
AXLNET MOBILE:
USING A MOBILE DEVICE FOR LEADERSHIP TRAINING

Jacquelyn Ford Morie*, J. Galen Buckwalter

University of Southern California
Institute for Creative Technologies (ICT)

ABSTRACT

The AXLNet Mobile project builds upon the web-based
leadership classroom training application, AXLNet,
originally created by ICT and ARI in 2006. We ported
both the functionality and pedagogical approach of
AXLNet to an Apple iPhone in 2008-2009, and tested the
resulting application for usability with a population of 46
Captains and 1st Lieutenants at Ft. Leonard Wood. Initial
findings indicate supplemental training on the mobile
device is an acceptable and possibly more engaging
delivery method for today’s troops.

1. INTRODUCTION

The AXLNet Mobile application is a supplemental
work created to accompany the original Army Excellence
in Leadership (AXL) project, a collaboration between the
Army Research Institute (ARI) and the ICT (Hill et al.,
2006). The original project provided a case-based
methodology for new commanders to study complex
decision-making scenarios, where critical thinking
demanded leadership skills as well as situational and
cultural awareness. AXLNet was designed for in-
classroom use, was deployed via the Web 2.0, and
provided a means for guided analysis of the factors and
individuals involved in the scenarios.

AXLNet is a powerful educational tool developed to
teach soldiers about leadership by presenting them with
difficult situations and asking them to make decisions and
judgments about those situations. The task in developing
the AXLNet Mobile application was to transfer as much
functionality of the Web-based AXLNet to a convenient
mobile device, where the lessons could be accessed 24/7.
These functions included: the case-based methodology,
the guided analysis, the ability to go back and interview
characters in the scenario to gain different perspectives on
the situation, open-embedded questions about the factors
that lead to problems, and finally a way to collect the
student’s interaction data for later upload to the AXLNet
teacher-analysis tools. This work was done in 2008 and
2009, and was followed by a usability study with young
commanders at Ft. Leonard Wood, Missouri, detailed in
section 3 of this paper.

1.1. Design Overview

AXLNet is composed of distinct modules, each with
a particular theme and pedagogical goal. Although
AXLNet has several of these modules available, as well
as a powerful tool that allows educators to author new
modules, recreating the entirety of this content and
functionality was beyond the scope of our project.
Instead, we focused on porting two of the modules,
"Power Hungry" and "Tripwire," to the mobile platform.
In adapting these modules to mobile, we aimed to
maintain the original content and pedagogical approach as
faithfully as possible. More information on the procedure
we followed to transition the content can be found in the
section on Module Porting.

One of the hallmarks of AXLNet is its highly
multimedia presentation of content. AXLNet modules can
contain a variety of media objects, including video clips,
audio clips, and images. "Power Hungry" and "Tripwire"
both start with a short video that depicts characters facing
a difficult situation and the consequences of the choices
that they make. Each module contains a number of
supplementary video clips that provide additional
information about the characters and their motivations
and understanding of the situation. We wanted to
maintain this media-rich experience in our port of these
AXLNet modules.

AXLNet also connects to a backend system which
stores the students’ answers to questions within AXLNet
modules. AXLNet includes an analysis tool, which
organizes and presents statistics about these responses for
the course instructor in real-time. This allows the
instructor to engage the students with knowledge of
individual student’s answers to the questions and to lead
the discussion while considering the classes' collective
response to the material. Although recreating the analysis
tools or integrating AXLNet Mobile responses into the
main AXLNet database were not feasible within the scope
of this project, we felt it was important to capture this user
data so that it could be incorporated into such an analysis
and presentation system in the future.

We chose the iPhone (and its sibling device, the iPod
Touch) as the mobile platform with which we would
realize our goal of bringing these features to a personal,

always-available environment. The iPhone platform was
chosen because it is a popular consumer-level device that
fills the technical requirements needed to effectively
implement the system that we envisioned. The iPhone and
iPhone Touch have been commercially available since
June of 2007. The platform includes technical features
such as wireless support, media playback, and includes a
mobile web browser that is much more capable than most
competing products. This functionality is contained in a
sleek mobile phone, designed to be carried on the user's
person and easily accessible at any time.

Built upon the success of the iPod line of products,
the iPhone platform includes excellent media playback
functionality compared to many other smartphones. We
took advantage of the device's capabilities to include the
video clips that focus and support the ported content
modules. The iPhone platform also supports a wireless
connection to the Internet, which mitigates the need for
phone carrier connectivity (with associated monthly
carrier fees). This Wi-Fi functionality is used primarily
for the collection of user response data.

2. AXLNET MOBILE DESIGN

2.1. First Iteration

Originally, a version of AXLNet Mobile was
produced that ran directly from the web in a form that
could be accessed and used through the browser
integrated into the iPhone platform. This first iteration of
the project was based on the robustness of the iPhone's
Safari browser, which interprets Javascript at a level
beyond what most other devices of similar size currently
support. The module content was hosted on a webserver
as an HTML document and a collection of linked
Quicktime video files, and streamed over-the-air to the
user's iPhone browser when a user requested the page.
This version of AXLNet Mobile was essentially a web
application, just like the original AXLNet web
application, but had some specific advantages over the
original in the mobile context.

The main AXLNet website is accessible from the
iPhone's Safari browser, but its usability is enormously
reduced on that platform. Because AXLNet was designed
with full-sized desktop-application browsers in mind, the
size and layout of the page is not well-suited to viewing
on the smaller screen of a mobile device. Legibility and
ease of navigation are reduced to unacceptable levels.
Additionally, the iPhone platform's Safari browser is not
capable of running embedded videos, which are used
throughout the "Power Hungry" and "Tripwire" modules
on AXLNet. The iPhone platform's browser cannot play
the videos at all, because it doesn't have the same codec
support that desktop-application browsers have.

For these reasons, we recreated the content of the
"Power Hungry" module in a more mobile-friendly format
that can be read and navigated on the small screen of the
iPhone. This version of AXLNet Mobile was written
primarily in HTML, Javascript and CSS with a backend
for data collection that uses PHP and MySQL.

The content for the module resides in a single HTML
document, divided into nodes that are displayed
sequentially on the iPhone's browser by a controller
application written in Javascript. The HTML document
was created by combing through the original AXLNet
version of the module we were recreating and copying
text and embedded media into the appropriate nodes of
the HTML. Cascading Style Sheets were used to display
the content in each node in a format that would be usable
on the iPhone browser, and which incorporated interface
elements that are familiar to users of the iPhone platform.
The Javascript controller proscribed the user's progress
through the module, displaying the contents of each node
in the proper sequence.

As the user proceeded through the course, many
nodes contained prompts for user input. Generally, this
took the form of multiple-choice questions and textual
input that could be entered using the iPhone's built-in
virtual keyboard. When user input was received, the
Javascript controller sent the data to a PHP page which
recorded that piece of user data in a MySQL database.

This first iteration was successful at addressing many
of our goals for the project. It presented the content of the
AXLNet module in a format that could be better utilized
on a personal, mobile device in an always-accessible
manner. However, there were several major issues with
the approach that prevented this solution from being
ultimately acceptable. The two issues with the first
version of the project were that it required continual
connection to the Internet along with the fact that video
streaming was slow and impractical.

This version of AXLNet Mobile lived on a
webserver, and was only accessible by pointing the
iPhone's Safari browser to the appropriate web address. In
addition to the content contained in the HTML file and
Javascript controller, network connectivity was required
to download the video clips and to report user data back
to the system's response database. Unfortunately, constant
wireless Internet accessibility cannot be assumed in all
environments where AXLNet Mobile might be deployed.
In practice, this requirement would severely limit the
potential usability of the system, since it could only be
operated at times when the user could easily access an
open wireless connection.

Even when such a connection might be available,
downloading the video clips included throughout the
module was problematic. While resized and

recompressed, the videos still took a significant amount of
time to download over the iPhone's wireless connection.
Although still theoretically usable, this caused frequent,
irritating delays that interrupted progress through the
module and created a less-than-ideal learning
environment. Using this approach, there was no
satisfactory way to preload the videos onto the device and
eliminate the issue.

2.2 Second Iteration

To address these problems, a second version of
AXLNet Mobile was created, this time using a different
approach. In March of 2008, Apple initiated a program to
allow independent development of applications that
would run natively on the iPhone platform. Such
applications can be installed and run on the device,
utilizing an API to access the functionality of the
hardware and the platform operating system.

This version of AXLNet Mobile took the form of an
application residing natively on the iPhone platform. It
consisted of a similar basic structure to the first iteration,
with the addition of a new interface layer that ties the
content directly into the operating system of the device.
This approach enabled us to not only solve the problems
in the first iteration of the project, but also to make
improvements to the features that had already been
completed.

Native applications for the iPhone platform are stored
on the device's internal storage drive. Creating a version

of AXLNet Mobile that was stored locally on the device
rather than on a webserver solves both of the major
problems presented by the first iteration of the project.
Because the module content is stored on the device, there
is no need to be connected to the Internet when using the
program. Internet connectivity is only required for
collecting user responses, which can be delayed without
interrupting the user's learning experience.

Creating a new version of AXLNet Mobile as a
native application was achieved by dividing system
functionality between two levels of control: a content
controller written in Javascript, loosely based on the
controller of the previous version, and another layer,
written in Objective-C, that wrapped that content in UI
elements native to the iPhone platform and tied the
content to functionality on the level of the operating
system. The Javascript layer controls the primary display
of content embedded in a UIWebView element that
renders HTML with Javascript support. The two layers
communicate through the return values of Javascript
functions that are executed by the Objective-C code.

Most of the content of the module is contained in an
HTML file organized by nodes in much the same manner
as the original iteration. This content is controlled by a
Javascript content controller and formatted by a CSS
ruleset. The content controller stores the module's state,
interprets user input, navigates from node to node, and
displays the appropriate content node at the appropriate
time (Fig. 1).

AXLNet Mobile System Architecture

Fig. 1. Data from each content node is read from the XHTML Module Script into the Javascript Controller. The appropriate HTML
code is generated and rendered by a pane on the Device Interface. Form data is entered via this interface pane and stored in an
SQLite database on the device. The “Next” and “Previous” buttons affect the node state, which is reflected by the display. The
“Movie” button causes the iPhone to play a video, stored on the device, using the iPhone API. The “Export” button causes data
stored in the SQLite database to be sent to the central database using the iPhone API to manage the HTTP connection.

In addition to allowing us to utilize some of the
design work done in the first iteration of the project, this
type of Javascript content controller was chosen so that
content could be created in a modular way, by authoring
XHTML files. Each XHTML file contains a different
module which can be navigated by the Javascript
controller. When started, the AXLNet Mobile application
displays a list of the available modules and then loads the
appropriate XHTML file upon selection.

Objective-C is the primary supported language for
native iPhone applications. The interface layer is written
in Objective-C and serves as the entry-point and main
application loop for the program. UI elements were
created and placed using Apple's Interface Builder tool,
and are controlled through the Objective-C code. The
Objective-C layer also controls the system features that
aren't handled by the Javascript controller. These features
include media playback and database management.

The iPhone platform API includes media playback
functionality that can be accessed through an Objective-C
class. The filenames of appropriate video media are
included in the nodes of the HTML module script and
interpreted by the Javascript controller. The name of the
video file associated with the current content node is
passed up to the interface layer through a function return
value when the user clicks on the "Movie" button on a
page, at which point the Objective-C code invokes a call
to the built-in media player.

The iPhone application also includes an SQLite
database that is used to store user responses until they can
be uploaded to the centralized database. Integration with
the SQLite database is also functionality offered by the
iPhone platform's API through Objective-C. Similar to
media playback, the Javascript layer records user input on
the rendered module content and then passes that data up
to the interface layer through a function return. The
Objective-C layer then manages the data in the database
and uploads it when an Internet connection is available.

As mentioned, integration of these two layers occurs
through Objective-C calls to functions in the Javascript
layer which return relevant data to the interface layer.
This allows almost all the logic associated with content
control and display to be contained in the Javascript layer
where it works with content parsed from the XHTML-
formatted module script, and for the Objective-C layer to
only request data from the content controller when it is
necessary for functionality associated with iPhone
platform API calls.

Through this approach, we successfully overcame the
issues that were presented by the first version of the
project, and satisfied our original project goals. The
second iteration of AXLNet Mobile provides a
supplementary reference to AXL course materials

delivered through classroom instruction, and it does this
in a convenient, personal, always-available format that
maintains the important characteristics of AXLNet that
we originally identified.

2.3 Module Porting

In porting the AXL content from web application to
iPhone application, the FORCE team had two parallel
goals of equal importance.

The first was to create an engaging mobile
application that not only met baseline functional
requirements, running smoothly on a standard device but
also had a simple, intuitive user interface and good flow
of information. Creating a satisfying, accessible and
effective experience in our AXLNet Mobile prototype
was a necessity; any final application would be put to use
in the field, where its users would not have the cushion of
a structured training environment.

Simply put, if AXLNet Mobile was at all difficult to
use or hard to understand then the mobile context would
only amplify these issues, and render the program
effectively useless to its target user.

The second goal, of equal importance, was to be as
faithful to the original AXL application as possible. By
doing so, we would benefit from the research and team
effort that went into the development of the AXL
modules, allowing us to make valid comparisons between
the effectiveness of instruction via the mobile and web
platforms. Departing from the content in an attempt to
“fix” something we perceived as incorrect was beyond the
scope of our research, would require the consultation of
education specialists and require complete revalidation of
all processes.

In order to maintain consistency with the original
Power Hungry and Tripwire modules, we adopted a
policy of providing the exact same content wherever
possible, copying the text directly from the original. We
also recreated the layout and logic of each individual
page, dividing the content identically within reason.

In pursuing our primary goal of usability, however,
we needed to diverge from the original AXL construction
in a few minor but noteworthy ways.

The sheer difference in resolution between the web
and mobile versions of AXL meant that, on occasion,
pages that fit comfortably on the original would require
several screens of scrolling on our build. In order to
divide the experience more manageably for the user, some
of these pages were divided into two parts, split at logical
separation points. The content was not changed.

Another minor content change was necessary because
of our video solution. While the web version made

frequent use of embedded videos in their pages, our
videos independently accessed separately from the
text/navigation (as explained elsewhere). The text of the
AXL modules makes frequent reference to their
embedded videos. Since viewing videos is an additional
step in our application, we needed to add or modify text
that directed users to access the click the “play movie”
button before attempting the questions.

Because of the additional navigation and greater
fragmentation of pages in our modules, we added a title
component that identifies and unifies themes within
groups of pages. This minor divergence in content (the
only original content added for AXLNet Mobile) is an
attempt to fulfill our primary goal without changing any
existing AXL material. The mobile module may be
experienced in areas where deep concentration is
unfeasible; the titles contextualize the pages, and keep the
user focused on the larger sections of work across a range
of pages.

In addition to the additions and modifications of page
content, we did need to eliminate a few features from the
original AXL module in order to meet the technical
limitations of the iPhone. The cuts were made in two
large database-driven features. The initial order-of-
importance survey that analyzes users based on their
choice of mission factors was not implemented in this

version of AXLNet Mobile because it requires
sophisticated text processing and access to the AXL
database that fell beyond the scope of this prototype.
AXL’s optional “interview” panel was the other
unimplemented feature: the required text processing and,
more importantly, the storage space required for the
interview media, made this option unsuitable for a mobile
application.

On the occasions where the main page required the
user to conduct an interview, these segments were
removed or replaced with a more traditional segment that
directs the user to the appropriate information and/or film
segment. In most cases, the interview-oriented segments
of AXL web modules require the user to find a specific
piece of media, and the following pages provide “hints”
or even show the appropriate media directly. In these
instances, we simply removed the required interview and
provide the information directly for our mobile module.
While the exploratory element is removed, the instruction
and desired content remains consistent with the original.

By adhering to these general principles, we were able
to faithfully port two AXL modules from the web to the
iPhone, keeping the experience consistent with the
original while tailoring specific details to fit the new
platform.

Web and Mobile Interface Comparison

Fig. 2. This side-by-side comparison of the interface for the web version of AXLNet (pictured left) and the iPhone version
(pictured right) illustrates the similarities and differences between the versions. The demarcations highlight portions of the
interface that were changed when creating the iPhone interface, in order to accommodate the specific features and technical
constraints of the platform.

2.4 iPhone Interface

In this section, we will describe the operation of the
Objective-C layer of code that connects the Javascript
Controller to the iPhone device API and interface.

The AXLNet Mobile application is event-driven. The
user is presented with an interface similar to the one
shown in Fig. 3. The interface has two rows of buttons,
one at the top and one at the bottom. Between them is the
content pane, which displays rendered HTML content
controlled by the Javascript controller program.

AXLNet Mobile Interface

Fig. 3

When the user clicks the Next button, the Objective-
C code executes the "next" function in the Javascript
content controller, which updates the HTML content
displayed in the render pane. Likewise, when the user
clicks the Back button, the "prev" function in the content
controller is executed, which causes the previous content
node to be displayed. These navigation functions are

encapsulated in the Javascript code included with this
document. Additionally, flow control is handled by the
Javascript controller, based on the nodes set up in the
module's XHTML document.

In addition to executing the Javascript function that
changes the displayed content, these buttons also initiate a
series of queries about the current state of the program.
Several Javascript functions are executed which simply
return information about the contents of the node being
displayed. The askHasMovie function, for example,
indicates whether there is a video clip associated with the
current content. If so, then the askForMovie function
returns the filename of the movie clip. Otherwise, the
Movie button is removed from the interface.

All of the several Javascript functions with the prefix
ask operate in the same way. These functions are designed
to pass information between the Javascript layer, which
interprets the XHTML module script and contains a
model of the node, and the Objective-C layer, which
contains the video playback and SQLite database
functionality.

Media playback is handled by the Objective-C code
directly. The iPhone platform has functionality for
playing videos built into the API. This built-in
functionality is utilized when the user presses the Movie
button, which causes the askForMovie function to be
executed in order to pass in the name of the video clip.

Likewise, the SQLite database is controlled through
functionality provided by the iPhone API on the
Objective-C layer. When the askHasData function
indicates that the current node contains user-input
elements, their names and any user input is stored in the
SQLite database upon navigating away from the node.

When the askHasExport function returns true at the
end of the course, the Export button is displayed at the
bottom of the interface. Pushing this button attempts to
send the data stored in the local SQLite database to a PHP
script on a remote webserver, which accepts the data and
stores it in a centralized database for user-data. If the
device cannot connect with the remote server, then an
error is reported to the user and the local data is preserved
so that another attempt can be made. Otherwise, the data
is removed from the local database when it is successfully
uploaded.

3. USER TESTING

Forty-six subjects were recruited at Ft. Leonard
Wood, with the assistance of ARI. Testing was
accomplished over a three-day period, with groups of 10-
13 who attended either a morning or an afternoon session.
The group was told the purpose of the study was to

determine if the mobile device could be used for
leadership training. The procedure was divided up into 1)
pre-training questions, 2) viewing the film scenario, 3)
questions concerning initial responses to the film, 4)
taking the full course module and 5) answering post-
course questions. Finally, there were 6) questions about
their reactions to the use of the mobile device, including
an open-ended comment section.

The pre-training questions included rank and
deployment history. Of the 46 participants, 43 held the
rank of Captain and 3 the rank of 1st Lieutenant. Parallel
to this, 43 indicated at least one deployment to Iraq or
Afghanistan, with 2 Captains and 1 Lieutenant having not
previously deployed to either theater.

Two psychological instruments were employed: An
adapted version of the PAD (Pleasure-Arousal-
Dominance) scale, focusing on Arousal, and the PANAS
(Positive Affect Negative Affect Scale) designed to
determine a subject’s self-reported affective states.
These were administered at three points during the
testing: at the beginning, after viewing the scenario film,

and after completing the course module. Once they
completed the first set of PAD/PANAS questionnaires,
participants started the course module on the iPhone or
iPOD Touch (module was exactly the same on either
device), which began with a cultural awareness scenario
(film) called Tripwire, detailing an IED incident in Iraq.

Post-film viewing, the students were given the PAD
and PANAS tests, and a questionnaire to assess their
initial responses to the situation. After completing the
course, the participants were again given the PAD and
PANAS, and a set of questions specifically about their
experience with the mobile platform.

3.1 Results

The results of the study showed several interesting
points. First, the people who were more aroused and
positive at the beginning of the exercise, as assessed by
the adapted PAD and positive PANAS, rated the use of
the mobile device more highly. This suggests that there
may be a minimal level of arousal and positive emotion
needed before the AXLNET Mobile training is most
effective. Overall, there was a strong feeling that the
mobile device could serve as a valuable leadership
training mechanism. On a Likert scale of 0-7, the
consensus score was 6.11 and 6.35 for two questions
comparing the Mobile Scenario with reading a scenario or
seeing a PowerPoint briefing.

In terms of emotional factors, there were statistically
significant increases from the first to the second set of
scores (pre-training to post-film testing) on the adapted
PAD (Arousal) (p = .008) and negative emotion from the
PANAS (p = .003). This indicates that watching the film
increased such feelings as being stimulated, excited,
hostile, and upset. Follow-up questions suggest that some
participants were upset by problems with the way
characters handled difficult situations. Regardless of the
reason, the change in emotion after watching the film
indicates a high level of engagement with the scenario. It
remains to be determined what specific aspects of the film
caused such a strong reaction. However some of the
participants left comments that they found the handling of
the situation to be doctrinally incorrect.

Participant comments also indicated that the largest
source of frustration with the mobile device was in typing
in answers to the course module questions. However, one
participant observed, despite the time it takes to type on
mobile devices, that typing was made easier for her
because she owned an iPhone. We expect this pattern,
and we believe it will be less and less of an issue as more
people have experience with these devices. Most
negative comments dealt with disagreements with the
details of the situation. Some students stated this could
never replace classroom discussion, but this was not the
intent of the mobile distribution, which is meant to

• askHasMovie – Returns TRUE if a
video file is associated with the
current node.

• askForMovie – Returns the name
of the video file.

• askHasData – Returns TRUE if the
current node contains form
elements.

• askForData – Returns the various
elements (node, key, value) of the
most recently added user data.

• askHasLink – Returns TRUE if the
current node redirects the program
to a new XHTML module script.

• askForLink – Returns the file name
of the new module script.

• askHasExport – Returns TRUE if
the current node is marked as an
end-state from which exporting
user data should be allowed.

Fig. 4. The ask-prefixed functions allow for
communication between the node model in the
Javascript layer and the device functionality in

the Objective-C layer.

supplement and reinforce classroom training during wait
or off-duty times, thus capturing lost moments for training
opportunities. While further studies with more doctrinally
correct case studies need to be done, our initial results
show good promise for the use of mobile–deployed
training modules to engage soldiers. As one participant
wrote, “This beats the h*ll out of death by PowerPoint!”

4. CONCLUSIONS

While the use of off-the-shelf mobile devices as
training aids for soldiers is not yet widespread, their
increasingly pervasive use suggests they could be useful
tools in this domain. While we do not suggest that
mobile-delivered training take the place of classroom and
teacher-based instruction, nonetheless, we see value in
supplementing traditional training with such devices. As
more and more soldiers embrace mobile technology in
their daily lives, in line with the general, “digital native”
population, adding adjuvant applications to devices
already in-hand, will provide more opportunities for
easily accessible learning opportunities. As our study has
indicated, today’s soldiers find value in training delivered
through mobile devices. As these devices advance in
functionality, we see tomorrow’s forces served through
supplemental training that is accessible, up-to-the-minute,
trackable, and even personalized. Instead of having to go
to training, training in the future can be an integral part of
a soldier’s everyday practice.

ACKNOWLEDGEMENTS

The project or effort described here has been sponsored
by the U.S. Army Research, Development, and
Engineering Command (RDECOM). Statements and
opinions expressed do not necessarily reflect the position
or the policy of the United States Government, and no
official endorsement should be inferred.

The original AXLNet Project was done by Randall W.
Hill, Jr., and Julia Kim at the ICT, with support from
Michelle R. Zbylut at the Army Research Institute.
Additional contributors included Dr. David Traum, Mr.
Scott Rocher, Mr. Stewart King, Mr. Reid Swanson, Mr.
Sudeep Gandhe, Mr. Salvo Lavis, and Mr. Ashish
Karnavat. Both Power Hungry and Tripwire were written
and produced by Mr. Kim LeMasters. Power Hungry was
directed by Mr. Chuck Bowman. Tripwire was directed
by Mr. Kenny Johnson.

AXLNet Mobile could not have been successful without
the hard work and contributions from Sean Bouchard,
Dinesh Rajpurohit and Jamie Antonisse, who were the
core project team. We also gratefully acknowledge the
support provided by Dr. Gregory Ruark at ARI for
securing participants at Ft. Leonard Wood and assisting in
administering the study. 

REFERENCES

Hill, R., Kim, J., Zbylut, M., Gordon, A., Traum, D.,
Gandhe, S., King, S., Lavis, S., Rocher, S., 2006:
AXL.Net: Web-Enabled Case Method Instruction for
Accelerating Tacit Knowledge Acquisition in
Leaders, Proceedings of the 25th Army Science
Conference, Nov 2006, Orlando, FL.

