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ABSTRACT 

Selectively canceling signals at specific locations within 
an acoustical environment with multiple listeners is of 
significant importance for home theater, teleconferenc-
ing, office, industrial and other applications. The tra-
ditional noise cancellation approach is impractical for
such applications because it requires sensors that must
be placed on the listeners. In this paper we propose an
alternative method to minimize signal power in a given
location and maximize signal power in another location
of interest. A key advantage of this approach would be 
the need to eliminate sensors. We investigate the use 
of an information theoretic criterion known as mutual 
information to design filter coefficients that selectively
cancel a signal in one audio channel, and transmit it in
another (complementary) channel. Our results show an 
improvement in power gain at one location in the room
relative to the other. 

1. INTRODUCTION 

Selective signal cancellation is required in applications that
require a signal of interest to be enhanced while minimiz-
ing the effects of noise or other signals. For example, in 
home theater or television viewing applications a listener in
a specific position in a room may not want to listen to the
audio signal being transmitted, while another listener at a 
different position would prefer to listen to the signal. Con-
sequently, if the objective is to keep one listener in a region
with a reduced sound pressure level, then one can view this
problem as that of signal cancellation in the direction of that
listener. Similar applications arise in the automobile or any 
other environment with multiple listeners in which only a 
subset wish to listen to the audio signal.

In this paper we investigate the application of mutual in-
formation as an optimization criterion to selectively cancel 
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an audio signal in a specific direction (also known as the 
channel of interest), while leaving it unaltered in another 
direction. We shall consider an initial case in which two 
listeners (initially modeled as point receivers) are present in
two arbitrary locations in the room. We then derive a set of 
optimal filter coefficients to achieve selective signal cancel-
lation. In the next section, we briefly discuss some back-
ground on information theoretic models. In Section 3, we 
derive the equations for determining the set of tap weights
which would guarantee selective signal cancellation under 
simplified gaussian noise assumptions. The choice of the 
tap weights are strongly determined by the channel impulse
responses between the transmitter and the two listeners (re-
ceivers). In Section 4 we address the results obtained on 
using this approach and propose some relevant future direc-
tions. Section 5 concludes the paper. 

2. INFORMATION THEORY MODELS 

Mutual information (MI) measures arbitrary depen-
dencies between two random variables , and  with marginal 
distributions denoted by , and  , and  their  joint  dis-
tribution (where may be considered as an input to 
a channel,  and  is the corresponding output). The general 
form for this measure is, 

(1) 

, with equality being achieved on general statis-
tical independence between , and  , and  . 
The computation of this measure is not an easy task, due
to the involvement of complicated density functions. How-
ever, there is a method of evaluating this measure based 
on samples of input-output data , using  Fraser’s  al-
gorithm of mutual information estimation [1]. For the gaus-
sian case the computation of this measure is a simpler task
as can be seen with the aid of the following example. Let 

(2) 



where is AWGN (additive white gaussian noise of zero
mean) on a simple linear channel . From  the  entropy
based definition of MI, it is well established that 

(3) 

The major advantage on using MI is its capability to 
measure arbitrary general dependence between two vari-
ables. There are some distinct advantages on using this type
of a measure over the correlation measure used in steepest
descent algorithms (on which LMS is based on), where the
correlation measure to be minimized is given by, 

(4) 

A detailed  investigation  of  the  advantages  of  MI  over  corre-
lation is contained in [2],[3]. 

3. DETERMINATION OF THE OPTIMAL 
WEIGHTS 

Since we are not concerned with source localization and as-
sociated head-related transfer functions (HRTF’s), but rather
with signal minimization at a single point, we can consider
the simple model with reference to Fig. 1, where rep-
resents the coefficients of the filter we would like to design
based on the MI criteria. For the current problem, we as-
sume that the receivers are stationary (i.e., the room impulse 
response for a certain is time invariant and linear, 
where , and  , represent  a  source  and  a  receiver),  and  the
channel (room) impulse response is deterministic at the lo-
cation of the two listeners. We further assume that the lis-
teners are modeled as point receivers. The listening model 
is then simply given by (2), where is the impulse re-
sponse for a given source-receiver position.

With this background, we can state the performance cri-
teria as, 

where, we would like to maximize the signal in the direction
of listener , while retaining the power towards listener at 
least . We  can  simplify  the  computation  for  the  op-
timal filter coefficients , by  recognizing  the  monotonicity  
of the function over the domain . In  other  
words, minimizing (maximizing) implies minimiz-
ing (maximizing) . Hence,  the  objective  function  (5)  can  
be recast as, 

(6) 

Now observe that, 

(7) 

where, is the room response in the direction for lis-
tener labeled , and  denotes the linear convolution opera-
tor. Let , and

, then  (7)  can  be  expressed  as,  

(8) 

where, . We  assume  that  the  zero  mean  
noise and signal are statistically independent (and uncorre-
lated in the gaussian case). In this case signal power in the
direction of listener 1 is, 

(9) 

where, . Similarly, 

Solving 
(10)

will provide the set of optimal tap 
coefficients. Hence from (6), (11), and (10), we obtain, 

(5) 

(11) 

where denotes the optimal coefficients. Let, 

(12) 



By assuming equal ambient noise powers at the two re-
ceivers (i.e., ), (11) can be written as 

(13) 

The reason for arranging the optimality condition in this 
fashion is to demonstrate that the maximization is in the 
form of an eigenvalue problem, (i.e., the eigenvalues cor-
responding to the matrix ), with the eigenvectors be-
ing . There  are  in  general  distinct eigenvalues for the 

matrix - , with  the  largest  eigenvalue  corre-
sponding to the maximization of the ratio of the signal pow-
ers between receiver and receiver . The optimal filter that 
yields this maximization is given by, 

(14) 

where, denotes the eigenvector corresponding
to the maximum eigenvalue of . An  FIR  filter  
whose impulse response corresponds to the elements of an
eigenvector is called an eigenfilter [4],[5]. 

Clearly it can be seen from (14) that, the optimal fil-
ter coefficients are determined by the channel responses be-
tween the source and the two listeners. We are currently de-
vising adaptive versions of this filter that will be presented
in forthcoming papers. In the following section we test the
design of this filter for a stochastic model and show the per-
formance improvement. 

4. RESULTS 

In this section we generate a stochastic autoregressive model
of order one, denoted as . This  process  is  generated  
by filtering white noise with a linear time-invariant filter 
with a rational system function [6]. 

(15) 

where, the describes a white noise process of zero mean 
and unit variance. It is well established from the Yule-
Walker equations (with and being wide-sense sta-
tionary) that the correlation function for (15) satisfies the 
following relation, 

(16) 

The optimal filter coefficients for the system described
by (15) can be found by using (14), with , and  as given 
in (12), with being a symmetric(asymmetric) Toe-
plitz matrix for ( )-containing the correlation 
function given in (16).

The performance measure (expressed as the ratio of av-
erage signal powers between receiver 2 and receiver 1) for 

the statistical model is given as, 

(17) 

We also define a performance measure for the individual 
realizations obtained from (15). Let 

(18) 

where, denotes a realization for (15). Then the sample
based average ratio for the signal powers is given by, 

(19) 

The impulse responses , and  (comprising of 
point) were obtained in a room from microphones pla-

ced at a radial distance of m, with azimuth angle of 
degrees and elevation of degrees relative to a loudspeaker, 
and are shown in Fig 2 (a),(b). We obtained the optimal 
filter for two cases, (a) , and  (b)

, (i.e.,  the  duration  of  the  impulse  responses
corresponded to the first samples measured from
the arrival along the direct path). Clearly, we need not have

. For  the  aforementioned  cases  we  obtained  
the following gains, 

(20) 

In Fig. 3(a), we have shown the for a single realization 

(i.e., in (21)); and, . Fig. 3(b)  displays  for 

no filter 

, along  with  . In  Fig. 4  (a),  we  display  the  

results for for , along  with  ; and,  in  Fig.  4  

(b), we have for , along  with  . 
By choosing a larger impulse response duration, ,

it may be possible to increase the gain for the filtered cases,
(i.e., considering the effects due to reverberation). Finally, 
we also plan to consider adaptive implementations of the
filter to compensate the computational difficulties encoun-
tered in solving (13) when the length of the filter is large,
and when the input data rate is high. We shall consider this
aspect in the future. 

5. CONCLUSIONS 

In this paper, we propose a method for selectively cancelling
signals in the presence of multiple listeners. This approach 



is useful in environments with differing listening require-
ments. The proposed method resulted in a satisfactory im-
provement in the objective function. However, we have not
addressed the issues related to the spectral variations due to
the introduction of such filters. There could be a possible
tradeoff in subjective listening tests (psychoacoustical) be-
tween sound quality and signal cancellation in certain types
of environments (e.g., automobiles). In forthcoming papers,
we shall address these issues, and investigate other relevant
objective functions, along with adaptive techniques for filter
design that will include the CAPZ model [7]. We will also 
consider the effect of multiple transmitters which would in-
crease the degree of freedom in the choice of the filter. 
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Figure 1: The source-receiver model 
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Fig. 2:(a) Normalized Impulse response, h (n)1 
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Fig. 2:(b) Normalized Impulse response, h (n)2 
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Fig. 3(a): Plot of sample gain for N=1, and average gain; M=100 
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Fig. 3(b): Plot of sample gain for N=100, and average gain; M=100 
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Fig. 4(a): Plot of sample gain for N=1, and average gain; M=128 
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Fig. 4(b): Plot of sample gain for N=100, and average gain; M=128 
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