the virtual environment,
based on realistic perception, has a number of advantages
over annotating the environment with spatial references.
Different virtual humans can represent the environment
with different cognitive maps based on their roles and
knowledge. While the underlying ASR representation may
be the same, the annotations placed on the spatial map
would depend on the role and knowledge of the virtual
human. A local resident�s cognitive map of their home
city, including street names and friend�s houses, would be
very different from the cognitive map of a soldier sent to
defend that city which might include lines of attack and
defensive strong points. Different map representations,
based on different roles, will have far-reaching
implications on the behavior of the virtual humans,
affecting everything from natural language understanding
and generation to movement and goal selection. In
addition, cognitive mapping doesn�t require the
environment designer to embed spatial information in the
environment, which can be a time consuming process.
When spatial knowledge is encoded in the model, the
designer must anticipate every behavior that could be

potentially associated with a feature, leaving little for the
agent to decide.

A cognitive map built from realistically limited
perception also has a number of advantages over giving
agents omniscient perception. At first it might seem that
omniscient agents are simpler since they don�t require a
realistic model of perception. However, for their behavior
to be believable, omniscient agents must pretend to ignore
the sensory information they wouldn�t realistically
perceive. Differentiating between the information they
should and should not pretend to ignore requires a model
of realistic perception at some level. In fact, realistically
limited perception can help to guarantee that a virtual
human is behaving believably by not allowing behavior to
be affected by information a real human won�t know.
Realistic perception will lead to virtual humans that
explore the environment and look around realistically to
map their environment. In addition, these agents will get
lost and make realistic mistakes based on their limited
knowledge of the environment.

Building A Cognitive Map
Based on the Absolute Space Representation (ASR)
algorithm developed by Yeap and Jefferies (Yeap &
Jefferies 1999), our virtual human maps the local
environment by continuously perceiving a scene,
constructing a 2-1/2 D sketch of the surfaces, building a
local map, and connecting it with other local maps that it
has already constructed in the process of exploring a
virtual town. Our mapping algorithm takes into account
major static objects (i.e. buildings and trees) that exist
anywhere in the urban environment. Buildings are
represented in the virtual environment by polygons that
form the walls and roof of each building. Features on the
walls (i.e. doors and windows) are texture-mapped onto the
polygons and are thus ignored by our system. Each tree is
represented by two or three polygons arranged in an X or
star-shape with the image of the tree texture-mapped onto
each polygon. The perception system constructs a 2-1/2D
sketch from these static objects as described below.

The basic idea behind Yeap�s theory of cognitive
maps (Yeap 1988) is to build a representation of the open
space around the viewer. As previously mentioned this
space is defined by the boundaries and exits that surround
the viewer. The key to Yeap�s construction of a raw
cognitive map is the identification of the exits, which are
defined as gaps between obstacles. This is the
commonsense definition of an exit. But how does one
compute it? We need to start by looking for gaps in the
surfaces surrounding the viewer, beginning by looking for
occluded edges. An exit is a way of leaving a local space.
It is also a signal to compute a new ASR. Exits serve
another important purpose in that they identify places in
the space that have not been uncovered yet. These are
places that are occluded and the viewer is not sure of. It
may not actually be an exit, merely a place that has not
been explored yet. If the goal is to build a complete raw

cognitive map of an area, then the exits may actually be
areas one needs to explore more fully, thus guiding the
mapping process.

Figure 2: Detecting the edges in the urban scene from Figure
1.

Constructing a 2-1/2D sketch
Yeap and Jefferies� cognitive mapping algorithm takes as
input a 2-1/2D sketch of the scene (Marr 1982; Yeap &
Jefferies 1999). The sketch is the set of boundary surfaces,
including depth information, currently perceived by the
viewer. These surfaces are represented as an ordered list of
edges (with vertices), as they appear from left to right in
the field of view. But how is this sketch constructed? The
answer depends on the domain of the application. Yeap
tested the algorithm in a relatively simple 2D simulated
domain but gives no details about how the sketch was
derived. In a mobile robot domain, the sensors and
computer vision system detect the edges and surfaces and
recognizes objects in an effort to determine that the
obstacles are indeed buildings or other real things. Much
progress has been made in this area (e.g., see Kortenkamp
& Bonasso & Murphy 1998 on mobile robotics), but it still
remains a significant challenge. One of the contributions
in this paper is an approach to building a 2-1/2D sketch in
graphically rendered virtual environments.

We took a hybrid approach to building the 2-1/2D
sketch that combines the use of the graphical model
(known as the scene graph), which is represented as a
graph of nodes corresponding to the objects in the scene, a
graphics-rendering engine, and visual routines for edge
detection. Each of the buildings and other objects in
Figure 1 are represented as nodes in the scene graph that
will be rendered in real time. Rather than relying on
computer vision to recognize that these are buildings or
trees, we simplify the process by using the scene graph to
differentiate between individual buildings, individual trees
and the ground. But this only takes us part of the way
toward building a 2-1/2D sketch. To do this, we take the
following steps:
1. Traverse the scene graph and assign a unique number

to each node corresponding to a static object (i.e.,
building or tree). This is done by taking advantage of
the node pre-draw callback function in the graphics
routines. The advantage of this is that each of the
static objects, which are fairly simple boxes or star-
shaped �trees� underneath the texture maps, will be
assigned a unique number, which will be used later for
edge detection.

2. Cull the nodes, leaving only the visible ones. This step
creates the occlusions that the viewer would

experience in the real world. Without this step the
model would be transparent to the viewer, enabling
the virtual human to see through solid walls. This step
is essential for creating a 2-1/2D sketch. Without the
occlusions the viewer would have be able to create a
full 3D model.

3. Draw each node with its assigned number (color). The
result of this step can be seen in Figure 2, where the
static objects appear as different colors, corresponding
to the unique numbers that were assigned.

4. Find the edges between the ground and the static
objects using standard edge detection techniques.

 Use the graphics z-buffer to get the depth into the
picture�we need the (x,y,z) positions of the
points.

 Assume you know the color / # of the ground.
Scan from the sky downward to find the ground
edge. Do this across the image.

The result is a set of line segments along the
boundaries between the static objects and the ground.
Pixelation may result in short line segments that have to be
joined together to form longer lines. These longer lines are
smoothed out using standard edge detection techniques.

The output from this step is a 2-1/2D sketch, which is
a set of edges and vertices in a format that can be used for
Yeap�s ASR algorithm, which we will describe in the next
section3.

(a) (b) (c)
Figure 3: (a) A result of 2-1/2D sketch. (b) Boundary
segments representing trees are identified with red bold line.

(c) The boundary segments overlaid onto the urban
environment with trees indicated by circles.

Mapping the local space
Once a 2-1/2D sketch has been built, the key to computing
an ASR is detecting where the boundaries and exits are
located in the local space. Exits serve not only the obvious
functional role of providing egress from a local space, but
passing through an exit also triggers the construction of a
new local map, which is represented as an ASR (Yeap &
Jefferies 1999). Exits serve as the connections between the
maps of local spaces (ASRs), and the raw cognitive map
ends up being a network of exit nodes connecting local
maps. Finding the boundaries of the local space is
important for defining the extent of the area. Locating the
exits is essential, both as a way of indicating how to leave
a local space, and as a way of connecting pieces of the
cognitive map together into a whole.

Exits are detected by looking for places in the scene
where one surface partially occludes another. The gap
between the two surfaces is what Yeap and Jefferies (Yeap
& Jefferies 1999) call an occluded edge. An occluded
edge has a visible vertex, which is also called the
occluding vertex and is closest to the viewer, and an
occluded vertex, which is where the occluded edge
intersects with the backmost surface. Let�s assume we
want to calculate an exit in Figure 4. An occluded edge,
CD divides the surfaces in current field of view. Thus, we
split the surfaces into two groups: one containing all the
surfaces left of vertex C and the other containing all the
surfaces right of vertex C. An exit is the shortest span
between the occluding vertex (i.e., C) and a point in the
second group of surfaces. In this example, CJ is selected
as the shortest span. Other candidates that were rejected as
longer spans include CD, CE, CF, CP, CG, CH, CI, CJ,
CK, and CL. Point P is identified because CP is normal
line to FG. In this case, CJ is a doubtless exit because J,
the selected vertex, is not the occluded vertex. The CJ exit
is the gap that must be crossed in order to reach the
occluded edge. If CD were the shortest span this exit
would have been a doubtful exit.

3 For the details of the algorithm see Yeap and Jeffires.

A
B

C

D

G
H

F

J

K

I

L

E

Agent�s eye

(P)

Figure 4: Calculating an exit in a 2-1/2D sketch.

To identify an exit, the surfaces from the current 2-
1/2D sketch are scanned in order, from left to right, in a
search for occluding vertices. Since the exit is the gap that
must be crossed in order to reach an occluded edge,
identifying the exit starts with the occluded edge. Each
unoccluded vertex is chosen and the closest point on a
surface contained in the opposite group is found. The exit
is the edge formed by the unoccluded vertex and the
closest point. Once identified, it is then inserted into the
list of surfaces in its logical place adjacent to the surfaces
contributing the vertices. The surfaces beyond the exit are
trimmed from the ASR. They are no longer taken into
consideration for mapping local space since they have been
determined to be outside the exit. Yeap discards the
trimmings�but in our implementation this residue is saved
and used to map spaces outside of one�s local space. This
will be discussed in more detail in the section on mapping
outside the local space. Figure 5 shows a 2-1/2D map of a
virtual urban environment before the exits are identified.
Figure 6 shows the same 2-1/2D map with the doubtless
and doubtful exits identified and displayed. The slight
differences between the boundaries in the two images are
the result of slight variations in the edge detection between
runs.

Updating the local map
Since the viewer�s perspective changes over time the ASR
must continually be updated. Even a simple shift in gaze
will uncover more details about the environment. Moving
through the environment will cause some occlusions to be
uncovered and others to be formed, so the question is how
to incorporate this information into the raw cognitive map.

Figure 5: A top-down perspective of a 2-1/2D sketch of the
virtual environment as perceived from the position marked
by the end of the red line on the right.

Figure 6: The 2-1/2D sketch from Figure 5 after exit
identification. The building boundaries are shown as dark
lines, the doubtless exits as thin lines, and the doubtful exits as
dotted lines. The viewer�s position is shown by the rightmost
red line.

Yeap and Jefferies (Yeap & Jefferies 1999)
distinguish between two kinds of exits: doubtful and
doubtless. A doubtless exit is one that takes the viewer out
of the local space. It consists of two unoccluded
vertices�they must both have been visible sometime
during the mapping process. In determining a doubtless
exit, it is the shortest possible span between two surfaces.
Once Yeap�s algorithm has determined that an exit is
doubtless it not longer needs to be updated.

When one of an exit�s vertices is occluded, it is a
doubtful exit. As the viewer moves through the
environment, this type of exit must be updated. This is

because as one�s perspective changes, more of the
occluded edge may be uncovered and the location of the
occluded vertex will also change to be the shortest distance
spanning the gap. This goes on until one of two things
happens: either the exit is identified as doubtless (i.e., both
vertices are unoccluded) or the occluded surface is
completely uncovered and it is discovered that there is no
exit.

The ASR is updated once per frame, where the frame
rate may be as high as 20-30 frames per second. This may
prove to be excessive in the long run, but it works for now.
Each update involves taking the following steps4:
1. Sense the environment and construct a 2-1/2D sketch.

Call this perspective CURRENT-VIEW.
2. Check whether the viewer is still inside the current

ASR. This can be achieved with a simple intersection
test: draw a line from the viewer�s current location to
the initial position in the ASR and check whether this
line intersects with the surface of the ASR.

3. If an exit has NOT been crossed, update the doubtful
exits based on the CURRENT-VIEW. If the change
in perspective uncovers an occlusion, this will cause
the size of the corresponding doubtless exit to
decrease.
For each doubtful exit:
a. Label the two surfaces that contribute vertices to

the doubtful exit as S1 and S2.
b. If CURRENT-VIEW includes S1 and S2, then

replace the doubtful exit with the surfaces that lie
between S1 and S2. Note: We found that we had
to relax this condition somewhat because there are
cases where the vertices of the doubtful exit are
outside of the field of view of the agent.

4. Else, if an exit has been crossed, this means that the
viewer is no longer in the local space represented by
the current ASR. The next section deals with this
situation, which involves extending the raw cognitive
map with the current ASR and either starting a new
ASR or using a previously computed one.

Extending the Cognitive Map
As new areas are mapped they are added to a network of
ASRs that comprise the raw cognitive map. Whenever the
viewer crosses an exit and enters a previously unexplored
area, a new ASR is computed. Figure 7 shows a raw
cognitive map with three ASRs. In this example the
viewer starts where the arrows begin and proceeds up the
street, turns left at an alley, goes between two buildings,
and enters an open area surrounded by some buildings.
The first ASR maps the street and ends when the street
enters an intersection with another street, the second ASR
represents the alleyway between the buildings, and the
third ASR is still being formed for the open area as shown
on the left side of Figure 7. Note that the third ASR

4 These steps are based on the extend-ASR algorithm in Yeap and
Jefferies (1999).

contains doubtful exits on the left and right sides of the
viewer. This indicates that the area has not yet been
completely mapped. Once the viewer�s perspective has
been rotated, these areas will be filled in with surfaces and
doubtless exits. Figure 8 shows a more complete map of
the third ASR overlaid onto the image of the town.

Extending a raw cognitive map requires the ability to
recognize that an area that has previously been visited,
otherwise areas would be re-mapped every time they were
visited. The recognition routine is triggered when the
viewer crosses an exit.

When the viewer crosses an exit, there are three
possible cases:
1. The newly entered space was previously mapped and

the exit is a known connector between the two ASRs.
When this is the case, no updates to the raw cognitive
map are required. Use the ASR from the raw cognitive
map as a map of the local space.

2. The newly entered space was previously mapped, but
it was not known that this exit connected these two
ASRs. In this case update the raw cognitive map to
reflect the fact that this exit is a connector, and use the
ASR from the raw cognitive map.

3. The newly entered space is unexplored, so the viewer
must begin mapping it. The steps in mapping this
space are: (1) place the just exited ASR into the raw
cognitive map, (2) create a new ASR, and (3) connect
the ASR the viewer just departed with the new ASR at
the exit point.

Figure 7: Three ASRs are shown connected together. The
third ASR contains both doubtless (thin lines) and doubtful
(dotted lines) exits.

Mapping Outside the Local Space
We developed an extension to Yeap and Jefferies�
algorithm that enables the viewer to map spaces outside the
current ASR. In their version, the ASR algorithm maps the
local space by iteratively identifying exits and trimming off
the surfaces beyond the exit. The only thing that is

mapped is what is in the current local space as they define
it. Our extension to Yeap�s approach is to use the surfaces
beyond exits to create a preliminary map of spaces that
aren�t local to the agent.

We do not believe that humans discard what they see
on the other side of an exit. The cognitive mapping
process is not confined to one�s local space. A person
walking around in an unfamiliar building will probably
focus their attention on perceiving and mapping the local
space, but it seems highly improbable that they would
ignore the layout of a room that happens to be on the other
side of a door or down a hallway. In fact, what is seen
down the hallway (or down the street), which is a different
local space, may provide important information that will
impact the behavior of the viewer even before that space is
entered.

An example of this arises in the context of an
application that we have been working on for a military
peacekeeping operation training exercise. Some virtual
soldiers are looking for an open area that would be suitable
for a medevac helicopter to land. A quick glance down an
alley or street may reveal that there is no open space in the
immediately adjacent spaces, but further down the street
there is a major intersection where it may be possible for a
helicopter to land. The intersection can be observed and
partially mapped without physically leaving the current
local space. If we restricted the cognitive mapping to only
areas that had been physically visited, then the soldiers
would have to behave unrealistically to acquire knowledge
that is literally right before their eyes. For example, a
soldier standing on the upper end of the first ASR shown
in Figure 8 would be able to see into the intersection that is
covered by the red shading. But according to Yeap &
Jefferies 1999 this would not be mapped and therefore
would not be accessible unless the soldier took a step out
of the current ASR toward the intersection.

To map areas outside of the current local space, we
modified the ASR algorithm so that the areas outside the
exits are not discarded. These are saved to form partial
ASRs of the adjacent local spaces.

Figure 8: A cognitive map, including residual-ASRs (shaded
regions) constructed from the residue of local computations

The basic idea is to not only compute an ASR of the
current local space, but at the same time also map the
perceivable surroundings outside the local space. We call
this set of surroundings outside the local space residual-
ASRs since they are built by trimming the residue off of
the current ASR. Residual-ASRs are updated every
perception cycle, and their composition relies completely
on the successive visual perspectives of the viewer.
Computing a residual-ASR involves the following steps:
1. Each perception cycle create a 2-1/2D sketch of the

area in the agent�s field of view5. We refer to this
sketch as the CURRENT-VIEW.

2. Subtract the current ASR from the CURRENT-VIEW.
Call the remainder the residue. This computation
involves two steps:
a. For each currently visible exit in the ASR,

identify the surfaces and gaps in the CURRENT-
VIEW that appear through that exit. Designate
these surfaces and spaces as the residue for that
exit.

b. Once the residue for an exit has been identified,
use it to compute an ASR, i.e., identify the exits
(doubtless and doubtful) and the surfaces using
the same algorithm described previously. The
result is the current-residual-ASR for that exit.

3. After each perception cycle, update the cumulative
residual-ASR for each of the exits. The current-
residual-ASR is only a snapshot. Its results are used to
update the cumulative residual-ASR. The updating
may involve adding new surfaces, changing exits from
doubtful to doubtless, or reducing the size of doubtless
exits where occlusions are uncovered.
With this extension to the basic ASR algorithm, a

virtual human can map the perceivable areas outside of the
local space while retaining the spatial interpretation
afforded by the ASR. But what happens to these residual
ASRs as the viewer travels from one local space to
another? There are three cases we have considered:
1. As the viewer moves from one local space (ASR) to

another, all of the residual-ASRs are saved and
indexed by the location of the exit through which the
residue was collected. An ASR may have multiple
residual-ASRs, one for each exit. When the viewer re-
enters an ASR, the residual-ASRs become available
again.

2. When a viewer goes through an exit into an area that
was not previously visited, it will likely have a
residual-ASR that it computed for that space. At this
point the residual-ASR is discarded and an ASR is
computed. In our future work we will use the

5 This is the same 2-1/2D sketch that is used as input to the ASR-
update algorithm.

residual-ASR as a starting point for computing a new
ASR.

3. When the viewer looks through an exit into a local
space that has already been visited, then the viewer
will recognize the space as having already being
mapped, so it will not create a residual-ASR. It
recognizes the space by taking the coordinates of the
exit and indexing into the raw cognitive map, which
contains all the exits and their locations.
This extension to Yeap and Jefferies� theory and

algorithms provides the viewer with the ability to map
areas outside of its local space. Figure 8 shows some
residual-ASRs shaded in red. For example, on the right
hand side of Figure 8 there is a residual-ASR for the exit
between the two buildings, looking out to the space
beyond. In some cases phantom edges were detected due
in part to the occlusions in the environment. In Figure 8,
there is a slight mismatch between the lines of cognitive
map and the background urban image due to scaling and
alignment differences in the two software packages used to
produce the two images.

Applications Of Cognitive Maps
Once a cognitive map of an area of the environment has
been generated, the virtual human who generated that map
can use it in a number of ways. In the Mission Rehearsal
Exercise (Swartout 2001) mentioned in Section 2, many of
the predicates used by the virtual human�s planner involve
spatial concepts. These predicates represent concepts such
as individuals or groups occupying a specific region
(medic-at-injury-site, crowd-in-landing-zone) and
exits/entrances to a region being covered (landing-zone-
secure, injury-site-secure). Currently the status of these
predicates is updated through the script that drives the
exercise. However, we are currently updating how these
predicates are calculated within the virtual human�s
perception and spatial reasoning. In the new approach the
virtual human will create a cognitive map that includes
ASRs corresponding to regions such as the landing zone
and injury site. Updating a predicate such as medic-at-
injury-site will involve visually locating the medic and
comparing the medic�s location to the boundaries of the
injury site ASR. Updating the landing-zone-secure
predicate will involve visually inspecting each exit of the
landing zone ASR to ensure that friendly soldiers are
protecting the exits.

In addition to updating spatial predicates, a cognitive
map can also be used to implement spatially oriented
strategies. For example, a flanking maneuver might
involve locating the ASR the enemy is in and attacking
through two of that ASR�s exits simultaneously. Inherent
in this strategy are the concepts of scouting, examining
many ASRs to locate the enemy, and desirable defensive
positions, ASRs that have a small number of exits. An
ASR with a single exit may not be desirable, as it leaves no
escape route.

Cognitive maps will also be useful in communicating
spatial information between agents. If both agents have
similar cognitive maps then, once a common set of names
for ASRs and exits has been negotiated, the agents can
reference features of each other�s cognitive maps.
Furthermore, one agent can add to another agent�s
cognitive map (at an abstract level) by communicating
spatial information about areas that the second agent hasn�t
seen. For example, a sergeant might report to his
lieutenant �We�ve located a suitable space for a landing
zone. It�s an open area through the west exit of this area.
It has three lanes of approach which have been secured.�

Related Work
Cognitive mapping research has been applied in the areas
of mobile robotics, military simulations, and computer
games. We briefly summarize the relationship of the
research in these three areas to our own research (Hill &
Han & van Lent 2002).

Kuipers (Kuipers 1978) did some of groundbreaking
work in cognitive mapping. He recently proposed a spatial
semantic hierarchy (Kuipers 2000) as a way of
representing knowledge of large-scale space. The spatial
semantic hierarchy is actually a set of distinct but related
ways of describing space, including sensory, control,
causal, topological and metrical representations. He and
Remolina recently also developed a formal logic for causal
and topological maps (Remolina & Kuipers 2001). Kuipers
has tested his approach on simulated robots. There are
numerous other researchers in mobile robotics who have
also developed and implemented cognitive mapping
techniques, e.g., see (Kortenkamp & Bonasso & Murphy
1998; Levitt & Lawton 1990). Chown et al. (Chown &
Kaplan & Kortenkamp 1995) developed the PLAN system,
which also uses viewer-based information to build a
cognitive map. PLAN was implemented with a
connectionist network with the purpose of integrating
wayfinding with cognitive mapping. While the research in
mobile robotics has a lot in common with our domain, one
of the chief differences is that many of their methods were
developed to deal with noisy sensors and the difficulty of
discerning one�s location. Our emphasis is somewhat
different in that we are trying to build agents with
believable human-like behaviors. The sensors are not
noisy, but they do operate with limitations. The end use of
our cognitive maps is also somewhat different in that we
are not just concerned about wayfinding but also about
spatial awareness for a wide variety of tasks that robots are
not normally concerned about.

Computer game characters commonly have perceptual
omniscience. Their perception is not modeled after human
capabilities and limitations. To achieve human-like
behavior the designers have to give the appearance of
limited perception. Alternatively their superhuman
capabilities are either attributed to superior ability or to
cheating, which can be disheartening for human players.
Spatial reasoning is frequently programmed into the

environment rather than into the game�s characters (Liden
2001). The game map consists of nodes linked together
into a graph structure, which are then used as paths for the
characters. For the characters to exhibit intelligent
behavior, knowledge is encoded into the nodes and links
about what behavior is appropriate at those locations. So a
node or link may have information saying that a location is
good for an ambush or that the character should crawl
when traversing this link to remain undercover. As we
mentioned earlier in this paper, the designers have to
encode everything into the environment. While this is
efficient in terms of runtime computation, it does not
address the issue of generality. It is a labor-intensive
process that must be done for each new game environment.
An alternative to real-time spatial reasoning is to
automatically pre-compute and store information about the
environment using the methods described here. This would
avoid the problem of having to analyze and hand encode
the spatial characteristics of the environment into the map
representation. Laird (Laird 2001) is the one exception in
the computer games world. He combines the use of
simulated perception (to trace the walls) and mapping to
support more sophisticated AI-based behaviors such as
ambushing and trapping.

Military simulations generally require a lot of spatial
reasoning. Research on virtual humans for military
simulations has addressed the issue of spatial reasoning
more broadly than in games. For example, Reece et al.
(Reece & Kraus & Dumanoir 2000) have built on the work
in path planning from AI and robotics. For areas outside
of buildings they use A* search and represent the space
with cell decomposition, and graph planning (which is
somewhat similar to what games do.) But the characters
are not limited to the graph when moving through most
environments. Forbus et al. (Forbus & Mahoney & Dill
2001) are striving to apply qualitative spatial reasoning to
both military simulations and to strategy games. They are
currently looking at ways to improve path planning to take
into consideration trafficability, visibility, and fields of fire.
They use a hybrid approach that combines the
representations from cell decomposition and
skeletonization. Up until now, however, they have focused
on analyzing terrain rather than urban environments.

Acknowledgments
The work described in this paper was supported in part

by the U.S. Army Research Office under contract
#DAAD19-99-C-0046. The content of this article does not
necessarily reflect the position or the policy of the US
Government.

References
Chown, E., Kaplan, S., and Kortencamp, D. 1995.
Prototypes, location, and associative networks (PLAN):

Towards a unified theory of cognitive maps. Cognitive
Science 19:1-51.
Forbus, K., Mahoney, J., and Dill, K. 2001. How
qualitative spatial reasoning can improve strategy game
AIs. In Proceedings of the 2001 AAAI Spring Symposium
on Artificial Intelligence and Interactive Entertainment:
AAAI Press.
Hill, R., Han, C., and van Lent, M. 2002. Perceptually
driven cognitive mapping of urban environments. In
Proceedings of the First International Conference on
Autonomous Agents and Multiagent Systems.
Kortenkamp, D., Bonasso, R.P., and Murphy, R., (editors).
1998. Artificial Intelligence and Mobile Robots. Menlo
Park, CA: AAAI Press.
Kuipers, B. 1978. Modeling spatial knowledge. Cognitive
Science 2:129-153.
Kuipers, B. 2000. The spatial semantic hierarchy. Artificial
Intelligence 119:191-233.
Laird, J. 2001. It knows what you are going to do: Adding
anticipation to a Quakebot. In Proceedings of the Fifth
International Conference on Autonomous Agents.
Montreal, Canada, May 28-June 1.
Laird, J. and van Lent, M. 2001. Human Level AI�s killer
application: Interactive computer games. AI Magazine,
Volume 22, Issue 2, Summer.
Levitt, T. and Lawton, D. 1990. Qualitative Navigation for
Mobile Robots. Artificial Intelligence 44(3): 305-361.
Liden, L. 2001. Using nodes to develop strategies for
combat with multiple enemies. In Proceedings of the 2001
AAAI Spring Symposium on Artificial Intelligence and
Interactive Entertainment: AAAI Press.
Marr, D. 1982 Vision: A computational investigation into
the human representation and processing of visual
information: W.H. Freeman and Company.
Reece, D., Kraus, M., and Dumanoir, P. 2000. Tactical
movement planning for individual combatants. In
Proceedings of the 9th Conference on Computer Generated
Forces and Behavior Representation. Orlando, FL.
Remolina, E. and Kuipers, B. 2001. A logical account of
causal and topological maps. In Proceedings of
International Joint Conference on Artificial Intelligence
(IJCAI-01). Seattle, WA.
Stanzione, T., Evans, A., Chamberlain, F., Buettner, C.,
Mabius, L., Fisher, J., Sousa, M., and Lu, H. 1996.
Multiple Elevation Structures in the Improved Computer
Generated Forces Terrain Database. In Proceedings of the
6th Computer Generated Forces and Behavioral
Representation Conference. University of Central Florida.
Swartout, W., Hill, R., Gratch, J., Johnson, L., Kyriakakis,
C., LaBore, C., Lindheim, R., Marsella, S., Miraglia, D.,

Moore, B., Morie, J., Rickel, J., Thiebaux, M., Tuch, L.,
Whitney, R., and Douglas, J. 2001. Toward the Holodeck:
Integrating Graphics, Sound, Character and Story. In
Proceedings of the Fifth International Conference on
Autonomous Agents. Montreal, Canada, May 28-June 1.
Terzopoulos, D. and Rabie, T. 1995. Animat Vision:
Active Vision in Artificial Animals. In Proceedings of the

Fifth International Conference on Computer Vision (ICCV
�95). 801-808. Cambridge, MA, June.
Yeap, W.K. 1988. Towards a computational theory of
cognitive maps. Artificial Intelligence 34:297-360.
Yeap, W.K. and Jefferies, M.E. 1999. Computing a
representation of the local environment. Artificial
Intelligence 107:265-301.

