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Abstract Realistic descriptions of surface reflectance have
long been a topic of interest in both computer vision and
computer graphics research. In this paper, we describe a
novel high speed approach for the acquisition of bidirec-
tional reflectance distribution functions (BRDFs). We de-
velop a new theory for directly measuring BRDFs in a basis
representation by projecting incident light as a sequence of
basis functions from a spherical zone of directions. We de-
rive an orthonormal basis over spherical zones that is ideally
suited for this task. BRDF values outside the zonal direc-
tions are extrapolated by re-projecting the zonal measure-
ments into a spherical harmonics basis, or by fitting ana-
lytical reflection models to the data. For specular materials,
we experiment with alternative basis acquisition approaches
such as compressive sensing with a random subset of the
higher order orthonormal zonal basis functions, as well as
measuring the response to basis defined by an analytical
model as a way of optically fitting the BRDF to such a rep-
resentation. We verify this approach with a compact optical
setup that requires no moving parts and only a small number
of image measurements. Using this approach, a BRDF can
be measured in just a few minutes.
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1 Introduction

Accurate descriptions of how light reflects off a surface have
long been a topic of research in both computer vision and
computer graphics. Real world materials exhibit characteris-
tic surface reflectance, such as glossy or specular highlights,
anisotropy, or retro-reflection. Descriptions of such effects
find their applications for example in shape from shading al-
gorithms and realistic rendering. The surface reflectance of a
material (discounting any sub-surface scattering) is formal-
ized by the notion of the Bidirectional Reflectance Distrib-
ution Function (BRDF) (Nicodemus et al. 1977), which is a
4 dimensional function describing the response of a surface
in a certain exitant direction to illumination from a certain
incident direction over a hemisphere of directions.

Numerous analytical models of BRDFs exist in the lit-
erature (Cook and Torrance 1982; He et al. 1991, 1992;
Ashikhmin et al. 2000; Ashikhmin and Shirley 2000) that
observe the laws of energy conservation and reciprocity,
and hence are physically plausible. However, these mod-
els generally do not capture the reflectance properties of
all kinds of materials. Furthermore, selecting appropriate
model parameters for representing different kinds of real-
world materials can be a non-intuitive and time-consuming
process. Therefore, acquisition of real world BRDF data
has been a very active area of research over the last few
years. This task has typically involved measuring the re-
sponse of various samples using some version of a gonio-
reflectometer (Cornell 2005; CUReT 1999; NIST 2003;
Ward 1992). More recently, several researchers have em-
ployed image based techniques in order to make acquisition
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of BRDFs more efficient (Marschner et al. 2000; Lensch et
al. 2001; Dana 2001; Matusik et al. 2003; Ngan et al. 2005;
Mukaigawa et al. 2007).

The data acquired with such a process is generally not
used directly due to its large size, the noise present in the
measurement process, and missing data for certain incident
and exitant directions. Instead, the data is usually either fit-
ted to an analytical model (Ward 1992; Lafortune et al. 1997;
Ngan et al. 2005) or projected into a suitable basis (Westin
et al. 1992; Ramamoorthi and Hanrahan 2002; Basri and Ja-
cobs 2003; Ng et al. 2003). This fitting process results in
the loss of some of the captured high frequency details in
the original data, possibly making the high sampling density
of acquisition an overkill. At the same time, reducing the
sampling density during acquisition would result in aliasing
artifacts for sharp features that would then fall below the
Nyquist limit.

In this paper, we extend an alternative approach to the ac-
quisition of reflectance data where we optically project the
data into a suitable basis function directly during the capture
process (Ghosh et al. 2007). This approach results in optical
low-pass filtering of the data at capture time, and thus ad-
dresses aliasing issues and minimizes high-frequency noise.
An added benefit is that this prevents any redundancy in data
capture as we can use all of the data we acquire. We focus
on a very fast capture of object appearance for vision and
graphics purposes, and do not seek to replace high-precision
measurement devices such as gonio-reflectometers. Our ap-
proach speeds up acquisition time to one or two minutes
compared to a few hours required by previous acquisition
approaches. The main contributions of this paper are:

– The theory behind, and a practical implementation of the
concept of measuring the response of a surface to a basis
function as a way of optically filtering and encoding the
BRDF data.

– Development of a set of orthogonal basis functions de-
fined over the measurement space, as well as basis trans-
formation as a way of data extrapolation.

– Introduction of a compresive sensing approach to BRDF
measurement for efficient acquisition of specular materi-
als.

– Constructing data-dependent illumination basis based
on an analytical BRDF model and optically projecting
BRDFs into such a representation.

– A novel design for a curved reflector catadioptric imaging
setup resulting in an efficient image based BRDF acquisi-
tion without involving any moving parts.

2 Related Work

As an alternative to analytical BRDF models, one can use
measurements of BRDFs in a rendering system. Such data is
available from many sources, including the Cornell (Cornell

2005), STARR (NIST 2003), and CUReT (CUReT 1999)
databases. For example, the BRDF data in the CUReT data-
base represents 256 reflectance measurements uniformly
distributed over the hemisphere of 60 different materials.
However, comprehensive data is still not readily available
for a large number of day-to-day materials, and thus the de-
velopment of rapid new measurement methods has been a
focus of research activities.

Measurement Setup. The wide availability and decreas-
ing cost of digital cameras has led researchers to explore
various image based BRDF acquisition approaches. One
way of reducing the number of images that need to be
taken is by using curved surfaces for recovering homoge-
neous (Marschner et al. 2000; Matusik et al. 2003), or spa-
tially varying BRDFs (Lensch et al. 2001). Generally, these
methods require knowledge of the geometric shape, and are
not well-suited for capturing fabric or sheet materials. Such
materials can be measured by wrapping them around a cylin-
der at various orientations (Ngan et al. 2005).

In many cases, planar samples are, however, more con-
venient. Other researchers have therefore focused on special
optics to cover a large range of incident or exitant light di-
rections for a planar sample in a single photograph. Ward’s
reflective dome design (Ward 1992) was the first to use this
approach. Malzbender et al. (2001) use a dome with at-
tached, individually controlled light sources to photograph
a surface under varying lighting conditions. Han and Perlin
(2003) developed a device to capture bidirectional texture
functions (BTFs) based on a kaleidoscope. Dana (2001) de-
signed an acquisition device using a parabolic mirror that
densely covers a relatively small solid angle. The system
also involves planer translations of the light source to cover
various incident directions and translations of the sample in
order to scan the surface for spatial variations in reflectance.
Kuthirummal and Nayar (2006) have developed a class of ra-
dial imaging systems for image-based acquisition of geom-
etry, texture, and BRDFs. Their BRDF measurement setup
can image 4 radial lines of reflectance of a given material
for a fixed light source direction. Recently, Mukaigawa et al.
(2007) have presented a catadioptric imaging system based
on an ellipsoidal mirror and no moving parts for high speed
BRDF measurement. They use a projector as the illumina-
tion source to project circular blobs of light to discretely
sample the incident illumination.

Our work is most closely related to the last three papers.
Like Kuthirummal and Nayar (2006) and Mukaigawa et al.
(2007), we use a rotationally symmetric optical design, al-
though ours is not a cylinder or ellipsoid, but a freeform sur-
face. Our design lets us measure BRDFs over a continuous
region of directions, much like the work of Dana (2001) and
Mukaigawa et al. (2007). However, unlike any other previ-
ous work, we use basis function illumination, rather than in-
dividual point or directional lights, which allows us to very
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rapidly acquire BRDFs, including anisotropic ones. Also,
point-sampling of the lighting directions with a projector
like in the work of Mukaigawa suffers from reduced avail-
able dynamic range, and hence reduced signal-to-noise ratio
(SNR) for the measurements. This SNR problem is avoided
for measurements with basis illumination.

Measurements with Basis Functions. Basis function ap-
proaches have been used in the past for measuring other
visual effects, including light fields (Goesele et al. 2003),
reflectance fields (Wenger et al. 2005) and environment
mattes (Peers and Dutré 2005). While similar is spirit, these
approaches measure different physical properties, and are
therefore both mathematically and optically very different
from ours. Our proposed zonal basis illumination is very
similar in principle to harmonic lights as proposed by Sato et
al. (2003) for encoding the appearance function of a scene.
Hence our optical setup can be seen as a step towards the
realization of such harmonic lights.

BRDF Representations. After the BRDF has been mea-
sured, one can use it directly in tabular form in a ren-
dering system (Marschner et al. 2000). However, the data
often contains holes and is noisy, so that some form of post-
processing and interpolation is almost always required. Fur-
thermore, the inherent dimensionality of the BRDF data, and
the need to sample it at a high resolution leads to unwieldy
storage problems. Most researchers therefore represent their
BRDFs as either analytical reflectance models (Ward 1992;
Lensch et al. 2001; Gardner et al. 2003), or generic func-
tion bases such as polynomials (Koenderink et al. 1996;
Malzbender et al. 2001), spherical harmonics (Westin et al.
1992; Ramamoorthi and Hanrahan 2002; Basri and Jacobs
2003), Zernike polynomials (Koenderink et al. 1996), hemi-
spherical basis (Gautron et al. 2004) or wavelets (Schröder
and Sweldens 1995; Lalonde and Fournier 1997; Ng et al.
2003).

The key difference of our work from these approaches is
that we directly acquire the BRDF in a basis representation,
rather than measuring a tabulated representation that is later
fit with the basis functions. The concept of basis function
acquisition, in combination with the optical setup that we
devised, allows for extremely rapid and easy measurement
of BRDFs.

3 Overview

The distinguishing characteristic of our BRDF measurement
approach is that it captures the response of the surface to il-
lumination in the form of smooth basis functions, while ex-
isting methods measure impulse response using thin pencils
of light that approximate Dirac peaks. For this concept to be

practical, we require an optical setup that allows us to simul-
taneously project light onto the sample from a large range of
directions, and likewise to measure the reflected light distri-
bution over a similarly large range of directions. Developing
such optics also has the advantage that no moving parts are
required, which is one reason for the speed of our acquisi-
tion.

In this paper, we choose a spherical zone of directions
as the acquisition region for both incident and exitant light
directions. Spherical zones have several advantages over re-
gions of other shape. First, they allow us to develop basis
functions that align nicely with the symmetries present in
many BRDFs, thus minimizing the number of basis func-
tions required to represent a given BRDF. Alignment also
simplifies extrapolation of data into missing regions. Sec-
ond, a zonal setup allows us to design optics that could, in
principle, cover over 98% of the hemisphere, with only a
small hole near the zenith, where BRDF values are usually
smoother compared to more tangential directions.

The manufacturing process that we used for our proto-
type system allowed us to produce a section of that range
corresponding to 51% of the hemisphere. Even then, the
optical setup achieves greater coverage than a lot of previ-
ous measurement systems that have been successfully used
for BRDF measurement. For example, Ngan et al. (2005)
sampled only 20% of the hemisphere for their measure-
ments of anisotropic BRDFs, and Dana (2001) measured a
much smaller zone with a parabolic reflector than our opti-
cal setup. Interestingly, the optical setup of Mukaigawa et al.
(2007) also covers a similar (albeit larger) spherical zone of
directions. Our basis acquisition approach can also be read-
ily applied with their physical setup. Hence, hemispherical
coverage is not a fundamental limitation of the basis mea-
surement approach.

Figure 1 shows a diagram and a 2D mockup of such an
optical setup. A camera focused on the mirrored components
can capture the full zone of reflected directions in our setup.
Simultaneously, a projector focused on the mirrored com-
ponents can cover the corresponding zone of incident direc-
tions.

In the following, we will first discuss the theoretical un-
derpinnings for basis function BRDF acquisition (Sect. 4),
and then describe the physical setup (Sect. 6). Finally, we
present results in Sect. 7 and conclude with a discussion in
Sect. 8.

4 Measurement with Basis Functions

In this section, we discuss the mathematical concepts behind
a basis function approach for BRDF measurement, and de-
rive the specific basis that we use in our work. Section 6 then
deals with the physical realization of these concepts.
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Fig. 1 Left: Physical setup of
our reflectance acquisition
device. A camera focused on the
mirrored components views a
zone of reflected directions.
A projector illuminates the
corresponding zone of incident
directions using a beam splitter.
Right: A prototype
demonstrating the concept in
2D. Here, we focus illumination
on the mirrored components
using a laser pointer and
observe that the beam bounces
back to its origin

Fig. 2 The measurement zone Z

Assume that we want to measure a BRDF fr(ωi ,ωo) for
combinations of incident light direction ωi and exitant light
direction ωo restricted to a spherical zone Z centered around
the surface normal. Z corresponds to longitudinal angles
φ ∈ [0 . . .2π] and latitudinal angles θ ∈ [θmin . . . θmax], as
shown in Fig. 2.

We would like to approximate the BRDF over this zone
with a linear combination of basis functions {Zk(ωi )} over
the incident light directions. We will include the cos θi term
in this basis representation for convenience and numerical
stability, i.e.

f̂r (ωi ,ωo) = fr(ωi ,ωo) cos θi ≈
∑

k

Zk(ωi )zk(ωo), (1)

so that we can write the reflected radiance for any outgoing
direction ωo as

Lo(ωo) =
∫

Z
fr(ωi ,ωo)Li(ωi ) cos θi dωi (2)

≈
∑

k

zk(ωo)

∫

Z
Zk(ωi )Li(ωi ) dωi . (3)

In this framework, BRDF measurement can be seen as the
process of determining the coefficients zk(ωo) for each basis
Zk and each exitant light direction ωo. If we have chosen the
Zk such that they form an orthonormal basis over the zone Z,
then the coefficients are given as

zk(ωo) =
∫

Z
Zk(ωi )fr (ωi ,ωo) cos θi dωi . (4)

In other words, we can measure zk(ωo) by recording the
reflected light along each direction ωo ∈ Z for different in-
cident illumination patterns Zk(ωi ). In practice, we sepa-
rately project the positive Z+

k and the negative Z−
k parts of

the basis function Zk , and subtract the resulting coefficients
in software, similar to the work by Goesele et al. (2003).

There are several ways in which one can define a suit-
able orthonormal basis over Z. In Appendix A we derive the
set of orthonormal Zonal Basis (ZB) functions Zm

l (φ, θ) ∈
[0,2π] × [θmin, θmax] that we use for our purposes:

Zm
l (θ,φ) =






√
2K̂m

l cos(mφ)P̂ m
l (cos θ) if m > 0,√

2K̂m
l sin(−mφ)P̂ −m

l (cos θ) if m < 0,

K̂0
l P̂ 0

l (cos θ) if m = 0,

(5)

where the zonal normalization constant K̂m
l is

K̂m
l =

√
(2l + 1)(l − |m|)!

2π · (cos θmin − cos θmax) · (l + |m|)! . (6)

For practical applications, we of course need to extrap-
olate from the data measured over the zone to incident and
exitant directions that have not been measured. This task is
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simplified by the global support of our basis functions, and
would be much more difficult for a basis with local support,
such as a Wavelet basis. In general, we would also like to
transform the data into a different representation that is more
convenient for rendering purposes, such as a tensor-product
Spherical Harmonics (SH) basis, or coefficients of an ana-
lytical reflection model. Interestingly, format conversion and
extrapolation can be achieved in a single, inexpensive step,
as described in the following.

4.1 Basis Conversion to Spherical Harmonics

One way of extrapolating the acquired zonal data in the zone
of missing measurements is by transformation into an al-
ternative basis such as spherical harmonics. The SH basis
has been used extensively in the past for representing BRDF
data. Unlike the ZB basis functions, however, the restric-
tions of the SH basis functions Ym

l to our measurement zone
Z are not orthonormal, and therefore, the equivalent of (4)
does not hold for spherical harmonics. Instead, we have

ym
l (ωo) =

∫

Z
Ŷ m

l (ωi )f̂r (ωi ,ωo)dωi , (7)

where {Ŷ m
l (ωi )} is the dual basis to the spherical harmonics

over the zone Z, i.e. the basis that fulfills the conditions
∫

Z
Ym

l (ω)Ŷ
q
p (ω)dω =

{
1 if l = p and m = q,

0 otherwise.
(8)

Since {Ŷ m
l (ωi )} is a basis for the same function space as

the SH basis, we also have

Ŷ
q
p =

∑

l,m

c
m,q
l,p Ym

l . (9)

Equations (8) and (9) together describe a sparse linear
system that can be solved to obtain the linear weights that
define the duals Ŷ . Conversion from ZB to SH is then a sim-
ple linear transformation of the zonal coefficients z

q
p of a

function f̂r by a sparse basis change matrix C into corre-
sponding SH coefficients ym

l . Each element of this matrix is
defined by

C
m,q
l,p =

∫

Z
Z

q
pŶm

l dω. (10)

Interestingly, the construction of orthonormal basis func-
tions restricted to a zone of a sphere from a linear combina-
tion of the SH basis (similar to our construction of the dual
functions Ŷ m

l ) has also been investigated in the astrophysics
literature by Gorski (1994) for studying cosmic microwave
background temperature distribution. However, we go be-
yond this in our work and provide an anlytical formulation
for orthonormal zonal basis functions that are a generaliza-
tion of the SH basis over an arbitrary zone of a sphere.

Note that we could use the dual functions Ŷ m
l for mea-

surements and directly project the BRDF into a spherical
harmonic basis. However, having a single orthonormal ba-
sis is more convenient for projection into arbitrary function
spaces including analytical BRDF models as described next,
as well as for compressive sensing approaches as discussed
in Sect. 4.2.1.

4.2 Fitting Analytical Reflection Models

For relatively low frequency BRDFs, the spherical harmonic
representation produces very good results. For specular ma-
terials, it is well known that basis functions such as spherical
harmonics or our zonal basis suffer from oscillations in the
proximity of discontinuities or strong gradients. These oscil-
lations are visible in the reconstruction as undesirable ring-
ing artifacts also known as the Gibbs phenomenon (Fig. 3,
center). Hence, for specular materials, we cannot directly
use the acquired coefficients or transform them into SH for
final use.

Instead, we propose to fit the higher order zonal repre-
sentation of specular BRDFs to an analytical model, thereby
computing a least-squares fit over the spurious oscillations.
Since the Gibbs phenomenon is an oscillation around the
true function value, such a least-squares fit produces a very
good reconstruction (Fig. 3, right). In our experiments,
we worked with the distribution based BRDF model by
Ashikhmin (2006) due to the data-driven nature of the model
and the simplicity of the fitting procedure. The D-BRDF
model is also a generalization of the Ashikhmin-Shirley-
Phong model (Ashikhmin and Shirley 2000), which was re-
cently found to be particularly well-suited for fitting to mea-
sured data (Ngan et al. 2005). However, the measured zonal
data can be fitted to any other suitable analytic model using
a numerical procedure such as Press et al. (1992).

Note that such fitting of BRDF measurements to analytic
models is in general sub-optimal as one is limited by the
expressiveness of the particular analytic model employed
for the fitting process. We try and preserve as much of the
measurements as possible in this context by employing a
data-driven distribution BRDF model for the fitting process,
where the micro-facet distribution is extracted from the mea-
sured data instead of assuming a Gaussian or cosine lobe
distribution in the fitting process.

4.2.1 Compressive Sensing for Specular BRDFs

A very interesting related approach for efficiently encoding
high frequency signals can be found in the rapidly evolving
compressive sensing literature (Candés and Romberg 2005;
Candés et al. 2006). The compressive sensing theory states
that if a signal f ∈ &N has a sparse representation in a given
basis, then it is possible to accurately recover f with a small
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Fig. 3 An illustration of the suppression of ringing through fitting
analytical BRDF models. Left: original acrylic blue paint BRDF ac-
quired by Matusik et al. (2003). Center: 10th order zonal reconstruc-

tion, rendered after transformation into SH, exhibiting severe ringing
artifacts. Right: Corresponding D-BRDF fit to the zonal reconstruc-
tion

number of projections onto randomly chosen subspaces via
a tractable optimization program.

A finite signal f ∈ &N can be recovered from a set of K

linear measurements

yk = 〈f, zk〉, k = 0, . . . ,K − 1 or y = Mf (11)

taken against vector zk ∈ &N of the measurement ensemble
M (zk is the kth row of M) with K ) N as the solution to
the following convex optimization problem:

min
g∈&N

||g||l1 :=
∑

t

g(t) s.t. y = Mg. (12)

In our case, such a measurement ensemble can be formu-
lated by randomly choosing K bases from the basis space
spanned by higher order orthonormal zonal basis functions:

M = ZK.

This results in a significant reduction in the number of
projected zonal basis functions, and hence acquisition time,
for encoding specular materials. Note that the BRDF func-
tion may not necessarily be very sparse in the zonal basis
representation. The compressive sensing theory still holds as
long as the BRDF function is compressible in this basis, i.e.,
the coefficients of the basis decay with a power law (Can-
dés and Romberg 2005). This is true for most band-limited
signals and hence is a valid approach for very glossy and
moderately specular BRDFs. However, the need to extrapo-
late the BRDF data outside the measurement zone still exists
with a compressive sensing approach.

Hence, we propose to further fit the output of the opti-
mization g to the D-BRDF model as a way of extrapola-
tion of the BRDF, and for overcoming the Gibbs phenom-
enon when projecting very specular BRDFs into the zonal
basis. To simplify the optimization in (12), we solve only
for a back-scattering BRDF function fback-scatter , thereby
reducing the dimensionality of f from 4D to 2D. Finally,

we numerically fit the 2D function fback-scatter to a back-
scattering D-BRDF (k̂1 = k̂2 = ĥ) to obtain the appropriate
coefficients of the D-BRDF model.

5 Analytical Model as Measurement Basis

While the orthonormal zonal basis function introduced in
Sect. 4 is well suited for encoding low-frequency BRDFs, it
suffers from ringing artifacts in the reconstruction for spec-
ular BRDFs. One way of overcoming this is by fitting the
zonal reconstruction to an analytical BRDF model as dis-
cussed in Sect. 4.2. We observe that analytic models are of-
ten used for representing the reflectance property of specu-
lar materials in computer vision and graphics applications.
Hence for such applications, it would be ideal to directly
measure the response of such materials in a basis defined by
an analytic BRDF model.

Most BRDF models are unfortunately not easily sepa-
rated into a structured illumination and a reflected light ba-
sis, which presents a challenge for deriving the appropriate
basis illumination. However, the D-BRDF model is an ex-
ample of a model where such an illumination basis can con-
structed for measurements in the back-scattering direction.
For the back-scattering direction, k̂1 = k̂2 = k̂ = ĥ and the
model simplifies to

ρ(k̂, k̂) = c · r0 · p(ĥ)

2(k̂ · n̂) − (k̂ · n̂)2
, (13)

providing a function that is proportional to the distribution
p(ĥ). Here c is a normalization constant and r0 is the re-
flectance at normal incidence.

We propose to model specular materials with the usual
specular and diffuse separation:

ρ(k̂1, k̂2) = ks · ρspec(k̂1, k̂2) + kd

π
.

Then the measurement process just involves obtaining es-
timates of the diffuse and specular reflectance coefficients kd
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Fig. 4 Photograph of the proposed BRDF acquisition setup includ-
ing a camera, a projector, a beam-splitter, and two curved reflectors
mounted on a 40 cm × 40 cm optical bench

and ks respectively with a basis of chosen distribution p(ĥ).
An advantage of such an approach over using a linear basis
function such as the zonal basis is that the choice of basis is
data-driven, thus making the encoding efficient.

We first project a constant basis 1
π over the measurement

zone. The camera observes kd · (cos2 θmin −cos2 θmax) in re-
sponse to this basis for a number of directions over the zone
that we then compute an average of to obtain an estimate
of kd .

In order to obtain an estimate of ks , we sample the mea-
surement zone with the following basis centered at a number
of directions k̂:

ρspec(k̂, k̂) = c · p(ĥ)

2(k̂ · n̂) − (k̂ · n̂)2
. (14)

The camera records ks · cos θ · r0 in response to this
basis at each sampling direction k̂. We can estimate r0

by observing the gain in reflectance at closer to graz-
ing angles compared to normal incidence as suggested by
Ashikhmin (2006). Thereafter ks can be estimated similarly
from the multiple back-scattering direction measurements
by computing averages of the measurements around each k̂

weighted by the specular lobe in that direction.
Appropriate distributions p(ĥ) for many commonly

found materials have been well documented in the literature.
For example, Ngan et al. (2005) have published cosine lobe
and microfacet distribution fits to the 100 measured isotropic
materials in the MERL database (Matusik et al. 2003), while
distributions for fabrics such as velvet and satin and general
anisotropic Gaussian distributions for materials like brushed
metal can be found in (Ashikhmin et al. 2000).

Fig. 5 Iterative process for designing the profile of the reflective dome
for a fixed convex parabolic reflector

Fig. 6 Projector alignment using two crosses mounted cross along the
optical path and observing the shadows on a projection plane

6 Measurement Setup and Calibration

The primary components of our image-based acquisition
setup are a convex parabolic mirror suspended inside a mir-
rored dome. This optical setup can cover a zone of incident
as well as exitant directions of measurement. In addition to
the mirrored components, the acquisition system consists of
a FireWire machine vision camera (Prosilica EC 1350C), an
LED RGB PocketProjector (Mitsubishi PK1), and a beam
splitter. The camera has a resolution of 1360 × 1024 and an
acquisition rate of 15 frames per second at 12-bits per color
channel. The projector has a resolution of 800 × 600 with
peak illumination intensity specified at 200 Lux. An external
350 mm lens was used to focus the projector at the required
focal distance. All reflectance measurements are performed
with multiple exposures (Debevec and Malik 1997) for high
dynamic range (HDR) acquisition.
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Fig. 7 Various BRDFs acquired with our prototype setup using zonal
basis functions. Top row: from left to right—bright orange paper, red
velvet, maroon synthetic fabric, brown leather, coated brown envelope,
red printer toner, blue rubber band, glossy red paper, glossy blue-gray
paper, Lindt™ chocolate box paper. Center row: from left to right—
magenta plastic with grain finish, retro-reflective plastic, dark brown
plastic coffee lid, Krylon™ banner red paint, Krylon™ true blue paint,

metallic teal automotive paint, chrome gold dust automotive paint, pur-
ple anisotropic silk fabric, blue anisotropic silk fabric. Bottom row:
from left to right—glossy succulent plant leaf, red wax, shiny blue
paper, shiny golden paper, red KitKat™ wrapping paper, copper col-
ored Lindt™ chocolate wrapping paper, anisotropic plastic guitar pick,
anisotropic copper coin, anisotropic red satin

Our optical setup consists of two mirrored components, a
convex parabola and a concave reflective dome as shown in
Figs. 1 and 5. The dome has a rotationally symmetric shape
with a freeform profile, as detailed in the following.

Dome Shape: For a fixed configuration of parabola, sam-
ple, camera, and projector, the freeform profile of the dome
is determined as follows. First, the location of the dome’s
rim D1 is found by intersecting a camera ray reflecting off
the bottom edge P1 of the paraboloid with the tangent plane
of the sample (Fig. 5, left). The surface normal at the rim de-
fines a tangent plane in D1. For the next camera ray reflect-
ing of P2, we compute the intersection D2 of the reflected
ray with the tangent plane of D1 (Fig. 5, center). The nor-
mal in D2 defines a new tangent plane that we can use in
the same way to obtain the next point on the dome. Proceed-
ing iteratively with this approach, we can determine the full
shape of the dome (Fig. 5, right) in what amounts to an Euler
integration procedure. Note that these simulations are run at
orders of magnitude higher resolution than actual camera or
projector pixel resolution. The parabolic profile for the small
convex mirror element was chosen after simulation with var-
ious alternative shapes, including a hemispherical mirror.
The parabolic design provided the most uniform sampling
density across the measurement zone in our experiments.

Design Simulations: The design parameters, i.e. the spatial
location of parabola, sample, camera, and projector, were
optimized using detailed simulations with a ray-tracer. We
modeled the camera and projector as thin lens devices. Our
simulations took into account various parameters such as fo-
cal distances, finite apertures and pixel resolutions of cam-
eras and projectors, and stability under minor misalignments
of the various optical components to the optical axis.

Final Design: After extensive simulations, we decided on
a design that lets us project over 100 pixels between the ver-
tex and the tangent of the parabolic mirror in order to pro-
vide at least 1 measurement per degree along the latitudinal
directions. For this setup, the distance between the center
of projection of the camera and the vertex of the parabolic
mirror is 27 cm, and the distance between the parabola ver-
tex and the sample at the bottom is 13.5 cm. The dimen-
sions of the full dome are 11′′ × 11′′ × 10′′ for this setup.
Our design provides us >1 pixel/degree measurements over
the full measurement zone. The full dome as simulated in
Fig. 5 would cover the zone from 9◦ to 90◦ off the normal to
the sample. This range corresponds to over 98% of the full
hemisphere. Zonal basis functions defined over this range
are presented in Fig. 16.

Physical Implementation: For the manufacturing of the
dome and parabola, we chose electroforming process, in
which a mandrel of the dome is first machined and polished,
and then the actual dome is deposited on this mandrel in an
electrolyte bath. This process allows the production of opti-
cal quality free-form surfaces at moderate cost. However, a
downside of this approach is that it only allows for convex
holes, since the mandrel has to be removed after the elec-
troforming process. For this reason, we were only able to
build a dome covering the zone from 9◦ to 57◦ off normal,
corresponding to about 51% of the hemisphere (Fig. 4).

6.1 Calibration

Geometric calibration is necessary in order to align the cam-
era and the projector to the optical axis of the acquisition
setup. We also need to perform photometric calibration in
order to recover the absolute scaling factors for our mea-
surements with respect to some known reflectance standard.
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Optical Axis Calibration: The optical axis of the camera
and projector need to be aligned with that of the parabolic
mirror and dome. We mount the dome on an optical table,

Fig. 8 The Audi-TT model rendered with acquired BRDFs of 2 dif-
ferent paint samples. The BRDFs were acquired using 25 4th order
basis functions as defined in this paper, and then rendered with a basis
transformation into spherical harmonics. Top: Metallic teal automotive
paint. Bottom: Krylon™ true blue paint. In each case, the time taken
for the entire BRDF measurement process including data capture and
re-projection into the spherical harmonic basis was about one minute

and mark its optical axis with crosses that are attached to
the dome with precision mounts. The camera is moved with
a manual translation stage until all crosses line up. Like-
wise, the projector is moved manually until the shadows of
all crosses line up (Fig. 6).

Sample Mounting: Due to the large aperture of our optical
system, the depth-of-field is very shallow, about 2 mm. As a
result, the material samples have to be mounted with fairly
high precision, which is easily achieved with a mechanical
stop.

Projector Flat-Fielding: We account for any spatial varia-
tion of the projector illumination by acquiring an HDR pho-
tograph of a full screen image set to medium gray, projected
on to a diffuse white screen at the required focal distance
of 28 cm. All the basis images are then modulated by this
image.

Reflectance Calibration: An important aspect of the cali-
bration is to recover the relative scaling factors for our mea-

Fig. 9 Specular chocolate wrapping papers acquired using higher or-
der zonal basis functions, and then fit to an analytical model for render-
ing. Left: Red KitKat™ wrapping paper. Right: Copper colored Lindt™

chocolate wrapping paper

Fig. 10 Specular materials
acquired using compressive
sensing with higher order zonal
basis functions, and then fit to
an analytical model for
rendering. Left: Red electrical
tape (specular exponent
s = 270). Right: Cadbury™

chocolate wrapping paper
(specular exponent s = 928)
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Fig. 11 Representative set of
BRDFs acquired with lower
order zonal basis functions
rendered under directional
lighting. From left to right: red
velvet, synthetic blue fabric, red
printer toner, magenta plastic
sheet, brown leather,glossy red
paper, chrome gold dust
automotive paint

Fig. 12 Plot of measured coefficients of gray card vs. that of pure
Lambertian diffuse reflectance. Note that the measured coefficients
have been scaled so that the DC term (l = 0,m = 0) matches the DC
term of 18% Lambertian diffuse reflectance

surements with respect to some known reflectance standard.
For this, we take advantage of an 18% diffuse gray card
commonly used in photography. We measure the diffuse re-
flectance of the gray card with our setup using low order
zonal basis functions (Ramamoorthi and Hanrahan 2001).
The relative scaling factors for each color channel are ob-
tained by white-balancing the results of the gray card mea-
surements.

7 Results

Using our prototype setup, we have acquired the BRDFs
of various types of materials, including velvet, anisotropic
synthetic, silk and satin fabrics, leather, various kinds of
glossy and shiny papers, paint and plastic samples, printer
toners, wax, highly specular metal foil wrapping papers, and
anisotropic samples such as a guitar pick and a copper coin.
Figure 7 presents a selection of BRDFs acquired with the or-
thonormal zonal basis functions (Sect. 4), as rendered on a
sphere under a directional light source. Most of the materials
were acquired using lower order (l ≤ 6) zonal basis func-
tions. The silk and satin fabrics, and the guitar pick were
acquired with order l = 8 zonal basis function, while the

shiny wrapping papers and anisotropic copper coin required
acquisition with order l = 10 zonal basis function. The to-
tal number of images acquired for an order l acquisition is
(l + 1)2 × 2 × 3, with 2 separate positive and negative parts,
and 3 exposures for HDR imaging. The entire acquisition
process takes just a few minutes to complete even for higher
order zonal basis functions.

Figure 8 presents the BRDFs of 2 different paint sam-
ples that we acquired using 4th order zonal basis functions,
rendered on the Audi-TT car model, and illuminated by
an HDR environment map using the Physically Based Ray
Tracing system (Pharr and Humphreys 2004).

A representative set of the BRDFs acquired using lower
order (l ≤ 6) zonal basis functions is shown in Fig. 11. For
this class of materials, the entire process of acquisition fol-
lowed by a basis transformation into the SH basis took under
three minutes.

Figure 9 demonstrates the specular materials, in this case
shiny metal foil chocolate wrapping papers, that we acquired
using higher order zonal basis functions and then fit to the
D-BRDF analytical model. The D-BRDF fitting procedure
consists of constructing the distribution of the half-vector
ωh between the incident light direction ωi and exitant view-
ing direction ωo as a function of the back-scattering direc-
tion measurements, i.e., the directions where ωi = ωo. In
our case, we extract the zonal half-vector distribution from
the measured data, and then extrapolate that to cover the
full hemisphere of half-vector directions. The entire acqui-
sition and fitting procedure took only a few minutes to com-
plete in all examples. Similarly, we also fit D-BRDFs to the
anisotropic guitar pick, the copper coin and the satin sam-
ples (Fig. 7, bottom row).

Figure 10 presents results of our preliminary experiments
on acquiring specular materials with compressive sensing
with the zonal basis. Here, we projected a random sub-set
of K = 25 zonal basis functions from a space spanned by
15 orders of the zonal basis (corresponding to N = 256) and
then fit the result g of the optimization (12) specifically to
the specular component of a D-BRDF with a cosine lobe
distribution p(ĥ) = (n̂ · ĥ)s . We separately approximated the
diffuse component of the D-BRDF in these examples using
the first 9 (2nd order) zonal basis coefficients. Thus, we em-
ploy compressive sensing in our work as a way of acquiring



Int J Comput Vis (2010) 90: 183–197 193

Fig. 13 Comparison of two kinds of acquired satin samples wrapped
around a cylinder as lit by a point source against real photographs.
Here, the response to 8th order zonal basis functions were fit to the
D-BRDF analytic model in a post-process. Left column: Photographs
of the red and blue satin samples. Center column: Rendering of the

D-BRDF fits. Right column: Plots of 1-D intensity profiles for a cross-

section of the cylinder in the photographs and the corresponding ren-

derings. Plots represent data for a single color channel (red and blue

respectively for the two satin samples)

Fig. 14 Specular materials acquired using data-dependent basis func-
tions based on the D-BRDF analytic model. From left to right: red
wax (p(ĥ) = (n̂ · ĥ)100), blue electrical tape (p(ĥ) = (n̂ · ĥ)300), red

velvet (p(ĥ) = 1 + 4 exp(− cot2 θ)), green satin (p(ĥ) = 0.7pf lats +
0.3pends(ĥ), where p = exp(− tan2 θ cos2 φ/σ 2

x ) with σx = 0.1 for
pf lats , and σx = 0.3 for pends )

data with fewer measurements than higher order linear basis
functions. This enables us to reduce the number of measure-
ments by a factor of 5 compared to the linear measurements
which is consistent with compressive sensing literature.

As a step towards quantitative validation of our approach
of measuring low frequency BRDFs with the zonal basis
functions and transforming into the SH basis for extrapola-
tion, we used an 18% gray card as a diffuse reflectance stan-
dard, and compared the recovered coefficients to the ones

expected for a diffuse target (Ramamoorthi and Hanrahan
2001). For coefficients of up to 2nd order basis functions, the
error is within a few percent of the expected value (Fig. 12).

In order to validate our measurement and fitting approach
for high frequency BRDFs, we photographed (in HDR) two
satin samples wrapped around a cylinder in a dark room and
lit by a collimated point light source. Figure 13 presents the
comparisons of these photographs with the corresponding
renderings of the D-BRDF fits to these samples. The high-
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Fig. 15 Comparison of D-BRDF fits of two kinds of acquired sam-
ples wrapped around a cylinder as lit by a point source against real
photographs. In both the cases the D-BRDF fits were obtained by pro-
jecting just 25 basis images defined by the analytic model. Left column:
Photographs of the samples. Center column: Rendering of the D-BRDF

fits. Right column: Plots of 1-D intensity profiles for a cross-section of
the cylinder in the photographs and the corresponding renderings. Plots
represent data for a single color channel (blue and green respectively
for the tape and satin samples). Top row: Blue electrical tape. Bottom
row: Green satin

lights in the rendered images (center column) are a close
match to the real photographs (left column). As an addi-
tional step towards quantitative validation, we plot the 1D
intensity profiles for a cross-section of the cylinders in the
HDR photographs versus the same profile in the renderings
(right column). Here, we scaled the D-BRDF fits to match
the peak intensities of the specular highlights of the corre-
sponding HDR photographs. As seen in the plots, the two
profiles match very closely validating the measurement and
fitting process.

Figure 14 presents results of our measurements with data-
dependent basis functions based on the D-BRDF analytic
model. Here, we approximated the diffuse component of the
BRDF by averaging the response to the constant basis 1

π .
The specular component of the BRDF was estimated from
an average of 24 back-scattering measurements uniformly
distributed over the measurement zone in response to a ba-
sis illumination constructed from an appropriate distribution
p(ĥ) (14). For the red wax sample, we constructed the basis
illumination for the specular lobe based on the cosine lobe
fit to a similar wax sample in the MERL database obtained

by Ngan et al. (2005). Similarly, we chose the specular ex-
ponent for the blue electrical tape based on the numerical fit
obtained for a similar sample (red electrical tape) in Fig. 10.
The distributions for the velvet and satin samples are based
on the Ashikhmin model (Ashikhmin et al. 2000).

Figure 15 presents the comparisons of photographs of the
blue tape and green satin samples with the corresponding
renderings of the D-BRDF fits to these samples. The high-
lights in the rendered images are visually a close match to
the real photographs. Moreover, the 1-D intensity profiles in
the photographs also match very closely to the correspond-
ing renderings, validating our approach encoding BRDFs
with data-dependent basis illumination based on an analytic
model. We were able to obtain very good estimates for the
parameters of the BRDF model with very few images with
this approach compared to what would be required for sim-
ilar materials with a higher order zonal basis acquisition
(Fig. 13).
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Fig. 16 The plots of zonal basis
functions Zm

l defined over the
theoretical measurement space
[π/20,π/2] × [0,2π], for l ≤ 2

8 Conclusions

In this paper, we have presented a novel basis function ap-
proach to BRDF measurement. Our contributions include a
new theory for basis function BRDF acquisition, the devel-
opment of an orthonormal basis for spherical zones and a
data-dependent basis based on an analytic BRDF model, as
well as the design of an optical setup that allows for basis
function illumination of BRDF samples.

The dome we use in our prototype setup covers a suf-
ficient percentage of the hemisphere to obtain high quality
BRDF measurements with our basis function approach. To
further increase quality by reducing the amount of extrapo-
lation, a dome with a larger coverage could be used. It would
be interesting to look into manufacturing techniques that are
able to produce such domes. One possible approach for man-
ufacturing our complete dome with electroforming would be
to split the dome at its widest point into two parts and then
mechanically join the separately electroformed parts. An-
other option would be to use an off-the-shelf convex profile
for the dome such as a hemisphere or an ellipsoid mirror
such as the approach of Mukaigawa et al. (2007). The de-
sign trade-offs with the choices for the profiles of the curved
reflector are the uniformity of angular sampling and cover-
age of the measurement zone along with cosiderations of
camera and projector optics (our approach) versus the ease
of manufacturing and availability of a standard profile.

Our preliminary experiments with a compressive sensing
approach in conjunction with basis illumination for BRDF

acquisition is encouraging. However, our choice of the or-
thonormal zonal basis may not be optimal for very specu-
lar materials. Alternative basis functions such as the wavelet
basis or even the Gaussian random ensemble discussed in
the compressive sensing literature might be more interesting
for such materials. However, for highly specular materials it
might be better to employ a diffuse/specular separation and
simply point sample the specular highlight instead of trying
to encode it with basis functions.

Our experiments with designing data-dependent basis
functions based on an analytic BRDF model provided very
good results for a range of commonly occurring materials.
We were able to obtain good estimates for parameters of the
BRDF model with just a few images of the sample in re-
sponse to the data-driven basis. Further research needs to
be done for designing basis illumination for other analytic
models in the literature and for materials with other kinds of
distributions. Also, the accuracy of the fits to the diffuse and
specular components of the BRDF can be further improved
with polarization of the incident basis illumination (Ma et
al. 2007). Employing such polarization techniques to BRDF
acquisition would be a very interesting direction of future
work.

Comparing our measurements with basis based on ana-
lytic models to experiments with compressive sensing, the
number of measurements required for both methods turned
out to be very similar for the samples that we captured. How-
ever, the advantage of compressive sensing over the basis
driven by an analytic model is that it requires no knowledge
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of the micro-facet distribution of the material, and hence can
be used for measuring more general materials compared to a
basis based on specific distributions. We envision that such
compressive sensing techniques could also be used for mea-
suring more general light transport in a scene.

In conclusion, due to the basis function illumination and
the dispensing of all moving parts, BRDF measurement with
our approach is very fast, reducing the acquisition time to a
few minutes even for high-frequency materials. Moreover,
the physical dimensions of the setup are quite compact, so
that the whole apparatus could be enclosed in a small box
for mobile on-site acquisitions for vision and graphics ap-
plications.

Appendix A: Orthonormal Zonal Basis

Our Zonal Basis (ZB), like the Spherical Harmonic ba-
sis, is derived from the Associated Legendre Polynomials
(ALP) P m

l (x),m ∈ {0, . . . , l}, which are orthogonal over
x ∈ [−1,1] with

∫ 1

−1
P m

l (x)P m
l′ (x)dx = 2(l + |m|)!

(2l + 1)(l − |m|)!δll′ . (15)

For defining spherical harmonics Ym
l , the P m

l are scaled
so that they are orthogonal over [0,π], with

Ym
l (θ,φ) =






√
2Km

l cos(mφ)P m
l (cos θ) if m > 0,√

2Km
l sin(−mφ)P −m

l (cos θ) if m < 0,

K0
l P 0

l (cos θ) if m = 0,

(16)

where Km
l is the SH normalization constant:

Km
l =

√
(2l + 1)(l − |m|)!

4π(l + |m|)! . (17)

For our zonal basis, we follow the same principle, and
rescale the ALP to the range [θmin . . . θmax].

P̂ m
l (x) = P m

l (n1 · x − n2), (18)

with

n1 = 2
cos θmin − cos θmax

,

n2 = 2 cos θmin

cos θmin − cos θmax
− 1.

The ZB functions Zm
l (φ, θ) ∈ [0,2π] × [θmin, θmax] are

then given by (5) and (6) in Sect. 4.
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