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ABSTRACT
Selectively canceling signals at specific locations within
an acoustical environment with multiple listeners is of
significant importance for home theater, teleconferenc-
ing, office, industrial and other applications. The tra-
ditional noise cancellation approach is impractical for
such applications because it requires sensors that must
be placed on the listeners. In this paper we propose an
alternative method to minimize signal power in a given
location and maximize signal power in another location
of interest. A key advantage of this approach would be
the need to eliminate sensors. We investigate the use
of an information theoretic criterion known as mutual
information to design filter coefficients that selectively
cancel a signal in one audio channel, and transmit it in
another (complementary) channel. Our results show an
improvement in power gain at one location in the room
relative to the other.

1. INTRODUCTION

Selective signal cancellation is required in applications that
require a signal of interest to be enhanced while minimiz-
ing the effects of noise or other signals. For example, in
home theater or television viewing applications a listener in
a specific position in a room may not want to listen to the
audio signal being transmitted, while another listener at a
different position would prefer to listen to the signal. Con-
sequently, if the objective is to keep one listener in a region
with a reduced sound pressure level, then one can view this
problem as that of signal cancellation in the direction of that
listener. Similar applications arise in the automobile or any
other environment with multiple listeners in which only a
subset wish to listen to the audio signal.

In this paper we investigate the application of mutual in-
formation as an optimization criterion to selectively cancel
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an audio signal in a specific direction (also known as the
channel of interest), while leaving it unaltered in another
direction. We shall consider an initial case in which two
listeners (initially modeled as point receivers) are present in
two arbitrary locations in the room. We then derive a set of
optimal filter coefficients to achieve selective signal cancel-
lation. In the next section, we briefly discuss some back-
ground on information theoretic models. In Section 3, we
derive the equations for determining the set of tap weights
which would guarantee selective signal cancellation under
simplified gaussian noise assumptions. The choice of the
tap weights are strongly determined by the channel impulse
responses between the transmitter and the two listeners (re-
ceivers). In Section 4 we address the results obtained on
using this approach and propose some relevant future direc-
tions. Section 5 concludes the paper.

2. INFORMATION THEORY MODELS

Mutual information (MI) measures arbitrary depen-
dencies between two randomvariables , and with marginal
distributions denoted by , and , and their joint dis-
tribution (where may be considered as an input to
a channel, and is the corresponding output). The general
form for this measure is,

(1)

, with equality being achieved on general statis-
tical independence between , and , and .
The computation of this measure is not an easy task, due
to the involvement of complicated density functions. How-
ever, there is a method of evaluating this measure based
on samples of input-output data , using Fraser’s al-
gorithm of mutual information estimation [1]. For the gaus-
sian case the computation of this measure is a simpler task
as can be seen with the aid of the following example. Let

(2)



where is AWGN (additive white gaussian noise of zero
mean) on a simple linear channel . From the entropy
based definition of MI, it is well established that

(3)

The major advantage on using MI is its capability to
measure arbitrary general dependence between two vari-
ables. There are some distinct advantages on using this type
of a measure over the correlation measure used in steepest
descent algorithms (on which LMS is based on), where the
correlation measure to be minimized is given by,

(4)

A detailed investigation of the advantages of MI over corre-
lation is contained in [2],[3].

3. DETERMINATION OF THE OPTIMAL
WEIGHTS

Since we are not concerned with source localization and as-
sociated head-related transfer functions (HRTF’s), but rather
with signal minimization at a single point, we can consider
the simple model with reference to Fig. 1, where rep-
resents the coefficients of the filter we would like to design
based on the MI criteria. For the current problem, we as-
sume that the receivers are stationary (i.e., the room impulse
response for a certain is time invariant and linear,
where , and , represent a source and a receiver), and the
channel (room) impulse response is deterministic at the lo-
cation of the two listeners. We further assume that the lis-
teners are modeled as point receivers. The listening model
is then simply given by (2), where is the impulse re-
sponse for a given source-receiver position.

With this background, we can state the performance cri-
teria as,

(5)

where, we would like to maximize the signal in the direction
of listener , while retaining the power towards listener at
least . We can simplify the computation for the op-
timal filter coefficients , by recognizing the monotonicity
of the function over the domain . In other
words, minimizing (maximizing) implies minimiz-
ing (maximizing) . Hence, the objective function (5) can
be recast as,

(6)

Now observe that,

(7)

where, is the room response in the direction for lis-
tener labeled , and denotes the linear convolution opera-
tor. Let , and

, then (7) can be expressed as,

(8)

where, . We assume that the zero mean
noise and signal are statistically independent (and uncorre-
lated in the gaussian case). In this case signal power in the
direction of listener 1 is,

(9)

where, . Similarly,

(10)
Solving will provide the set of optimal tap
coefficients. Hence from (6), (11), and (10), we obtain,

(11)

where denotes the optimal coefficients. Let,

(12)



By assuming equal ambient noise powers at the two re-
ceivers (i.e., ), (11) can be written as

(13)

The reason for arranging the optimality condition in this
fashion is to demonstrate that the maximization is in the
form of an eigenvalue problem, (i.e., the eigenvalues cor-
responding to the matrix ), with the eigenvectors be-
ing . There are in general distinct eigenvalues for the

matrix - , with the largest eigenvalue corre-
sponding to the maximization of the ratio of the signal pow-
ers between receiver and receiver . The optimal filter that
yields this maximization is given by,

(14)

where, denotes the eigenvector corresponding
to the maximum eigenvalue of . An FIR filter
whose impulse response corresponds to the elements of an
eigenvector is called an eigenfilter [4],[5].

Clearly it can be seen from (14) that, the optimal fil-
ter coefficients are determined by the channel responses be-
tween the source and the two listeners. We are currently de-
vising adaptive versions of this filter that will be presented
in forthcoming papers. In the following section we test the
design of this filter for a stochastic model and show the per-
formance improvement.

4. RESULTS

In this section we generate a stochastic autoregressivemodel
of order one, denoted as . This process is generated
by filtering white noise with a linear time-invariant filter
with a rational system function [6].

(15)

where, the describes a white noise process of zero mean
and unit variance. It is well established from the Yule-
Walker equations (with and being wide-sense sta-
tionary) that the correlation function for (15) satisfies the
following relation,

(16)

The optimal filter coefficients for the system described
by (15) can be found by using (14), with , and as given
in (12), with being a symmetric(asymmetric) Toe-
plitz matrix for ( )-containing the correlation
function given in (16).

The performance measure (expressed as the ratio of av-
erage signal powers between receiver 2 and receiver 1) for

the statistical model is given as,

(17)

We also define a performance measure for the individual
realizations obtained from (15). Let

(18)

where, denotes a realization for (15). Then the sample
based average ratio for the signal powers is given by,

(19)

The impulse responses , and (comprising of
point) were obtained in a room from microphones pla-

ced at a radial distance of m, with azimuth angle of
degrees and elevation of degrees relative to a loudspeaker,
and are shown in Fig 2 (a),(b). We obtained the optimal
filter for two cases, (a) , and (b)

, (i.e., the duration of the impulse responses
corresponded to the first samples measured from
the arrival along the direct path). Clearly, we need not have

. For the aforementioned cases we obtained
the following gains,

(20)
no filter

In Fig. 3(a), we have shown the for a single realization
(i.e., in (21)); and, . Fig. 3(b) displays for

, along with . In Fig. 4 (a), we display the
results for for , along with ; and, in Fig. 4
(b), we have for , along with .

By choosing a larger impulse response duration, ,
it may be possible to increase the gain for the filtered cases,
(i.e., considering the effects due to reverberation). Finally,
we also plan to consider adaptive implementations of the
filter to compensate the computational difficulties encoun-
tered in solving (13) when the length of the filter is large,
and when the input data rate is high. We shall consider this
aspect in the future.

5. CONCLUSIONS

In this paper, we propose a method for selectively cancelling
signals in the presence of multiple listeners. This approach



is useful in environments with differing listening require-
ments. The proposed method resulted in a satisfactory im-
provement in the objective function. However, we have not
addressed the issues related to the spectral variations due to
the introduction of such filters. There could be a possible
tradeoff in subjective listening tests (psychoacoustical) be-
tween sound quality and signal cancellation in certain types
of environments (e.g., automobiles). In forthcoming papers,
we shall address these issues, and investigate other relevant
objective functions, along with adaptive techniques for filter
design that will include the CAPZ model [7]. We will also
consider the effect of multiple transmitters which would in-
crease the degree of freedom in the choice of the filter.
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Figure 1: The source-receiver model
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Fig. 2:(a) Normalized Impulse response, h1(n)
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Fig. 2:(b) Normalized Impulse response, h2(n)
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Fig. 3(a): Plot of sample gain for N=1, and average gain; M=100
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Fig. 3(b): Plot of sample gain for N=100, and average gain; M=100

Ghat(dB)
G(dB)      

0 50 100 150 200 250
−60

−40

−20

0

20

40

60

G
ai

n 
in

 (d
B)

Fig. 4(a): Plot of sample gain for N=1, and average gain; M=128
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Fig. 4(b): Plot of sample gain for N=100, and average gain; M=128

Ghat(dB)
G(dB)      


