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Abstract— A novel histogram-based mutual information es-
timator using data-driven tree-structured partitions (TSP) is
presented in this work. The TSP is the solution of a complexity
regularized empirical information maximization (EIM) criterion,
with the objective to find a good tradeoff between the known
estimation and approximation errors. We show that this solution
is density-free strongly consistent and, furthermore, it provides
a near-optimal balance between the mentioned variance-bias
errors.

I. INTRODUCTION

Let X and Y be two random vectors taking values in X =
Rp and Y = Rq , respectively, with a joint distribution PX,Y

defined on (Rd,B(Rd)) (with d = p+q), and B(Rd) denoting
the Borel sigma field. The mutual information (MI) between
X and Y can be expressed by [1],

I(X;Y ) = D(PX,Y ||PX × PY ), (1)

where PX ×PY is the probability distribution on (Rd,B(Rd))
induced by multiplication of the marginals of X and Y and
D(P ||Q) denotes the Kullback-Leibler divergence (KLD) [2],
[1],

D(P ||Q) =

∫
log

∂P

∂Q
(x) · ∂P (x). (2)

I(X;Y ) is an indicator of the level of statistical dependency
between X and Y , i.e., how PX,Y differs from PX × PY

in the KLD sense [2], [1], and has a fundamental role in
information theory and statistics [1], [2]. This role justifies
its large adoption in statistical learning applications [3], [4].
A crucial need for these applications is to have a distribution-
free estimate of I(X,Y ), based on independent and identi-
cally distributed (iid) realizations of (X,Y ), that converges
to I(X;Y ) (almost surely) as the number of sample tends
to infinity (strong consistency) [5]. The problem has been
systematically addressed for distributions defined on a finite
dimensional Euclidean space (Rd,B(Rd)), where consistency
is well known for histogram-based and kernel plug-in esti-
mates (see the survey by Beirlant et al. [5]). For the case
of histogram-based estimation, these results usually consider
non-adaptive and product type of partitions of the space. In
this setting, every coordinate of the space is partitioned inde-
pendently to form the full partition of Rd (a product partition).
In contrast, non-product data-driven partitions [6], [7] can
approximate the nature of the empirical distribution better with

few quantization bins and provide the flexibility to improve the
approximation quality of histogram-based estimates [6], [7].

In addressing this problem, Darbellay and Vajda [7] pro-
posed an histogram-based approach based on a non-product
adaptive tree-structured partitions (TSP), where the inductive
nature of TSP was used to dynamically increase the resolution
of the quantization in areas of the space that provide higher
empirical MI gains. This adaptive TSP estimate shows promis-
ing empirical evidence, although ensuring strong consistency
remains an open problem [7]. Alternatively, Wang et al. [8],
[9] and more recently Silva et al. [10], [11], [12] studied
the role of a more general family of data-driven partitions,
based on partition schemes [6], [13]. The work presented in
this paper builds upon this formulation, where the learning
and adaptation advantages of TSP schemes are further ex-
plored [14], [13], [15], [16]. In particular, we investigate a
complexity-regularized type of learning principle [14], previ-
ously unexplored in this inference problem. Here we stipulate
conditions under which the estimation and the approximation
errors vanish asymptotically, and more importantly from a
learning perspective, conditions that offer, with an arbitrary
high probability, an optimal balance between these two errors.

II. PROBLEM SETTING AND NOTATION

We start with introducing the learning problem and some
required notations. Let Zn

1 = Z1, .., Zn be iid realizations of
(X,Y ) drawn from PX,Y . Let Π = {πn(·) : n ∈ N} be a
partition scheme where πn(·) is a function from Rd·n (the
sequences of length n in Rd) to Q (the collection of finite
alphabet measurable partitions of Rd) that we call the partition
rule of length n. πn(·) receives the empirical data Zn

1 and
creates a partition of the space, i.e., πn(Zn

1 ) ∈ Q. In addition,
Π needs to satisfy a product bin condition, i.e., ∀zn1 =
(z1, .., zn) ∈ Rd·n every event A ∈ πn(zn1 ) is expressed by
[7], A = A1×A2, where A1 ∈ B(Rp) and A2 ∈ B(Rq). With
this, the learning-estimation process involves three phases:
first, to use the empirical data to partition Rd by πn(Zn

1 ),
second, to use again the data to estimate PX,Y and PX ×PY

restricted to the sigma field σ(πn(Zn
1 ))

1, and finally, to
consider the plug-in technique to get an empirical MI estimate

1Given a collection of sets A, we denote by σ(A) the smallest sigma field
that contains A [17]. When A is a finite partition, σ(A) is the collection of
elements written as unions of element of A.



on (Rd,σ(πn(Zn
1 ))) [12]. Concerning the phase 2, the product

bin condition is needed to estimate PX,Y as well as the
reference measure PX ×PY only based on the iid realizations
of the joint distribution PX,Y [7], [12]. More precisely, let
P denote the joint distribution and Pn its empirical version,
i.e., Pn(A) = 1

n

∑n
i=1 IA(Zi), ∀A ∈ B(Rd), hence, the MI

estimate is given by În(πn(Zn
1 )) =

∑

A∈πn(Zn
1 )

Pn(A) · log
Pn(A)

Pn(A1 × Rq) · Pn(Rp ×A2)
, (3)

where A1 ×A2 denotes the product form of the event A.

A. Binary-Trees and Tree-Structured Partitions
Adopting Breiman et al. [14] conventions, a binary tree T

is a collection of nodes: one node of degree 2 (the root), and
the remaining nodes of degree 3 (internal nodes) or degree
1 (leaf or terminal nodes). Let I(T ) and L(T ) be the set of
internal and terminal nodes of T , respectively, and |T | be the
size of a tree T , given by the cardinality of L(T ). If T̄ ⊂ T
and T̄ is a binary tree by itself, we say that T̄ is a subtree of
T and moreover, if both have the same root we say that T̄ is
a pruned version of T , denoted by T̄ % T .

A tree-structured partition (TSP) can be represented by a
pair (T, τ(·)) [16], with T a binary tree and τ(·) a function
from T to H, with H denoting the collection of closed
halfspaces of the form H =

{
x : x†w ≥ α

}
, for some w ∈ Rd

and α ∈ R. Then for any t ∈ I(T ), τ(t) corresponds to the
closed halfspace that dichotomizes the cell associated with t,
denoted by Ut, in Ur(t) = Ut ∩ τ(t) and Ul(t) = Ut ∩ τ(t)c,
which are the cells associated with the left and right child
of t, denoted by r(t) and l(t), respectively. Then initializing
the cell of the root node t0 by Ut0 = Rd, τ(·) : I(T ) → H
provides a way to characterize Ut, ∀t ∈ T . In particular,

πT ≡ {Ut : t ∈ L(T )} ⊂ B(Rd), (4)

is the TSP induced by (T, τ(·)). Note that if T̄ % T then πT is
a refinement of πT̄ , that we denote consistently by πT̄ % πT .
For the sake of simplicity, we will use the binary tree notation
T to refer to both (T, τ(·)) and more frequently πT .

Finally, a n-sample TSP rule Tn(·) is a function from
the space of finite sequences Rd·n to the space of TSP
with halfspace splitting rules, and the resulting TSP partition
scheme is the collection of TSP rules, i.e., Π = {T1, T2, · · · }.

III. THE TREE-STRUCTURED PARTITION SCHEME

Our TSP scheme uses Zn
1 to construct a partition of Rd in

two consecutive stages: a growing phase and a pruning phase.
For the growing stage, let to be the root of the tree

and Uto = Rd. Considering Zn
1 = (Z1, .., Zn) as the iid

realizations of (X,Y ), this scheme choses a dimension of the
space in a sequential order, let say the dimension i for the first
step, and then the i axis-parallel halfspace by

τ(to) = Hi(Z
n
1 ) =

{
x ∈ Rd : x(i) ≤ Z("n/2#)(i)

}
, (5)

where Z(1)(i) < Z(2)(i) <, .., < Z(n)(i) denotes the order
statistics of the sample points {Z1, .., Zn} projected in the

target dimension i. Using Hi(Zn
1 ), Rd is divided into two

statistically equivalent rectangles with respect to the coordi-
nate dimension i, denoted by Ul(to) and Ur(to). Reallocating
the sample points in Ul(to) and Ur(to), respectively, we can
choose a new dimension in the mentioned sequential order
and continue in an inductive fashion with this splitting process.
As the stopping rule, we propose a criterion that finishes the
refinement when a minimum number of sample points per cell,
threshold denoted by kn ∈ N \ {0}, is reached (or violated).
Hence at the end, we get a full-tree, denoted by T full

bn
(Zn

1 ),
and the associated partition πT full

bn

(Zn
1 ), where we guarantee

a minimum magnitude for Pn on the events of σ(πT full
bn

(Zn
1 ))

that we denote by bn = kn/n ∈ (0, 1) for all n > 0. This full
TSP is designed to have in general few points per quantization
cell, where the deviation of Pn with respect to P on these
events is expected to be large (estimation error). This motivates
the second stage of pruning detailed next.

A. Complexity-Penalized Empirical Information Maximization
For the rest, the full tree will be denoted by T full

bn
consider-

ing implicit its dependency on Zn
1 . First, we consider the fol-

lowing inequality: ∀T % T full
bn

,
∣∣∣În(πT (Zn

1 ))− I(X;Y )
∣∣∣ ≤

∣∣∣În(πT (Z
n
1 ))− I(πT (Z

n
1 ))
∣∣∣+ I(X;Y )− πT (Z

n
1 ), (6)

where I(πT (Zn
1 )) ≡

∑
A∈πT (Zn

1 ) P (A) ·
log P (A)

P (A1×Rq)·P (Rp×A2)
, is the KLD of the true distributions

restricted to the sigma field induced by πT (Zn
1 ) [1]. The

first term of (6) characterizes the estimation error, or the
difference in the MI functional between the adoption of the
empirical and real measures. The second term of (6) is non-
negative and corresponds to the approximation error, which
is a consequence of the fact that quantization reduces the
magnitude of information theoretic quantities [1]. Motivated
by the well understood tradeoff between the estimation
and approximation errors [13], we propose the following
complexity-penalized empirical information maximization
criterion,

T̂n = arg min
T%T full

bn

−În(πT (Z
n
1 )) + φn(T ). (7)

This regularization criterion attempts to find an optimal bal-
ance in

{
T : T % T full

bn

}
between the empirical MI (fidelity)

and an indicator of complexity for πT that we denote by
φn(T ). φn(T ) is designed to reflect the estimation error∣∣∣În(πT (Zn

1 ))− I(πT (Zn
1 ))
∣∣∣ in (6). However, as the true dis-

tribution is unknown, we consider the standard approach of
characterizing distribution-free expressions to upper bound this
quantity [16], [15]. The next section elaborates on this idea by
considering the Vapnik-Chervonenkis inequality [13].

IV. CONCENTRATION INEQUALITY FOR TREES

Let (an)n∈N and (bn)n∈N be two sequences of non-negative
real numbers. (an) dominates (bn), denoted by (bn) , (an)
(or alternatively (bn) is O(an)), if there exists C > 0 and



k ∈ N such that bn ≤ C · an, ∀n ≥ k. (bn)n∈N and
(an)n∈N (both strictly positive) are asymptotically equivalent,
denoted by (bn) ≈ (an), if there exists C > 0 such that
limn→∞

an
bn

= C, Finally, (bn) is o(an) (for (an)n∈N strictly
positive) if limn→∞

bn
an

= 0.
THEOREM 1: Let P be a probability measure in

(Rd,B(Rd)) and Z1, Z2, · · · be iid realizations driven by
P . Let T full

bn
be the full TSP of the growing phase

where (bn)n∈N is the critical empirical mass sequence.
In addition, let Gk

bn
≡
{
T % T full

bn
: |T | = k

}
be the

family of pruned TSPs of size k induced from T full
bn

.
Then, ∀k ∈

{
1, ..,
∣∣∣T full

bn

∣∣∣
}

, ∀n > 0, ∀ε ∈ (0, 3),

P
(
supT∈Gk

bn

∣∣∣În(πT (Zn
1 ))− I(πT (Zn

1 ))
∣∣∣ > ε

)
≤

(n+ 1)2d
[
exp

{
−n

8

(
bn · ε
6

)2
}

+ 2 · exp
{
−n

8

(
bn · ε
12

)2
}]

+ 4 ·
(
2d+1 · nd

)k · exp
{
− n

32
·
(
log(1/bn)−1 · ε

9

)2
}
,

(8)

where P refers to the process distribution of Z1, Z2, · · · .
Note that this bound is distribution free, valid for any finite

n, and exclusively function of the size of the tree, the di-
mension of the space and the critical empirical mass sequence
(bn)n∈N of our TSP construction. Concerning the deviation
variable ε, this concentration inequality is only valid for a finite
range of small values, which, however, is sufficient to obtain
all the relevant forthcoming results. Rewriting Theorem 1, we
could quantify the deviation of În(πT (Zn

1 )) with respect to
I(πT (Zn

1 )) in terms of an interval of confidence and with that
obtain a distribution-free expression for the estimation error.

COROLLARY 1: Under the setting of Theorem 1, if
(bn) ≈ (n−l) for some l ∈ (0, 1

3 ), then ∀δ > 0, ∀k ∈ N, there
exists N(δ, k) > 0, such that ∀n > N(δ, k), with probability
at least 1− δ, supT∈Gk

bn

∣∣∣În(πT (Zn
1 ))− I(πT (Zn

1 ))
∣∣∣ <

12

bn
·
√

8

n
· (ln(8/δ) + k · [(d+ 1) · ln(2) + d · ln(n)]). (9)

It is important to mention that this result is valid for
a large sampling regime (∀n > N(δ, k)) to ensure that
εc(n, bn, δ, k) ∈ (0, 3), domain where Theorem 1 is valid (see
Section VIII-C for details). For the rest of the exposition,
we denote the interval of confidence on the RHS of (9) by
εc(n, bn, d, δ, k).

V. MINIMAX ORACLE RESULT

Returning to our central problem in (7), we propose the
following expression for the penalization term, ∀n > 0, ∀T %
T full
bn

,
φn(|T |) = εc (n, bn, d, δn · bn, |T |) , (10)

for a sequence (δn)n∈N of confidence probabilities in (0, 1]
such that (δn) is o(1). Loosely speaking, the motivation of
this choice is justified by the concentration results presented
in Section IV, but substantiated rigorously from the oracle

result presented in the next theorem. Let Ĩn(πT (Zn
1 )) ≡

În(πT (Zn
1 ))−φn(|T |) be the penalized EMI indicator ∀T %

T full
bn

. The next result shows that T̂n offers a near-optimal
solution for the estimation of I(X;Y ).

THEOREM 2: Under the setting of Theorem 1, if
• (bn) ≈ (n−l) for some l ∈ (0, 1/3),
• (δn) is o(1) and (1/δn) is O(en

1/3
),

then ∀δ > 0 there exists Nc(δ) > 0, such that ∀n > Nc(δ)
with probability 1− δ (with respect to P),

0 ≤I(X;Y )− Ĩn(πT̂n(Zn
1 )) ≤

min
T%T full

bn

[I(X;Y )− I(πT (Z
n
1 ))] + 2 · φn(|T |). (11)

The result says two important things. On one hand, it shows
that with an arbitrary high probability our penalized indicator
Ĩn(πT̂n(Zn

1 )) is an underestimation of I(πT̂n(Zn
1 )), which

ratifies the correctness of the penalization term in (10). On the
other hand, and more importantly, it shows that the deviation
of the penalized quantity Ĩn(πT̂n(Zn

1 ) from I(X;Y ) is upper
bounded by an expression that reflects the optimal balance
between the estimation error and the true approximation error,
right hand side (RHS) of (11). Alternatively, we can see the
RHS of (11) as an oracle minimax error bound in the sense
that it is the choice, Tn, of an ideal observed that has access to
the true distribution to balance the two errors of this learning
problem, i.e., Tn = argminT%T full

bn

I(X;Y )− I(πT (Zn
1 )) +

2φn(|T |). Note that Tn offers the best performance for the
worse scenario, where the two errors add constructively (the
minimax solution).

From the conditions on (bn)n∈N stated in Theorem 2, we
have that limn→∞ supk∈{1,..,|T full

bn
|} φn(k) = 0 (the argu-

ments presented in Section VIII-C). Consequently the oracle
minimax error bound in (11) is governed by the asymptotic
trend of limn→∞

[
I(X;Y )− I(πT full

bn

(Zn
1 ))
]
, associated with

the approximation goodness (or the asymptotic sufficiency)
of the full tree. The next result formalizes this idea and
proves the density free strong consistency of În(πT̂n(Zn

1 ))
and Ĩn(πT̂n(Zn

1 )), respectively.

VI. DENSITY-FREE STRONG CONSISTENCY

THEOREM 3: Under the setting of Theorem 1, if P is
absolutely continuous with respect to the Lebesque measure
in (Rd,B(Rd)) and (bn) and (δn) satisfy the condition stated
in Theorem 2, then limn→∞ În(πT̂n(Zn

1 )) = I(X;Y ) and
limn→∞ Ĩn(πT̂n(Zn

1 )) = I(X;Y ), P-almost surely.
VII. FINAL REMARK

The conditions on (bn)n∈N to ensure that T̂n induces
strongly consistent estimates for I(X;Y ) (Theorem 3), match
the one stipulated on the full tree, i.e., T full

bn
, to obtain

that În(πT full
bn

(Zn
1 )) is strongly consistent. This last result

presented by the authors in a companion manuscript [12]. At
this point, it is important to highlight the adaptation character
of our TSP, which a function of the data finds the tree’s
topology that offers a near-optimal estimation-approximation
error tradeoff (Theorem 2). To illustrate the idea, if the target



value I(X;Y ) is high we expect to get a less conservative (or
bigger) complexity regularized tree T̂n, than in the case of a
moderate MI magnitude. In contrast, the full tree solution does
not allow for this tree structure adaptation to the problem.

VIII. PROOFS

A. Theorem 1
LEMMA 1: (Lugosi and Nobel [6]) Let Gk be the family

of tree-structure measurable partitions of Rd with k cells
(or terminal nodes), and Z1, Z2, · · · iid realizations with
distribution P in (Rd,B(Rd)). Then, ∀ε > 0, ∀n,

P
(

sup
π∈Gk

∑

A∈π

|Pn(A)− P (A)| > ε

)
≤ 4(2d+1nd)k exp

{
−nε2

32

}

LEMMA 2: (Vapnik and Chervonenkis [13]) Under the
setting of Lemma 1, if we instead consider B the family of
measurable rectangleof Rd, then, ∀ε > 0, ∀n,

P
(
sup
A∈B

|Pn(A)− P (A)| > ε

)
≤ (n+ 1)2d exp

{
−nε2

8

}
.

Proof Theorem 1: We use that, ∀T ∈ Gk
bn

,∣∣∣În(πT (Zn
1 ))− I(πT (Zn

1 ))
∣∣∣ ≤
∑

A∈πT (Zn
1 ) |Pn(A)− P (A)| ·

3 · log(1/bn)+

sup
A∈πT (Zn

1 )
|logP (A)− logPn(A)|+

sup
A∈πT (Zn

1 )
|logQ(A)− logQn(A)| , (12)

this derived from the triangular inequality and
the critical mass criterion of the full tree T full

bn
.

Concerning the first term on the RHS of (12),
P
(
supT∈Gk

bn

∑
A∈πT (Zn

1 ) |Pn(A)− P (A)| · 3 · log(1/bn) > ε
)

≤ 4 · (2d+1 · nd)k exp

{
− n

32
·
(
log(1/bn)−1 · ε

3

)2
}
,

(13)

from Lemma 1 and the fact that Gk
bn

⊂ Gk. Concerning the
second term on the RHS of (12), for an arbitrary A ∈ B(Rd)
let us consider the following collection of sequences SA ={
zn1 ∈ Rd·n : |logP (A)− logPn(A)| > ε

}
. This can be writ-

ten as SA = {zn1 : P (A)− Pn(A) > Pn(A) · (eε − 1)} ∪
{zn1 : Pn(A)− P (A) > Pn(A) · (1− e−ε)}. Using Taylor ex-
pansion, ∀ε ∈ (0, 1), max {eε − 1, 1− e−ε} > ε

2 , then ∀ε ∈
(0, 1), ∀n ∈ N,

P
({

zn1 : sup
T∈Gk

bn

sup
A∈πT

|logP (A)− logPn(A)| > ε

})
≤

P




⋃

T∈Gk
bn

⋃

A∈πT

{
zn1 : |Pn(A)− P (A)| > Pn(A) ·

ε

2

}


 ≤

P
({

zn1 : sup
A∈B

|Pn(A)− P (A)| > bn · ε
2

})
≤

(n+ 1)2d · exp
{
−n

8

(
bn · ε
2

)2
}
, (14)

where the last two inequalities are obtained from the fact
that ∀T % T full

bn
the cells of πT are rectangles in B,

and Lemma 2, respectively. Concerning the last term in
the RHS of (12), by construction of T full

bn
, ∀T % T full

bn
,

∀A ∈ πT (Zn
1 ), A has a product form , A1 × A2, and by

construction Q(A) = P (A1 × Rq) · P (Rp × A2). Hence,
supA∈πT (Zn

1 ) |logQ(A)− logQn(A)| ≤

sup
A∈πT (Zn

1 )
|logP (A1 × Rq)− logPn(A1 × Rq)|+

sup
A∈πT (Zn

1 )
|logP (Rp ×A2)− logPn(Rp ×A2)| . (15)

From the same inequalities shown in (14),

P
(

sup
T∈Gk

bn

sup
A∈πT

|logP (A1 × Rq)− logPn(A1 × Rq)| > ε

2

)

≤ (n+ 1)2d · exp
{
−n

8

(
bn · ε
4

)2
}
. (16)

The same bound in (16) is obtained for the term

P
(

sup
T∈Gk

bn

sup
A∈πT

|logP (Rp ×A2)− logPn(Rp ×A2)| >
ε

2

)
,

and from (15), ∀ε ∈ (0, 2),
P
(
supT∈Gk

bn
supA∈πT

|logQ(A)− logQn(A)| > ε
)
≤

2 · (n+ 1)2d · exp
{
−n

8

(
bn · ε
4

)2
}
. (17)

To conclude, considering the inequality in (12) and the
distribution free bounds obtained for its RHS terms (in (13),
(14) and (17), respectively), we obtain (8) ∀ε ∈ (0, 3).

B. Corollary 1
The result derives directly from Theorem 1, and it is not

reported here for the space constraint.

C. Theorem 2

By definition φn(k) = 12
bn

√
8
n ·√

(ln(8) + ln(n)− ln(δn · bn) + k · [(d+ 1) · ln(2) + d · ln(n)]),
then considering that

∣∣∣T full
bn

∣∣∣ ≤ (1/bn), it is simple to check
that (bn) ≈ (n−l) with l ∈ (0, 1/3) and (1/δn) being
O(en

1/3
) are the weakest set of sufficient conditions to obtain

that

lim
n→∞

sup
k∈{1,···|T full

bn
|}

φn(k) = lim
n→∞

φn(
∣∣∣T full

bn

∣∣∣) = 0. (18)

This is crucial for the rest of the proof, as the inequality in
Theorem 1 is valid only for ε ∈ (0, 3), represented in this case
by the intervals of deviations φn(k), ∀k ∈

{
1, · · ·

∣∣∣T full
bn

∣∣∣
}

.
Let Sn,k ≡
{
zn1 ∈ Rd·n : sup

T∈Gk
bn

∣∣∣În(πT (Z
n
1 ))− I(πT (Z

n
1 ))
∣∣∣ ≤ φn(k)

}
,



be the k-typical set, well defined for all n such that k ≤∣∣∣T full
bn

∣∣∣. From Corollary 1, if φn(k) ∈ (0, 3), then P(Sn,k) >

1 − bnδn. Consequently from (18), there exists Nc > 0

such that ∀k ∈
{
1, · · · ,

∣∣∣T full
bn

∣∣∣
}

and ∀n > Nc, P(Sn,k) >

1 − bnδn. Hence, defining Sn =
⋂

k∈{1,···|T full
bn

|} S
n,k, we

have that P(Sn) > 1 − δn, ∀n > Nc. By definition, if
zn1 ∈ Sn, then supT∈Gk

bn

∣∣∣În(πT (zn1 ))− I(πT (zn1 ))
∣∣∣ ≤ φn(k),

∀k ∈
{
1, · · ·

∣∣∣T full
bn

∣∣∣
}

, which also implies that [13],
∣∣∣∣∣ supT∈Gk

bn

În(πT (z
n
1 ))− sup

T∈Gk
bn

I(πT (z
n
1 ))

∣∣∣∣∣ ≤ φn(k), (19)

∀k ∈
{
1, · · ·

∣∣∣T full
bn

∣∣∣
}

. Then for an arbitrary zn1 ∈ Sn

−Ĩn(πT̂n(zn1 )) = −În(πT̂n(zn1 )) + φn(
∣∣∣T̂n
∣∣∣)

≤ −În(πT̂n
k
(zn1 )) + φn(k),

≤ −I(πTn
k
(zn1 )) + 2 · φn(k), ∀k ∈

{
1, · · ·

∣∣∣T full
bn

∣∣∣
}
,

where Tn
k ≡ argmaxT∈Gk

bn
I(πT (zn1 )) is the oracle solution

that maximizes the MI on Gk
bn

. Also it is clear that ∀zn1 ∈ Sn,
Ĩn(πT̂n(zn1 )) = În(πT̂n(zn1 )) − φn(

∣∣∣T̂n
∣∣∣) ≤ I(πT̂n(zn1 )) ≤

I(X;Y ), and consequently we have that, 0 ≤ I(X;Y ) −
Ĩn(πT̂n(zn1 )) ≤

min
k∈{1,···|T full

bn
|}
(I(X;Y )− I(πTn

k
(zn1 ))) + φn(k). (20)

The argument concludes from the fact that Sn has probability
at least 1− δn, ∀n > Nc and that (δn) is o(1).

D. Sketch of the Proof of Theorem 3

We consider the following results, whose proofs are omitted
for the space constraint.

PROPOSITION 1: Under the setting of Theorem 3, if
(bn) ≈ (n−l) for some l ∈ (0, 1/3), then

lim
n→∞

I(πT full
bn

(Zn
1 )) = I(X;Y ),

P-almost surely. (The argument is presented in [12].)
PROPOSITION 2: Under the setting of Theorem 3, if

(bn) ≈ (n−l) with l ∈ (0, 1/3), then

lim
n→∞

∣∣∣În(πT̂n(Zn
1 ))− I(πT̂n(Zn

1 ))
∣∣∣ = 0 (21)

P-almost surely.
LEMMA 3: Under the setting of Theorem 3, if

(bn) ≈ o(n−l) with l ∈ (0, 1/3), (δn) is o(1)
and (1/δn) is O(en

1/3
), then ∀ε > 0 there exits

Nc(ε) such that ∀n > Nc and ∀k ∈
{
1, ..,
∣∣∣T full

bn

∣∣∣
}

,

P
(
supT∈Gk

bn
I(πT (Zn

1 ))− I(πT̂n(Zn
1 )) > ε

)
≤

exp

{
−n

8

(
εbn
24

)2
}

+ 8(2d+1nd)k exp

{
−n

8

(
εbn
48

)2
}
,

and consequently P-almost everywhere,

lim
n→∞

I(πT full
bn

(Zn
1 )) = I(πT̂n(Zn

1 )). (22)
Proof of Theorem 3: The proof comes from
∣∣∣I(X;Y )− În(πT̂n(ZN

1 ))
∣∣∣ ≤ I(X;Y )− I(πT full

bn

(ZN
1 ))+

I(πT full
bn

(ZN
1 ))− I(πT̂n(ZN

1 )) +
∣∣∣I(πT̂n(ZN

1 ))− În(πT̂n(ZN
1 ))
∣∣∣ ,

where these RHS terms tend to zero P-almost surely
from Proposition 1, Lemma 3 and Proposition 2,
respectively. Finally, the same result is obtained
for the regularized estimate Ĩn(πT̂n(ZN

1 )) as, by
definition, limn→∞

∣∣∣Ĩn(πT̂n(ZN
1 ))− În(πT̂n(ZN

1 ))
∣∣∣ ≤

limn→∞ supk∈{1,..,|T full
bn

|} φn(k) = 0.
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