
A Historical Perspective on Authoring and ITS: 
Reviewing Some Lessons Learned 

 
Benjamin D. Nye1 and Xiangen Hu1,2 

1University of Memphis 
2China Central Normal University 

{bdnye,xhu}@memphis.edu 
 

 

Introduction 
This section discusses the practices and lessons learned from authoring tools that have been applied and 
revised through repeated use by researchers, content authors, and/or instructors. All of the tools noted in 
this section represent relatively mature applications that can be used to build and configure educationally-
effective content.  Each tool has been tailored to address both the tutoring content and the expected 
authors who will be using the tool. As such, even tools which support similar tutoring strategies may use 
very different interfaces to represent equivalent domain knowledge.  In some cases, authoring tools even 
represent offshoots where different authoring goals led to divergent evolution of both the authoring tools 
and the intelligent tutoring systems (ITSs) from a common lineage. Understanding how these systems 
adapted their tools to their particular authoring challenges gives concrete examples of the tradeoffs 
involved for different types of authoring. By reviewing the successes and challenges of the past, these 
chapters provide lessons learned for the development of future systems. 
 

Authoring Tools for Adaptive and Data-Driven Systems 
In general, for ITS authoring tools, discussion often centers on tools for creating content, such as new 
problems or new dialogs that interactively help the learner step-by-step. While these are a key part of the 
authoring process, mature authoring tools tend to cover a wider array of authoring and configuration 
options. These activities range from small activities like selecting HTML pages to larger tasks such as 
manually selecting or sequencing curriculum topics.  In other cases, the problem is not so much authoring 
as versioning: maintaining and updating content in a reliable way.  Within this section, all of these 
activities will be considered as facets of the larger authoring lifecycle. 
 
This lifecycle typically includes the following steps: 1) Creating initial content module (e.g., a problem), 
2) Interacting with module like a student, 3) Revising the module, 4) Selecting and composing modules 
for inclusion in a given curriculum, 5) Collecting data on student interaction, and 6) Revising module 
based on collected data.  From the standpoint of content quality, each of these steps contributes to 
development of effective tutoring and learning.  Efficient tools for certain stages of this lifecycle may be 
less effective for other stages.  For example, while a series of simple may be efficient for entering the 
initial content, that same interface would not necessarily make it easy to find and correct a specific field 
during the revision step.  As such, all systems must make choices about the authoring activities that 
receive the most support, often based on the types of expected authors.  With this in mind, the chapters in 
this section describe a variety of approaches to authoring. 
 



In Chapter 3, Blessing, Aleven, Gilbert, Heffernan, Matsuda, & Mitrovic discuss different approaches to 
“Authoring Example-based Tutors for Procedural Tasks.”  This paper discusses the convergence of 
multiple lines of authoring tools for step-based problem solving tutors toward  example-based authoring.  
Example-based authoring, also sometimes called instance-based authoring, provides an interface where 
the author builds tutoring content and student support (e.g., hints) for an individual example or limited 
class of parameterized examples. By comparison, traditional authoring techniques often required 
implementing a full set of explicit domain rules.  A number of advantages for such tutors are provided, 
which are evident in the authoring tools presented.  For some systems, such as ASSISTments and 
Cognitive Tutor Authoring Tools (CTAT), this approach was chosen to lower barriers to authoring so that 
instructors could develop ITS content. For other systems, such as xPST (Extensible Problem-Solving 
Tutor), the approach allows tightly integrating tutoring with a wide variety of content, ranging from 3D 
games to web pages. Finally, in systems such as ASPIRE and SimStudent, algorithms are used to 
generalize domain rules and constraints that enable the ITS to tutor a wider variety of problems than were 
explicitly authored.  Particularly since domain content experts are much more likely to be able to author 
examples than create formal representations of their rules, this approach is appealing for well-defined 
procedural tasks. 
 
In Chapter 4, Matuk, Linn, and Gerard describe the authoring capabilities of the Web-based Inquiry 
Science Environment (WISE) system.  While WISE is does not currently focus on adaptive elements, the 
system has a strong focus on both theory-based (the Knowledge-Integration framework) and data-driven 
development and revision of content.  This system demonstrates the potential reach of a well-designed 
system designed around teachers, with over 10,000 teachers registered to use WISE.  Their main 
principles are to provide tools accommodate a range of abilities, allow users to reuse, revise, and extend 
what others have made, reporting student data as evidence to inform revision, and allowing flexibility for 
authors to repurpose the system for their goals.  Compared to many authoring systems, WISE strongly 
supports later parts of the authoring lifecycle (i.e., selecting content and data-driven revision). 
 
In Chapter 5, Jacovina, Snow, Dai, and McNamara describe the authoring tools for iSTART-2 and 
Writing Pal.  These systems use natural language processing techniques to support reading 
comprehension strategies and essay-writing skills, respectively.  Authoring tools within these systems are 
novel in a few ways.  First, the tools explicitly contain distinct features that are intended for researchers 
(e.g., randomizing the use of a certain feedback strategy) versus for teachers (e.g., modifying or selecting 
content).  In general, authoring in these systems attempts to mirror the student experience with the system 
but with buttons to edit content or behavior. Second, the tools are being designed to allow authoring 
behavior that is associated with stealth assessments, such as feedback or experimental activities.  
Compared to other systems in this section, this work explores the potential for collecting and applying 
rich metrics on student behavior (e.g., the narrativity of a student’s essays). 
 
In Chapter 6, Charlie Ragusa outlines the design principles of the GIFT authoring tools, which are 
currently being used by multiple groups to integrate tutoring into environments as varied as 3D worlds 
and PowerPoint presentations.  A major focus of this chapter is the need and development of collaborative 
authoring tools: frameworks that allow multiple authors with complementary expertise to contribute 
effectively.  These processes are essential, since the knowledge needed to author an ITS tends to be 
spread across multiple experts. 



 
Finally, in Chapter 7, Steve Ritter describes practices related to authoring and refining ITS content across 
the lifecycle of a commercial product, based on practices used by the widely-used Cognitive Tutor 
system. This chapter focuses significantly on methods to leverage student data to improve an ITS over 
time. The discussion revolves around the types of changes that are often necessary (e.g., parameters, 
design of the tasks, content) and methods to determine the changes (e.g., manually, automatically 
calculated,  crowdsourced).  Versioning issues are noted with data-driven models, such as data becoming 
less-applicable if the design of the task has changed.  Also, suggestions are made for which types of 
changes are best-suited for certain methods (e.g., certain parameter changes can be automatically rolled 
out).  These issues reflect the realities of balancing data-driven design with a regularly-used product that 
must also behave reliably for users on a day-to-day basis. 

Themes and Lessons Learned 
Across these chapters, some common themes emerged for systems that have matured to reach wider user 
bases.  Strong themes included: 

1. User-Centric Design: Authoring tools that are tailored for the specific authors who are intended to 
use them.  In some cases, building multiple tools that serve qualitatively different types of 
authors.  Both systems with wide user bases of authors (ASSISTments and WISE, both with >1k 
teachers) strongly focused on serving the common needs of teachers, which include being able to 
modify and add content.  This was also a significant theme for multiple other systems (e.g., 
iSTART-2). 

2. Workflows: In some cases, multiple tools and qualitatively different approaches are used to build, 
refine, and enhance different parts of a system.  The GIFT discussion focuses extensively on 
collaborative authoring. The Cognitive Tutor product lifecycle discussion also describes a multi-
faceted authoring process.   

3. Constraints: Authoring tools constrain the author (by design). For each of the systems with large 
student user bases (Cognitive Tutor, ASSISTments, and WISE, all with > 75k students), 
authoring and configuration was often significantly constrained. In many cases, this was to 
simplify the authoring process.  However, systems may also attempt to limit certain types of 
configurations or authoring that are not pedagogically sound within the system.  This raises the 
issue that sometimes the options that are not given for authoring can be as important as those that 
are. 

4. Content vs. Adaptivity: Different authoring tools and processes emphasize different parts of the 
content authoring cycle, with systems for teachers tending to support simple content creation 
revision (WISE, iSTART-2 for teachers, ASSISTments) and systems with stronger use by the 
research community providing more tools for training step-based adaptivity (CTAT, SimStudent, 
GIFT, ASPIRE). 

5. WYSIWYG (What You See Is What You Get): Nearly all of the systems in this chapter describe 
methods to quickly view the content after it is authored, incrementally and iteratively (CTAT, 
SimStudent, xPST, ASSISTments, iSTART-2, WISE, ASPIRE).  By allowing authors to see what 
they are creating in real-time, these tools enable a more direct authoring process. 

6. Generalization Algorithms: While some of these systems use complex formal representations 
(e.g., ontologies, production rules), the field has taken steps toward authoring using examples.  As 



such, research on methods to identify general principles or rules from examples has become an 
important topic (SimStudent, ASPIRE). 

7. Versioning and Maintaining Content: For systems with large user bases, these chapters touched 
on the complexities and advantages of maintaining a large system, such as supporting modified 
content, tracking its evolution, and retaining only content with  signs of effectiveness evident in 
the student data (Cognitive Tutor and WISE). 

 
Based on these lessons learned, a few areas of focus emerge.  First, support for example-based authoring 
and other WYSIWYG approaches is probably essential to help instructors author new ITS-tutored 
activities.  Second, collecting and presenting centralized data about an existing repository of tutoring 
modules (such as GIFT’s Domain Knowledge Files) could significantly improve the ability and 
confidence of authors trying to select tutoring for an activity.  This data could also be used for versioning 
that tracks, maintains, and prunes the set of recommended tutoring modules over time (an issue that is 
explored in Chapter 6).  Finally, this work implies that multiple authoring interfaces are needed to support 
the research community versus instructors.  With these shifts, GIFT could expand its user base and also 
increase the effectiveness of content over time.  More generally, these are lessons that authoring tools for 
ITS and other learning technologies should follow to ensure that their systems are easier to author, 
effective for learners, and can be revised and maintained over time. 


	Introduction
	Authoring Tools for Adaptive and Data-Driven Systems
	Themes and Lessons Learned

