Outcomes From Two Forms of Training for First-Responder Competency in Cholinergic Crisis Management

Pamela Andreatta, PhD*; Jessica J. Klotz, BSc*; COL James M. Madsen, MC-FS USA†; COL Charles G. Hurst, MC USA (Ret.)‡; MAJ Thomas B. Talbot, MC USA (Ret.)§

ABSTRACT Military and civilian first responders must be able to recognize and effectively manage mass disaster casualties. Clinical management of injuries resulting from nerve agents provides different challenges for first responders than those of conventional weapons. We evaluated the impact of a mixed-methods training program on competency acquisition in cholinergic crisis clinical management using multimedia with either live animal or patient actor examples, and hands-on practice using SimMan3G mannequin simulators. A purposively selected sample of 204 civilian and military first responders who had not previously completed nerve agent training were assessed pre- and post-training for knowledge, performance, self-efficacy, and affective state. We conducted analysis of variance with repeated measures; statistical significance p < 0.05. Both groups had significant performance improvement across all assessment dimensions: knowledge > 20%, performance > 50%, self-efficacy > 34%, and affective state > 15%. There were no significant differences between the live animal and patient actor groups. These findings could aid in the specification of training for first-responder personnel in military and civilian service. Although less comprehensive than U.S. Army Medical Research Institute of Chemical Defense courses, the training outcomes associated with this easily distributed program demonstrate its value in increasing the competency of first responders in recognizing and managing a mass casualty cholinergic event.

INTRODUCTION

Global conflict and the war on terrorism requires both military and civilian medical personnel to be able to rapidly and effectively respond to mass disaster casualties associated with unconventional weapons, including chemical weapons such as nerve agents.1–14 Although these types of events are relatively rare, timely and accurate care for casualties, along with appropriate self-protection for clinician responders, can limit mortality and provide the best chance for full recovery after exposure. The challenge for clinical providers is that the opportunity to train for a mass casualty event associated with nerve agents is extremely limited. Uses of live animals as a feasible training alternative for learning human medicine are longstanding; however, ethical considerations for using live animals in these contexts are concerning.15,16 Although live animals may provide a measure of physiological and tissue fidelity during training, anatomical differences and inexact fidelity lessen the extent that learned behaviors transfer to human medicine.17–26

Simulation technologies may provide sufficient fidelity to adequately facilitate clinical interactions with human patients because they are designed to reproduce human anatomy and physiological responses, as well as support the hands-on experiential learning aspects of training with live animals.27–29 The opportunity for experiential learning is extremely important because knowledge-based training alone may miss the vital mastery of associated skills and affective elements embedded in the clinical contexts. Especially in a mass casualty environment, dissonance resulting from cognitive and affective overload can interfere in the application of knowledge and skills.30–39 Experiential learning theory prescribes direct engagement in a contextually relevant environment to help learners create mental representations such as attitudes, mental models, scripts, and schemas, which correspondingly lead to the desired behavioral outcomes.40–43 This theoretical framework serves crisis and emergency medical training well because the training environment supports the relevant factors that might otherwise lead to dissonance in the performance context.15,44–46

The few studies that have compared the effectiveness of simulation methods to live animal methods were inconclusive, likely because of the anatomical variations between humans and animals confounding a direct comparison between the two methods.19,47–49 Because the performance context is human, a group trained using a simulated human mannequin might have an advantage over an animal-trained group, whereas the opposite might be true if tissue or dynamic physiological responses (e.g., diaphoresis) are essential to the clinical performance context. Controlling the specific factors that make both animal and simulation methods useful could provide important information about the relative value of those factors to training outcomes. For example, comparing the diagnostic value of symptoms experienced by a live animal to those dramatized by a patient actor would provide information about the value of witnessing the real and continuous clinical responses that are only possible with a live animal. Isolating factors between live animals and simulation that contribute to their impact in a training context, and controlling for them in...
comparison studies, would provide the data needed to assure ethical and effective training for medical personnel who must be able to recognize and effectively manage casualties during crisis situations, where timely and competent clinical performance is essential.

The purpose of this study was to capture the differential impact of witnessing a response to a nerve agent (cholinergic event) experienced by a live animal, compared to a dramatized nerve agent response by a human patient actor, on the ability of trainees to clinically manage patients during a simulated mass casualty cholinergic event.

METHODS

Study Design

Institutional review and approvals were secured from the University of Michigan, University of Minnesota, and U.S. Army Medical Research and Materiel Command. All study-related activities took place at the University of Michigan and the University of Minnesota. The study involved clinical activities and therefore a purposive sample of clinicians with varying levels of expertise recruited. We recruited first-responder clinicians from a 100-mile radius around the cities of Minneapolis and St. Paul, Minnesota. The sample ($N = 204$) was composed of nurses ($N = 21$), paramedics ($N = 137$), and clerkship-level medical students ($N = 46$). All subjects completed written informed consent before participating in study-related activities.

The study was designed to examine the impact of two forms of first-responder training in the management of a cholinergic event as measured by changes in knowledge, performance, self-efficacy, and affective behaviors of the participants. We implemented a quasi-experimental research design, using a purposively selected sample and stratified random assignment to two training groups: (1) live animal nerve agent response and (2) patient (actor) nerve agent response.

Instructional content was informed by the U.S. Army Medical Research Institute of Chemical Defense (USAMRICD) course materials for “Medical Management of Chemical and Biological Casualties,” and “Field Management of Chemical and Biological Casualties.” The training took place over a 4-hour period and was comprised of four components: (1) small group orientation, (2) self-paced multimedia content an iPad, (3) hands-on practice with simulators, and (4) hands-on performance with patient actors. We grouped participants into cohorts of 6 to 8 people during training; however, each participant independently completed all activities. All aspects of the training were common between the 2 groups, except for the examples of nerve agent response used in the multimedia component.

Training Context

The first component was a classroom-based orientation to present information about the training context and a brief introduction to casualties resulting from chemical weapons. During the second component, participants interacted with the foundational content of the training using a multimedia application (Table I). Half of the participants viewed examples of a nerve agent response in an African Green monkey.

TABLE I. Multimedia Content Sections for Cholinergic Crisis Training

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Nerve Agent Casualties</td>
<td>Provides contextual purpose for the training.</td>
</tr>
<tr>
<td>Anatomy & Physiological Response</td>
<td>Overview of relevant anatomy, physiological responses, and symptoms of a nerve agent response. Interactive “hotspots” on the patient play the associated symptom videos.</td>
</tr>
<tr>
<td>Nerve Agent Exposure</td>
<td>Physiological response to nerve agent and amniotic fluid. A video shows the step-by-step symptomatic responses inside the body.</td>
</tr>
<tr>
<td>Liquid & Vapor Nerve Agents</td>
<td>In-depth information on the differences between liquid and vapor nerve agents in severity of response and onset of symptoms. Interactive animations illustrating the difference between vapor and liquid nerve agents in terms of the speed and severity of symptom onset, and progression of symptoms over time.</td>
</tr>
<tr>
<td>Treatment Protocols</td>
<td>Interactive exploration of nerve agent treatment protocol, equipment, and medications.</td>
</tr>
<tr>
<td>Symptoms & Treatment Effects</td>
<td>GROUP 1: An animal model serves to highlight symptom “hotspots” that facilitate discovery of treatment options for each symptom. OR GROUP 2: A human model serves to highlight symptom “hotspots” that facilitate discovery of treatment options for each symptom.</td>
</tr>
<tr>
<td>Medications</td>
<td>Interactive guide for determining the dose and time sequence for each medication, categorized for adult, child, and infant patients. Interactive quiz about medication dosing and time sequence for different patients.</td>
</tr>
<tr>
<td>Assessment & Treatment Quiz</td>
<td>Interactive test to assess ability to respond to a specific nerve agent exposure case. Requires learner to diagnose exposure and administer the appropriate medications, doses, and time sequences per the treatment protocol.</td>
</tr>
<tr>
<td>Summary</td>
<td>Summary of need and value of training in clinical management of nerve agent casualties.</td>
</tr>
</tbody>
</table>
as well as the animal’s recovery after correct treatment. The other half of the participants viewed examples of a simulated nerve agent response performed by a human patient (actor). Both forms of the multimedia application necessitated a high level of self-paced interactivity and provided formative feedback throughout to engage and inform the participants about their progress. After completing the multimedia component, participants reviewed the clinical protocols for diagnosing and managing a patient experiencing cholinergic crisis, and practiced associated clinical tasks using SimMan3G mannequin simulators (Laerdal Medical Corporation, Stavanger, Norway). Because nerve agent mass casualties require medical personnel to wear protective gear that simultaneously overtaxes and limits their perceptual capacities, we taught participants how to prepare themselves using Mission-Oriented Protective Posture Level IV to align the fidelity of the performance component of the training.34–39 Finally, participants wore the protective gear to interact with patients (actors) who behaved as if they had been exposed to a chemical weapon as part of a simulated mass casualty event.

The patient actors were trained to display symptoms associated with a moderate exposure to Sarin gas (nerve agent), as well as to mustard gas (vesicant). Actors who responded as if exposed to mustard gas were used as distractors during the simulated mass casualty in order to assess the abilities of the participants to correctly diagnose patients with nerve agent exposure. A professional special-effects make-up artist provided the formulas for creating the visual representations of symptoms for both exposure types. All training events were conducted at the City of Plymouth Fire Department (Plymouth, Minnesota); a two-story facility with classrooms, common areas, and a large bay for housing trucks and equipment. The large bay was used to create a mass casualty of 24 people; half of which exhibited symptoms associated with exposure to a nerve agent, the other half to mustard gas. Participants donned protective gear and entered the casualty area where they were instructed to select and treat the patients with nerve agent exposure. Actors were instructed to monitor any treatment provided to them by the participants in order to respond appropriately to any medications and physical interventions.

Instrumentation and Analyses

To examine the relative effects of training on the abilities of subjects to identify and manage a patient experiencing cholinergic crisis in a mass casualty situation, we used four validated assessment instruments: (1) knowledge, (2) performance, (3) self-efficacy, and (4) affective state. Subjects completed pretraining assessments before participating in any of the instructional activities, and post-training assessments immediately following the instructional activities.

We used validated assessment instruments to assess multiple performance dimensions associated with managing a nerve agent casualty. We assessed knowledge through 23 multiple-choice and short-answer questions, with a maximum score of 39 total points. Construct validity ($p = 0.003$), test–retest reliability ($r = 0.97$), and internal consistency ($\alpha = 0.69$) were previously established for the knowledge assessment.50 Two pairs of trained raters used a performance assessment instrument to score trainees on their abilities to clinically manage nerve agent casualties (actors) at multiple points, and in aggregate with a maximum total score of 45 points. Raters were trained until they achieved and maintained inter-rater agreement above 0.90. Construct validity ($p = 0.000$), test–retest reliability ($r = 0.98$), and internal consistency ($\alpha = 0.90$) were previously established for the knowledge assessment.50 To capture self-efficacy, we asked the subjects to self-report the extent to which they would be comfortable helping or independently managing patients in a nerve agent–related mass casualty. A 7-item, 6-point Likert scale (strongly disagree to strongly agree) was used for self-efficacy, for a total of 42 points. We measured state-related affect using a 19-item adaption of the State-Trait Anxiety Inventory.51 All items were scored using a 6-point Likert scale (strongly disagree to strongly agree), for a total of 114 points. We inverse coded scores so that lower scores reflected greater anxiety. There is considerable evidence of construct and concurrent validity for the scale, reported internal consistency ranges between 0.86 and 0.95, with test–retest reliability coefficients between 0.65 and 0.75.51

All data were analyzed using SPSS-Statistics v21 (IBM, Armonk, New York). We conducted analysis of variance with repeated measures for within and between group comparisons. All calculations were conducted with statistical significance set at $p < 0.05$.

RESULTS

There were significant increases in scores ($p = 0.000$) for knowledge, performance, self-efficacy, and affect after

<table>
<thead>
<tr>
<th>TABLE II. Pre-Post Scores for Both Training Models a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment (Total Score)</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Knowledge (39)</td>
</tr>
<tr>
<td>Performance (45)</td>
</tr>
<tr>
<td>Self-Efficacy (42)</td>
</tr>
<tr>
<td>Affect (114)</td>
</tr>
</tbody>
</table>

aNo significant differences between groups for pre- or post-training outcomes. bMean (Standard Deviation); Percent of Total Score.
training for both groups. Assessment scores associated with training outcomes for each group are presented in Table II.

There were no significant differences in any of the post-training outcomes for the two groups. Differential outcomes for each assessment are illustrated in Figures 1 to 4. There were significant positive correlations between post-training self-efficacy scores and those for performance and affect, as well as between knowledge and performance scores ($p < 0.05$) for the live animal trained group. The post-training scores for the patient actor trained group had significant positive correlations between self-efficacy scores and those for knowledge, performance, and affect ($p < 0.05$).

DISCUSSION

The results of this study demonstrate the effectiveness of a 4-hour training intervention on first-responder trainees to identify and clinically manage patients experiencing cholinergic crisis after exposure to a nerve agent in a simulated mass casualty setting, across four dimensions: knowledge, performance, self-efficacy, and affective state. These results provide
critical information for determining optimal, evidence-based training practices that serve to reduce or eliminate the uses of live animals without diminishing the quality of training. First-responder medical personnel must acquire and maintain critical competencies associated with the management of mass disaster and rare-event casualties; however, there are limited opportunities to learn and practice skills. Training and certification programs may help providers learn knowledge and skills, but without evidence of performance abilities, the extent to which that knowledge transfers into applied practice cannot be determined. Gaps between training outcomes and applied performance data suggest that there is room for improvement in how we facilitate training to assure clinical competency.52,53

The data suggest several key considerations for training of first-responder medical personnel. The substantial increase in post-training performance scores by both training groups exceeded the differential scores for the other assessment domains. This highlights the value of performance-based assessment, but also the opportunity for hands-on practice of applied skills for both initial and refresher training. A passing rate of 70% is typical for demonstrating competency as a civilian first responder and although the knowledge scores exceeded that rate, the post-training performance scores for both groups were slightly below at 68% and 69%.54 This is likely because of limitations on the extent of time allotted to deliberate practice during the training and with increased time these scores would likely improve further.

Simulation-based training provides an easily accessible, on-demand option for prescribed and standardized instruction that facilitates deliberate practice and allows clinicians to develop and improve their performance abilities.55 However, technology-based simulation methods have limitations which other hands-on methods of instruction support, such as living tissue and dynamic physiological responses.56 For interventions that require direct interaction with human tissues (e.g., thoracotomy, hemorrhage control, etc.), the fidelity of simulated tissues may not adequately represent the performance context to the extent that transfer is supported to an applied clinical setting. Improvements in the technological characteristics of mannequin simulators, such as anatomical, physiological, and tissue fidelity, would substantially add to their prospective benefits for all forms of mass disaster and rare-event casualty situations.56 However, this study demonstrates the relative equivalence of witnessing a response to a nerve agent (cholinergic event) experienced by a live animal and a dramatized nerve agent response by a human patient actor on the ability of trainees to clinically manage patients during a simulated mass casualty cholinergic event.

Implications
This training provides an alternative for military medical personnel who are unable to attend more comprehensive training at USAMRICD, as well as for civilian first-responder personnel who may be tasked with responding to a terrorist attack on the general population. The design of the training makes it easily portable to multiple locations, which is advantageous for initial instruction, but also for refresher training as needed. The multimedia module is suitable for on-demand training, and the simulation-based modules could be facilitated with any mannequin simulator, standardized patients (actors), or even between peers acting as patient and provider. Additionally, the content could be modified or adapted for casualties resulting from exposure to other types of chemical or biological agents. The combination of multimedia content and hands-on simulation-based training methods provides versatility for prescribed and standardized instruction that facilitates the deliberate practice clinicians need to develop and improve their performance abilities. Additionally, the value of being able to measure performance to the extent that it provides feedback to clinicians about their abilities at any point in time can provide information about when refreshment training or practice is recommended to maintain these critical competencies. These performance data could facilitate standard setting so that individuals can hone their performance until they achieve a predetermined level of mastery, or threshold, for critical competencies. Training content could then be tailored to an individual’s competence in order to make best use of resources and training time.

Limitations and Next Steps
A limitation of this study is that we did not evaluate retention after training; however, a study examining retention after training at 6 weeks, 18 weeks, and 52 weeks is in process. Another limitation of this study is that we did not attempt to evaluate performance during applied clinical care, so the extent to which performance in the simulated context transfers to competent performance managing actual patients in crisis remains to be quantified. Theoretically, the mental models created from a relevant training environment will transfer to a clinical care setting; however, future work to characterize the extent of transfer in different clinical contexts is merited, if challenging. Finally, we conducted the study using a purposive sample of first-responder clinicians that did not include emergency medical personnel with advanced training, such as physicians, and results are best interpreted in accordance with the described sample characteristics.

CONCLUSIONS
The findings from this study demonstrates the relative equivalence of witnessing a nerve agent response in a live animal and dramatized by a human patient actor on the ability of trainees to clinically manage patients during a simulated mass casualty cholinergic event. The study outcomes provide information toward the aim of reducing or eliminating the uses of live animals for clinical instruction without diminishing the quality of training. Additionally, the study outcomes could aid in the selection of instructional methodologies available to
a broad community of first-responder personnel in military and civilian service. Although less comprehensive than the USAMRICD courses, the combination of multimedia and simulation-based methods created an experiential learning environment that yielded significant improvements in knowledge, performance, self-efficacy, and affect. These outcomes demonstrate the value of this easily distributed program to increase competency of first responders in recognizing and managing a mass casualty cholinergic event.

ACKNOWLEDGMENTS

The authors acknowledge the support of Cameron Johnson and Laszlo Alberti at the University of Minnesota Medical School, The City of Plymouth Fire Department, Plymouth, MN; Stephen Barnes, MD, and Alex Bukoski, DVM, PhD, ACVAA at the University of Missouri College of Veterinary Medicine, Columbia, MO; Natalie Dowd at Synaptic Design, Minneapolis, MN. This work was funded by the United States Army Medical Research and Materiel Command (USAMRMC) and supported by Telemedicine & Advanced Technology Research Center (TATRC) as part of the Joint Program Committee 1 Medical Training and Health Information Sciences (JPC-1). This work was funded by the United States Army Medical Research and Materiel Command (USAMRMC) and supported by Telemedicine & Advanced Technology Research Center (TATRC) as part of the Joint Program Committee 1 Medical Training and Health Information Sciences (JPC-1).

REFERENCES

