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ABSTRACT 
This paper describes a method for making short-term predictions 
about the movement of mobile agents in complex terrain. Virtual 
humans need this ability in order to shift their visual attention 
between dynamic objects�predicting where an object will be 
located a few seconds in the future facilitates the visual 
reacquisition of the target object. Our method takes into account 
environmental cues in making predictions and it also indicates 
how long the prediction is valid, which varies depending on the 
context. We implemented this prediction technique in a virtual 
pilot that flies a helicopter in a synthetic environment. 

Categories and Subject Descriptors 
I.2.10 Vision and scene understanding. Perceptual reasoning, 
representations, data structures, and transformation. 

General Terms 
Algorithms, Performance, Design. 

Keywords 
Perception, Prediction, Mobile Agent. 

1. INTRODUCTION 
In this paper we present a method for making short-term 
predictions about the direction that a mobile agent will travel as it 
traverses complex terrain. This capability has been integrated with 
the perceptual system of a virtual human who pilots a helicopter 
in a synthetic world. The motivation for developing a method for 
anticipating where to look is rooted in the need for visual 
attention in virtual pilots. For a number of tasks, the pilot�s visual 
attention is divided between tracking one or more vehicles and 
scanning the environment for information. To accomplish this 
involves shifting the pilot�s gaze from the vehicle(s) being 
tracked to other objects in the environment. Figure 1 illustrates a 
pilot shifting attention between two tanks on a curved road. When 
the tanks are far enough apart, it can be difficult to reacquire a 
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COPYRIGHT 2002 ACM 1-58113-480-0/02/0007�$5.00. 

moving object after a number of seconds have passed, since their 
paths are not simple linear projections and they can travel at high 
speeds along these roads. Looking away even for a few seconds 
can result in losing track of a vehicle since it can move hundreds 
of feet in a short time. 

To make it easier to visually reacquire a moving vehicle, we 
wanted to enable the pilot to make short-term predictions of 
where the vehicle will be located up to seven seconds in the 
future. With this prediction the pilot would be able to shift back 
his gaze to approximately the right place to reacquire the target 
object. But projecting the direction and location of a vehicle is not 
a simple matter�terrain features such as rivers and mountains, 
and cultural features such as roads and bridges, can strongly 
influence the path taken by a driver. We do not believe it is 
sufficient to predict a vehicle�s location by making a simple linear 
projection. A driver may choose to turn at a road intersection or 
change direction to avoid a natural obstacle such as a lake or a 
steep mountain. Moving at 48 kilometers/hour, a vehicle can 
cover 100 meters in the short time the pilot glances away, or 
worse, the vehicle may change direction and end up someplace 
unexpected. In either case, the observer needs to reacquire the 
visual target with a minimal amount of search. 

Figure 1: Tracking and reacquiring moving entities 

We hypothesize that the environment provides visual cues that 
can be used for making short-term predictions about a mobile 
agent�s location without taking into account its goals or 
intentions. While knowledge of an agent�s intentions may also be 
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useful in making such predictions, that approach is not the focus 
of this study. Instead, we have implemented a neural network that 
takes as input a set of terrain features in the vicinity of a mobile 
agent, and with this information it generates a probability vector 
that predicts the likelihood that the agent will travel in each of 
fifteen different directions. This is transformed into a prediction 
about the agent�s future location, along with a time period that it 
is valid. We integrated the prediction capability with the 
perceptual system of a virtual human pilot, which was 
implemented in Soar, an architecture commonly used for building 
knowledge-based agents. 

2. VISUAL PERCEPTION IN A 
SYNTHETIC WORLD 

This method was developed for virtual humans that are used in 
military simulations where combat situations are modeled at the 
level of individual entities [4]. An individual entity can be a 
truck, tank, aircraft, individual combatant, or any other distinct, 
active object. These entities are called synthetic forces and they  
are typically semi-autonomous, meaning that they require human 
intervention when they get stuck in situations where they do not 
know what to do next. Our efforts are focused on the creation of 
intelligent forces, which both achieve  a significantly  higher  
degree of autonomy and simulate human behavior [8,9,18]. 

Visual perception in our synthetic world  involves  three  distinct  
problems: perception of terrain, perception of vehicle instruments, 
and perception of other entities. The first problem, the perception 
of terrain, is critical for tasks such as flying, especially at low 
levels where the possibility of colliding with the ground requires 
the pilot to continually monitor for the presence of obstacles in 
the flight path. The terrain is available on demand in the form of a 
polygonal surface. Major features such as rivers and roads are 
annotated in the terrain database and are available by querying by 
location. The virtual pilot perceives the terrain via a look-ahead 
sensor that samples points along the flight path for the altitude 
and the pilot adjusts the flight parameters accordingly [18]. This 
approach to terrain perception provides sufficient functionality for 
the pilot to fly safely, but it does not provide the level of realism 
needed for tasks such as flying along a contour line around a hill 
instead of simply flying over it. Such behaviors require a more 
general visual capability than we have yet addressed. 

The second problem, the perception of cockpit instruments, is 
what enables the virtual pilot to keep track of the helicopter�s 
current state (e.g.., air speed, altitude above ground level, 
heading, and so on). We do not model the eye gazing at the 
cockpit instruments, rather, the vehicle�s state is continually 
perceived. Based on these parameters, the virtual pilot modifies 
the parameters of the helicopter for flying. 

Finally, the perception of entities is necessary for tasks such as 
tracking, formation flying, and targeting. The virtual pilot 
perceives other entities using a simulated visual sensor, which is 
designed to model human visual perception of entities. Entity 
perception is driven by the arrival of a stream of entity-state 
updates. Each update characterizes the momentary state of an 
entity: it provides information such as its identity, location, and 
velocity. These updates are filtered through models of the pilot�s 
visual sensors to determine what information is potentially 
perceptible. Entities that are too far away will be imperceptible. 

Entities within the perceptible range of the model may still be 
rendered imperceptible if they are occluded by a terrain feature or 
by an environmental factor such as smoke or dust.  The  sensor  
model also determines the resolution of the percept based on 
factors like distance, dwell time, and visibility. Hence, an entity 
may initially be recognized only as a vehicle when perceived at a 
great distance, but it may be identifiable as a specific tank model 
at a closer range. 

3. VISUAL ATTENTION 
Our ultimate goal is to create virtual humans with believable 
behaviors. One of the characteristics of humans is the ability to 
direct their visual attention to objects in the environment. This 
capability not only has an observable behavioral manifestation, 
but it also has implications for what an agent knows or does not 
know, based on what it has perceived. So for the purpose of 
achieving believable behavior, it is important to model visual 
attention. As it turns out, there is a functional need for visual 
attention in the synthetic world that mirrors the real world. Early 
models of our virtual pilot would crash their helicopters when 
there were a lot of entities in their visual field. Since they could 
see everything within a 360-degree arc and a radius of 7 
kilometers, it should not have been too surprising that the 
perceptual-cognitive system would get bogged down since equal 
attention was at times being given to hundreds of objects in the 
environment simultaneously. What was lacking was a way for the 
pilot to focus its visual attention [8]. Attention filters out excess 
information and enables the perceiver to focus on a limited set of 
objects or region of space. 

The motivation for anticipating where to look stems directly from 
the need to model visual attention in virtual humans, particularly 
when visual perception is reduced from a 360-degree field of view 
(FOV) to just 30 degrees. While it is well known that humans can 
typically perceive objects within a 210-degree horizontal field of 
view, the details are perceived in a much smaller area of the 
fovea, which measures 1-2 degrees across. Rather than represent 
the different levels of acuity in the visual field and all that this 
would entail, we chose instead to model a functional field of view 
of 30 degrees. The rationale behind this decision is 
straightforward. For this study we wished to develop a method for 
shifting attention from one moving object to another, where the 
reacquisition of an object is aided by a short-term prediction of its 
location in the context of complex terrain. Since objects are 
automatically recognized in the simulation, there is no need to 
model the saccadic eye movements that rapidly move the high-
acuity fovea around an object during the recognition process. The 
functional field of view represents an area where human attention 
could reasonably be applied on a time scale of approximately one 
second or more for tasks such as search and tracking. The size and 
use of a functional field of view is comparable to what others 
have used. For example, Aasman [1] modeled automobile drivers 
with a functional field of view of 20 degrees and Reece [15] uses 
a 60 degree FOV for simulated soldiers. 

Reducing the size of the field of view had the effect of filtering 
out a lot of stimuli, but it also forced the issue of how to control 
the pilot�s focus of attention and gaze. For example, when a pilot 
is tracking two objects, one of which is not currently in view, it 
has to shift its visual attention between the objects, and it has to 
do it frequently enough to remain sufficiently aware of the 
situation to avoid disasters such as collisions. But enabling the 



 

   
  

   
 

   

   
 

  
         

     
   
  

  
  

  
     

    
     

   
   

  
   

    
   

     
   

 
  

  

   

   
   

    

  
      

  
 

   

  
   

  
    

         
 

        
    

 

    
 

   
   

 
           

     
  

 
 

      
    

  
     

   
             

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     
 

   
           

      
             
  

    
 

           
    

   
     

    
   

     
   

 

 

 

  

pilot to shift its visual attention raises the question that is the 
focus of this paper: how long can it look away from a moving 
target without losing track of it? When it is time to shift visual 
attention back to a target, there has to be a reasonable prediction 
of where the object will be located to ease the reacquisition. 

Now that we have presented the context for modeling visual 
perception, we will describe a method for predicting a target 
object's future position, and the amount of time the prediction is 
valid, given the current environmental state (e.g., terrain features) 
and the observed motion of the object. 

4. APPROACH 
The basic assumption behind this approach is that terrain 
influences the path taken by a vehicle, regardless of its 
destination. The goal is to model this influence as a predictive 
function that can be used to generate expectations about where an 
observed vehicle will move next. A simple, commonly used 
approach is the least squares method, which uses the history of 
motion to predict future behavior by extrapolating a path to fit the 
already established linear pattern. This approach can work 
satisfactorily in situations where the path is a trajectory of some 
sort, but when there are obstacles in the way of the vehicle, a 
recent history of motion may not produce valid predictions. 
Typical real-world terrain contains sharp turns in the road, major 
bodies of water, and mountain ranges that will influence the path 
taken by the vehicle. Figure 2 shows an example of a tank 
following a curved road. The tank�s path is tightly constrained by 
the terrain�even if it chose to leave the road the mountains and 
the lake would serve as obstacles to be avoided. We also 
considered using Kalman filters [19] to make the predictions but 
decided against it for the same reason. Recursive estimation 
procedures are applied to information from the past to make a 
prediction, which does not take into consideration what can be 
seen in the future. Finally, we also considered using a rule-based 
approach to making these predictions, but decided against it since 
it would be too hard initially to acquire the complex relationships 
between terrain and movement. 

In the end, we chose to use an artificial neural network to predict 
the near-term direction and location of a vehicle. The obvious 
advantage of neural networks is that they can be trained to 
recognize this relationship. Once trained, the artificial neural 
network can be used to look at the terrain in front of a vehicle and 
make a prediction about its near-term direction and location. The 
remainder of this section describes our modeling decisions, how 
the neural network was trained, and how the output of the neural 
network is transformed into a prediction about location. 

4.1 Modeling the perception of terrain 
For this study we chose to model the influence of seven terrain 
features: mountains, hard roads, soft roads, passable water, 
impassable water, buildings and forests. All of these features 
were available in the terrain database�by querying a specific 
location in the terrain one can find out whether one or more of 
these features is present there. Because of this way of storing 
information, we had to take samples of the areas of interest rather 
than doing an exhaustive query of the space. 

Our algorithm takes samples of the terrain features along radials 
within the other agent�s 120-degree field of view, every 15 

degrees, out to the 600-meter range limit. Each radial is divided 
into three segments: the first is 100 meters long, the second is 200 
meters, and the third is 300 meters. 20 samples are taken within 
each segment of each radial, thus samples are taken every 5 
meters for the first 100 meters, every 10 meters in the second 
segment, and every 15 meters for the third segment. In all, the 
field of view is divided into 27 subfields (9 radials X 3 segments 
per radial), with 20 samples per subfield, for a total of 540 
samples. Each sample results in a 7-tuple of boolean values, one 
for each terrain feature. If a feature is detected in one of a 
subfield�s samples it is then considered to be present in the 
subfield. In the end, each subfield is represented as a 7-tuple, in 
the same was as the sample. Figure 2 shows the sampling pattern 
as a set of radial lines extending out from the nose of the target 
agent, oriented on the agent�s current heading. 

15° 120° 

300m 

200m 

100m 

Mountain 
Region 

Lake 
Region 

Terrain Data: 
1 1 0 0 0 0 0 

Figure 2: Modeling what another agent can �see� 

4.2 Learning to predict the influence of 
terrain 

We used the standard approach to training a neural network�we 
gave it sufficient training data to set the weights within the 
network and then applied the network to actual data to test its 
accuracy. To collect the training data, we ran a series of twenty 
different scenarios. In each scenario there was a single mobile 
agent, a tank, who either drove on a road or cross-country. The 
tank�s highest speed was 48 km/hr (13.3 m/sec), and we assumed 
that the speed of the tank remained fairly constant on straight 
roads. 

The neural network takes 190 inputs and produces 15 outputs. 
The inputs are delivered as a vector of boolean values; each of the 
27 subfields contributes its own 7-tuple, which adds up to 189. In 
addition there is one bias input, making a total of 190 inputs to the 
network. 

The output of the network is a vector of probabilities for each of 
15 discrete headings that the agent may choose relative to its 
current direction, ranging from �35 degrees to +35 degrees, in 
five degree increments. If the output is 0 degrees it means that 



 

     
 

 

 
   

  
 

    

     
    

  
   

  

      
 

   
     

 
 

 
    
 

  
   

  
 
    

     

  
     

  
   

   
 
 

 
  

 
  

 
     

  
  

  

   
   

 

    
     

    
         

   

      
  

            
    

          
  

           
      

   
         
          

           
  

    
   

           
 

 

 

 

  

                                     

 
 

 

         
  

 
           

     

    

    
     

  
   

 
 

  
 

           
   

   
            

        

the agent will continue on its current heading. The value assigned 
to each angle indicates the probability that the agent will choose 
that particular direction. 

4.3 Predicting where and when to look 
It is not enough to predict the direction that a mobile agent will go 
in the next instant�we want to know where it will be located 
several seconds in the future, and we want to know how long the 
prediction will be valid. We set an upper bound of seven seconds 
on the forward projection since predicting further ahead does not 
appear to be cognitively plausible. Moray says that the limits of 
memory are a major factor in determining when visual attention 
should be next directed to an information source and seven 
seconds is a close approximation of the time between samples 
[11]. 

The algorithm shown below produces a vector of predicted 
locations for the observed mobile agent, along with the time 
period for which the prediction will hold. The predictions are in 1 
second increments. The 1st tuple  gives the  predicted  (x,y)  
location of the agent after 1 second, and the last tuple gives the 
predicted location after N seconds, where N will never exceed 7 
seconds. 

The steps for making the prediction are as follows: 

1. N=1 (iteration #) 
2. Observe the target object 

a. note the speed and location 
b. query the terrain database (take samples starting at 

agent�s actual or predicted location) 
3. Feed the terrain data to the neural network 
4. Neural network outputs probability-vector with  probability  

values for each of 15 discrete headings (-35, -30, -25, �, 
+35 degrees) 

5. Calculate decay-factor (0.03 X N) 
6. IF MAX(probability-vector) � decay-factor  0.80 

a. choose heading with MAX probability 
b. calculate predicted-location from speed, heading, and 1 

second elapsed time 
c. N=N+1 
d. go to step 2b and use predicted-location, 

ELSE return {<predicted-location, 1>, �, 
<predicted-location, N>} 

Figure 3: Prediction algorithm 

The algorithm makes predictions by iteratively feeding samples of 
the terrain from in front of the mobile agent through the neural 
network, beginning with the mobile agent�s current location, and 
then using the predicted locations to retrieve more terrain data for 
the network. Each time the neural network produces a probability 
vector for each of 15 discrete headings, and from this vector the 
heading with the highest probability is chosen, which will be used 
to calculate a another predicted-location. The iteration goes on 
until a confidence threshold has been reached. The confidence 

threshold is a measure of how much we trust the prediction�this 
measure is affected by the probabilities produced by the neural 
network and by a decay-factor that  is used to  guarantee that the  
algorithm terminates after 7 iterations (which covers 7 seconds). 

5. INTEGRATING PREDICTION WITH 
PERCEPTION AND COGNITION 

We developed the prediction method just described for a virtual 
pilot implemented in the Soar cognitive architecture [13]. Soar 
executes the decision cycle shown in Figure 4. In this framework, 
perception occurs during the input phase�this is when percepts 
are processed and the results are placed in the agent's working 
memory. During the elaboration phase, productions are matched 
with the contents of working memory and fire in parallel until 
quiescence is reached, meaning that no more rules fire. The rules 
that fire during the elaboration phase do not actually change the 
contents of working memory, rather, they create preferences for 
changes to working memory and they produce motor commands. 
These commands are issued to the motor system during the output 
phase. During the decision phase, a procedure evaluates the 
preferences that were generated during the elaboration phase; it 
decides what changes to make in working memory, and it chooses 
an operator to apply in the current context. Once the decision 
phase ends, the decision cycle begins again. 

Perception Cognition Motor 

Elaboration Phase 

Input Phase Output Phase 

Decision Phase 

Figure 4: Soar decision cycle 

The interface between cognition and perception in Soar occurs 
in working memory, where the percepts are placed during the 
input phase. Once in working memory, the percepts are matched 
and used by operators to perform tasks associated with the current 
goal hierarchy. The sensors are controlled by issuing commands 
to the motor system, completing the cycle between perception, 
cognition, and motor behavior. 

Soar does not place constraints on the number of percepts that can 
be placed in working memory at one time. Nor does the theory 
behind Soar tell us how to control the level of detail produced by 
the perceptual system or how to  control  the amount of  
information processed during the input phase. As mentioned 
previously, the lack of a method for focusing attention would 
sometimes result in too much information being processed per 
decision cycle, seriously impairing the ability of the agent to cope 
with real-time tasks. By limiting the field of view, the information 
overload was reduced, but this introduced the problem of needing 
to handle divided attention, particularly when tracking mobile 
agents. It was in this context that we integrated the neural network 
and prediction algorithm. Each decision cycle during the input 



phase, the algorithm supplies Soar�s cognitive system with 
predictions about the future location of selected individual mobile 
agents. 

Cognition chooses which objects the perception system should 
attend to according to the goals and tasks that are being performed 
at any given time. When attention is shifted away from a target, 
an operator initiates the prediction algorithm for that vehicle if it 
is anticipated that attention will be needed there again. The 
predicted locations of the object being mentally tracked are 
placed into working memory like other percepts during the input 
phase. The predictions do not extend beyond seven seconds, so 
there is a natural limit to how long a pilot should comfortably 
look away. 

If a task involves tracking multiple moving vehicles, the cognitive 
system receives input on the vehicle(s) that are in the field of 
view, and receives predictions about the vehicles it chooses to 
mentally track while they are not in view. After a set amount of 
time, an operator in the cognitive system can choose to shift the 
pilot�s attention away from the current focus and back to the 
vehicle that it is mentally tracking. The pilot aims its visual sensor 
toward the predicted location of the target vehicle and if it 
successfully reacquires the target, then a visual tracking operator 
will keep it focused. If a target is not reacquired, then it will 
become necessary to perform a visual search, beginning in the 
region where it expected to find the object. We have not yet 
implemented this capability. 

With the prediction data, the virtual pilot can look away from a 
mobile agent for up to 7 seconds, or whatever value N has in the 
prediction vector, and then look back to the predicted location 
from its own location, which may have also changed in the 
intervening period. If the pilot decides to look back sooner than 
the maximum time, it can use the prediction corresponding to the 
amount of time that has passed since last tracking the object. 

Figure 5: Road scenario 

A section of the route 
that has >90% 
confidence 

A section of the route 
that has <40% 
confidence 

 

   
 

 
    

   
   

   
  
 
  

 
   

   
  
  

      
  

     
   

   
  

 

            
  

  
  

   

   

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
  

    
   

          
  

   
   

  
  

     
    

   
    

        
 

  
   

    
   

 

           
     

  
  

      

      

 

 

 

 

 
  
 

  

Figure 5: Road

Figure 6: Cross Country Scenario 

6. RESULTS 
Figure 5 shows a scenario where a tank is following a road 
through a mountain area with forests. The algorithm accurately 
predicts that the tank will follow the road. When we made a 
comparison of the actual and predicted locations over time, the 
points showed very little deviation and corresponded to the road 
shape. This means that the road terrain feature affected the tank�s 
movement and the pilot was able to accurately predict this 
movement. 

Another general class of scenarios involves situations where the 
tank is travelling cross-country (i.e., it is not following a road). 
Such a case is shown in Figure 6, where the tank has come close 
to a river and must now find a bridge in order to cross it. As the 
tank drives within 300 meters of the river (see box) the 
predictability goes way down, as indicated by the shorter white 
arrow. This is because the terrain database does not provide 
bridge information, so the algorithm recognizes that the river will 
moderate the tank�s behavior, but cannot predict how. The 
dashed line in Figure 6 indicates the path the tank will eventually 
take. With a shorter prediction time it becomes necessary for the 
pilot to track the mobile agent more closely until it is in a place 
where predictions can be made more confidently. 

We ran the algorithm on mobile agents moving at different speeds 
to test the accuracy of the predictions. The mobile agent�s speed 
is assumed to be constant for any given prediction. Table 1 shows 
the maximum error between the predicted and actual positions. 

Table 1. Target Speed versus Error 

Speed of the target object Error 

10 km/h  4 meters 

20 km/h  8.5 meters 

30 km/h  10 meters 

48 km/h  15 meters 



 

 

 

  
 

   
  

   
   

  
    

  
      

  
    

    
     

  
 

 
   

       
 

  
  

   

 
    

  
   

  
  
     

     
       

  
 

         
  

   
  

  
   

  
   

  
   

 

      
  

 
  

  

 
  

           
 

    
     

         

 
        

    
   

 
   

   
          

    

     
 

         
           

   
   

  
   

  
  

          
   

          
 

        
   

 

   
 

        
  

             
 

           
       

 
  

    
 

   
 

  
   

          

One of the weaknesses of our approach is a direct result of the 
computational cost of �perceiving� the terrain features, which 
involves querying a terrain database. Due to the real-time nature 
of the task, we had to selectively sample the terrain for specific 
features, but this can lead to missing critical information, 
particularly when the features are small. Bridges, buildings, roads, 
and rivers could all potentially be missed in any given sample set, 
assuming that such features were available. On the other hand, 
many different samples are typically taken as the mobile agent 
moves, so there is a cumulative likelihood that they will be 
captured at some point. But this approach still  lacks the kind of 
coverage that the human visual system appears to have. 

7. RELATED WORK 
Many researchers in robotics and computer vision have worked 
on active vision or variants of this concept [3,14] but very few 
have addressed the issue of mental tracking as it relates to visual 
attention. From this body of research we considered two other 
approaches to making predictions about the location of mobile 
agents: (1) the least squares method, and (2) Kalman filtering 
[19]. Both of these techniques have been used extensively in 
computer vision, but the problem with them is that they do not 
take into consideration terrain features and their effect on the 
movement of vehicles. For example, a least squares prediction is 
shown in Figure 6 as the arrow showing a straight-line 
projection�its predictions are based entirely on past history, not 
current context. 

Researchers concerned with creating virtual humans have 
addressed the issue of visual attention in a variety of ways. 
Rickel and Johnson created STEVE, an intelligent tutor and coach 
for an immersive environment [16]. STEVE acts like a human� 
he can direct his gaze to the student, to task-related objects, or to 
objects the student is manipulating. STEVE, however, perceives 
everything regardless of where the gaze is pointed, so prediction 
is not needed, just gaze control for the sake of believability. 
Chopra-Khullar�s [5] Automated Visual Attending (AVA) system 
is one of the best existing overall models for generating 
believable gaze behaviors in an animated human character. With 
respect to the work described in this paper, AVA also makes 
predictions about where objects will appear when they are 
occluded from view, but it appears to use a linear model. Thus it 
can predict trajectories but not the effects of complex terrain. 

Henninger et al. [7] did some similar work to ours on predicting 
vehicular movements using neural networks. They modeled road 
marches by giving the neural network the speed of the vehicle and 
waypoints in the road, but they did not model other aspects of the 
terrain. 

Baluja and Pomerlau [2] used artificial neural networks to 
visually monitor and control a robot vehicle that follows a lane on 
a highway. 

The psychological, cognitive science and computational 
neuroscience literature on visual attention and visual tracking is 
extensive. Findlay and Walker [6] developed a detailed model of 
saccadic eye control. Their model suggests that gaze is controlled 
by a complex interaction of spatial and temporal pathways in the 

brain, but it does not suggest how predictions are made, 
particularly on this time scale. Itti and Koch [10] have developed 
a saliency map that predicts what parts of a scene will capture 
bottom-up attention based on features such as color, orientation,  
contrast, and motion. Combined with some form of top-down 
control this approach shows promise as a method for controlling 
attention, although it does not account for projected movement 
through complex terrain yet. 

8. CONCLUSIONS 
This paper describes an approach to making short-term 
predictions about the movements of mobile entities in complex 
terrain. Terrain influences movement�cars generally follow 
roads rather than driving cross-country, and tanks do not drive 
directly over steep mountains or ford rivers even though that 
might be the shortest route to a destination. We trained an 
artificial neural network to make predictions about location up to 
seven seconds in advance and successfully integrated this 
information with the perceptual system of a virtual helicopter 
pilot in a military simulation. The underlying motivation for 
making such predictions is to enable virtual humans to more 
easily reacquire a moving target after shifting perceptual attention 
away from it in situations where there are multiple targets and 
divided attention. 

There are still a number of issues that need to be addressed in 
future work. The research described here provides the capability 
of predicting where a target will be in cases where attention is 
divided or where visual contact is temporarily lost. We described 
how Soar operators use this information to switch between 
targets, but what is lacking is a general method for dividing 
attention. We have demonstrated that it is possible, but how 
should it be handled on a routine basis? We plan to start 
addressing this question by studying the goal hierarchies and tasks 
that our virtual humans perform and looking for patterns 
associated with balancing concurrent tasks with the need for 
perceptual monitoring. Chopra-Khullar�s [5] dissertation 
describes an approach to scheduling perceptual tasks that we will 
take into account when designing the next phase of our system. 

Another issue that needs to be addressed is how to integrate a 
routine method for handling divided attention with other 
mechanisms associated with visual attention, such as the 
integration of top-down and bottom-up control. We are looking 
closely at the work on saliency maps by Itti and Koch [10]. While 
their initial work focused on the bottom-up salience effects on 
attention, we are beginning to work with Itti on developing a task 
map to represent the effects of tasks on top-down attention. The 
task map will take inputs from the current task operators, the 
dialogue, aural events, as well as from the emotional state of the 
virtual human. The basic idea is that task map will make some 
perceptual objects more salient than others, which would 
influence the way that percepts are filtered and where the eye 
sensor is focused. In the end, our goal is to build a general 
framework for perceptual attention for virtual humans (see [17] 
for an example of this framework) that are capable of performing 
a wide range of tasks as well as holding conversations and other 
social interactions. 
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