
Logical Prior Probability

Abram Demski?

Institute for Creative Technologies, 12015 Waterfront Drive, Playa Vista, CA 90094

Abstract. A Bayesian prior over first-order theories is defined. It is
shown that the prior can be approximated, and the relationship to pre-
viously studied priors is examined.

1 Introduction & Motivation

The purpose of this paper is to present a prior over theories in first-order logic,
similar in nature to the priors of algorithmic probability. There are several pos-
sible motivations for such a prior. First, it is hoped that the study of priors over
logics will be useful to the study of realistic reasoning. Probabilistic reasoning
over logic gives us a structure of inference which is not as evident in non-logical
universal priors. Second, logical theories may be easier to examine than other
possible knowledge representations, motivating the learning of logical theories as
a goal in itself (independent of prediction accuracy and other concerns). In this
case, a theory of universal learning via logical theories may be useful. Third, the
logical prior presented here may give some benefits even if the only consideration
is prediction accuracy.

The primary idea is that of the random theory. By building up first-order
theories one random sentence at a time, a probability that a particular sentence
becomes true can be defined.

One way of motivating the approach is to consider what would happen if we
attempted to apply the universal semidistribution M to beliefs in predicate cal-
culus. (I will rely on some concepts which are explained more fully in section 2.)
M is a prior over bit-sequences. We can encode our beliefs about propositions
as beliefs about sequences, by giving each sentence a number n (as is done in
Gödel numbering, [1]), and using the bit at position n to represent the truth or
falsehood of that sequence. Suppose we have an observation set, ⌃, of sentences
which we’ve accepted as true. We would like to know how to assign probabil-
ity to the other sentences. The obvious approach is to update M on the bits
representing ⌃. Two main problems arise:

– Consistency & Completeness. M does not know that the bits represent log-
ical sentences, so it will not assign probability based on the logical conse-
quences of ⌃. For example, for each A 2 ⌃, some probability will still be

? This effort has been sponsored by the U.S. Army and the Air Force Office of Scientific
Research. Statements and opinions expressed do not necessarily reflect the position
or the policy of the United States Government, and no official endorsement should
be inferred.

assigned to the negation of A. We would like to assign probability 1 to the
consequences of ⌃, and probability 0 to things inconsistent with ⌃.

– Non-sequential enumeration. M is a mixture distribution composed of pro-
grams which output the bits of the sequentially. ⌃ will have recursively
enumerable consequences, but due to the undecidability of the consequence
relation, it will not be possible in general to enumerate these consequences
in linear order.

The second problem is more subtle than the first, but follows from it: if a dis-
tribution got the logical consequences right, then it would be enumerating them
properly. The point is seperated out because it is an interesting divergence form
M. To illustrate this issue, suppose that we want to define M0 which is a mixture
distribution over arbitrary computable enumerations of bits, rather than only se-
quential enumerations. We understand the programs as printing a sequence of
(location, bit) pairs, and take each pair to set the bit of the sequence at the
given location.

To make M0 well-defined, we need to decide what to do when conflicting
pairs are given by a program. A program may print the pair (40,1) and later
print (40,0). What contribution should the program make to the probability of
that bit?

Three options are:

M0

M0

M0

1

2

3

: The earliest pair for a given location is used.
: The program is thrown out when it produces conflicting pairs. It no longer
contributes anything to the distribution.
: The latest pair for a location is used. If the program keeps printing con-
flicting bits for a location forever, it is not considered to contribute any prob-
ability for the distribution of that location (just as if it had never printed
any pair for that location).

2

11

The resulting priors are arranged in order of expressive power. M0

model which M0 does, since we can wrap an M0 program in an output-checker
contains any

3

2

which keeps the program from printing any pair for a previously-set location. M0

subsumes M0 , since we can replicate the behavior of “throwing out” a program

1by printing conflicting pairs for all locations forever. Also, M0

since we can deal with locations in sequential order.
subsumes M,

321Thus, we can establish M M0 M0 M0

tive dominance, to be defined) without too much trouble. It seems reasonable to
(where indicates multiplica-

321

3

further conjecture M < M0
< M0

< M0

M0 is related to generalized Kologorov complexity as discussed in [6], which
.

shows that such a distribution cannot be approximated. As such, it is not clear
how useful it might be to the study of intelligence.

Since consistency & completeness have not yet been dealt with, these distri-
butions are better thought of as alternative sequence prediction priors, rather
than trying to interpret them as distributions over logical theories by the previously-
mentioned numbering.

Enforcing both consistency and completeness will result in logical priors
which look similar to the one to be described: a process generating random
sentences is constrained in such a way as to guarantee that the results make
sense in terms of the logic.

2 Selected Background and Notation

2.1 First-Order Logic

We will be using first-order logic, defining the language L of first-order sentences
as follows:

– There is an infinite stock of variable symbols, v1, v2, ... 2 V, an infinite stock
of predicate symbols, p1, p2, ... 2 P, and an infinite stock of function symbols,
f1, f2, ... 2 F .

– The number of arguments fed to a predicate or function is referred to as
its arity. For example, a predicate of arity 2 is typically referred to as a
relation. A function of arity 0 is referred to as a constant, and a predicate of
arity 0 is a proposition. For simplicity, the arity of a symbol will be inferred
from its use here, rather than set ahead of time. If the same symbol is used
with multiple arities, the uses are independent (so f2 would notate distinct
functions in f2(v1) versus f2(v1, v2)).

– An expression is a composition of function symbols and variable symbols, for
example f1(f1(v1)). Specifically, the set of expressions E are defined induc-
tively by: V ⇢ E , and for every function fn 2 F of arity a and expressions
e1,e2,..., ea 2 E , we have fn(e1, e2, ...ea) 2 E .

– For e1, e2 2 E , e1 = e2 is in L; this represents equality.
– For pn 2 P of arity a and e1,e2,..., ea 2 E , we have pn(e1,e2,..., ea) 2 L.
– For A, B 2 L, we have (A ^ B) 2 L and (A _ B) 2 L; these represent

conjunction and disjunction, respectively. (Parentheses will be omitted in
this document when the intended grouping is clear.)

– For S 2 L, we have ¬(S) 2 L. This represents negation. (Again, parentheses
may be omitted.)

– For any S 2 L and vn 2 V, we have 8vn.(S) 2 L and 9vn.(S) 2 L,
representing universal and existential quantification. (Parentheses may be
ommited.)

If sentence A logically implies sentence B (meaning, B is true in any situation
in which A is true), then we write A ✏ B. The notation also applies to multiple
premises; if A and B together imply C, we can write A, B ✏ C. Uppercase greek
letters will also be used to denote sets of sentences. We can write A 2 B to say
that A does not logically imply B.

If A implies B according to the inference rules (meaning, we can derive B
starting with the assumption A), we write A ` B. This notation applies to
multiple premises as well, and can be denied as 0.

� � �

� �

�

�

�

� � �

�

The inference rules will not be reviewed here, but some basic results will be
important. These results can be found in many textbooks, but in particular, [1]
has material on everything mentioned here.

Soundness. For a sentence S and a set of sentences , if ` S, then ✏ S.
That is, the inference rules will never derive something that doesn’t logically
follow from a set of premises.

Completeness. For a sentence S and a set of sentences , if ✏ S, then
` S. That is, the inference rules can derive anything which logically follows

from a set of premises.
Since the rules for ` can be followed by a computer, this shows that ` is

computably enumerable: a (non-halting) program can enumerate all the true
instances of ` S.

Undecidability. For a given and S, no general procedure exists which can
decide whether ` S or 0 S. Completeness implies that we can know ` S
if it is true; however, if it is not, there is no general way to determine 0 S.

Encoding computations. Any computable function can be encoded in first-
order logic. This can be done, for example, by providing axioms related to the
behavior of Turing machines.

2.2 Algorithmic Information Theory

B denotes the binary alphabet, {0, 1}; Bn denotes the set of binary strings of
length n; B⇤ denotes the set of binary strings of any finite length; B1 denotes
the set of binary strings of infinite length; and SB = B⇤ [B1 denotes the set
of finite and infinite binary strings. String concatenation will be represented by
adjacency, so ab is the concatenation of a and b.

Consider a class C1 of Turing machines with three or more tapes: an input
tape, one or more work tapes, and an output tape. The input and output tape
are both able to move in just one direction. Any Turing machine T 2 C1 defines
a partial function fT from B1 to SB: for input i 2 B1 , fT (i) is considered to be
the string which T writes to the output tape, which may be infinite if T never
stops writing output. Now consider a universal machine from this class; that is,
a machine U 2 C1 such that for any other machine T 2 C1, there is a finite
sequence of bits s 2 B⇤ which we can place on U ’s input tape to get it to behave
exactly like T ; that is, fU (si) = fT (i) for all i.

A distribution M over SB can be defined by feeding random bits to U ; that
1is, we take fU (i) for uniformly random i 2 B1 .

The development here has been adapted from [5].
Now, how do we compare two distributions?
P1 multiplicatively dominates P2 iff there exists ↵ > 0 such that P1(x) >

↵P2(x) for any x. An intuitive way of understanding this is that P1 needs at most
1 M is not actually a probability distribution, but rather, a semimeasure. The

Solomonoff distribution is a probability distribution defined from M: we apply the
Solomonoff normalization to M, which gives a distribution over B1. The details of
normalization will not be given here.

�

�

�

a constant amount more evidence to reach the same conclusion as P2. 2
Strict

multiplicative dominance means that P1 multiplicatively dominates P2, but the
reverse is not the case. This indicates that P1 needs at most a constant amount
more evidence to reach the same conclusion as P2, but we can find examples
where P2 needs arbitrarily more evidence than P1 to come to the conclusion P1

reaches.
The main reason M is interesting is that it is multiplicatively dominant over

any computable probability distribution for sequence prediction. This makes it
a highly general tool.

P1 exponentially dominates P2 iff there exists ↵, > 0 such that P1(x) >
↵P2(x) . This intuitively means that P1 needs at most some constant multiple
of the amount of evidence which P2 needs to reach a specific conclusion. Strict
exponential dominance again indicates that the reverse is not the case, which
means that P2 needs more than multiplicatively more evidence to reach some
conclusions that P1 can reach.

We can also define (multiplicative or exponential) equivalence: two distribu-
tions are considered equivalent when they mutually dominate each other.

3 A Notion of Logical Probabilities

3.1 Requirements

I will follow [7] in the development of the idea of a probability distribution
over a language, since this provides a particularly clear idea of what it means
for a continuous-valued belief function to fit with a logic. I shall say that the
distribution respects the logic. The approach is to define probability as a function
on sentences in a language, rather than by the more common -algebra approach,
and require the probabilities to follow several constraints based on the logic. Since
we are using classical logic, I will simplify their constraints for that case.

Let L be the language of first-order logic from section 2. We want a proba-
bility function P : L ! R to obey the following rules:

(P0) P (A) = 0 if A is refutable.
(P1) P (A) = 1 if A is provable.
(P2) If A logically implies B, then P (A) P (B).
(P3) P (A) + P (B) = P (A _ B) + P (A ^ B).

From these, we can prove other typical properties such as P (A) + P (¬A) = 1.

3.2 Definition As a Generative Process

The idea behind the prior is to consider theories as being generated by choosing
sentences at random, one after another. The probability of a particular sentence

2 This is true if we measure evidence by the log of the likelihood ratio. P1(x|e) =
P1(x)P1(e|x)/P1(e), so multiplicative dominance indicates thatP1(e|x)/P1(e) doesn’t
have to get too extreme to bridge the distance between P1 and P2.

is taken to be the probability that it occurs in a theory randomly generated in
this manner.

To be more precise, suppose we have some random process to generate indi-
vidual sentences from our language L. This generation process will be denoted
G, and the probability that S1, S2, ..., Sn are the first n statements generated
will be written G(S1, S2, ..., Sn). G could be a highly structured process such as
the M0 distributions mentioned in section 1, but this seems unecessarily compli-
cated.3 Unless otherwise mentioned, this paper will define G based on a simple
probabilistic grammar on sentences, which generates sentences recursively by se-
lecting each syntactic element given in section 2.1 with some probability. When
selecting from the variable, predicate, or function symbols, the subscript number

1 1must be constructed, for example by assigning chance to each digit and 11 11
chance to terminating the digit string. We define G(S1, S2, ..., Sn) = ⇧i

n
=1G(Si).

A theory is a set of sentences in L. To generate a random theory, we generate
a sequence of sentences S1, S2, S3, ... according to the following process. For
each Sn, use sentences from G, but discarding those which are inconsistent with
the sentences so far; that is, rejecting any candidate for Sn which would make
S1 ^ ...^Sn into a contradiction. (For S1, the set of preceding sentences is empty,
so we only need to ensure that it does not contradict itself.)

Notice that there is no stopping condition. The sequence generated will be
infinite. However, the truth or falsehood of any particular statement (or any
finite theory) will be determined after a finite amount of time. (The remaining
sentences generated will either be consequences of, or irrelevant to, the statement
in question.) Shorter (finite) theories will have a larger probability of occurring
in the sequence.

In this way, we induce a new probability distribution PL on sentences from
the one we began with, G. PL(S) is the probability that a sentence S will be
present in a sequence S1, S2, S3, ... generated from G as described. Unlike G, PL

respects the logic:

Theorem 1. PL obeys (P0)-(P3).

Proof. (P0) is satisfied easily, since the process explicitly forbids generation of
contradictions. (P1) is satisfied, because a provable statement can never contra-
dict the sentences so far, so each will eventually be generated by chance as we
continue to generate the sequence. Therefore, provable statements are generated
with probability 1. (P2) is satisfied, by a similar argument: if we have already
generated A, but A implies B, then anything which contradicts B will contradict
A, and hence never be generated. This means that B will never be ruled out,
and so must eventually be generated at random.4 Therefore the probability for
B is at least as high as that if A.
3 If we did choose to use these, we would need to address the fact that they are only

semimeasures, not full probability distributions.
4 Notice, this means any theory generated in this manner will contain all of its logical

consequences with probability 1. This allows us to talk just about what sentences
are in the theory, when we might otherwise need to talk about the theory plus all
its logical consequences.

�

� � �

We can extend the argument a bit further to show (P3).
Since A ` A_ B and B ` A_ B, the sentence A_ B will occur in any theory

in which A or B occurs. Moreover, if A_ B occurs, then it would be inconsistent
for both ¬A and ¬B to occur later. As a result, either A or B will eventually
occur. So PL(A _ B) equals the probability that either A or B occurs.

If both A and B occur in a theory, then ¬(A ^ B) would be contradictory,
so will not occur; therefore, A ^ B will eventually be generated. On the other
hand, if A ^ B occurs in a sequence, it would be inconsistent for either ¬A or
¬B to occur, so both A and B will eventually be present. PL(A^ B) equals the
probability that both A and B occur in a sequence.

Since PL(A_B) equals the probability that either A or B occurs, and PL(A^
B) equals the probability that both A and B occur, we have PL(A _ B) =
PL(A) + PL(B) PL(A _ B). This proves (P3). ⇤

The conditional probability can be defined as usual, with PL(A|B) = PL(A ^
B)/PL(B). We can also extend the definition of PL() to include probabilities of
sets of sentences, so that PL() for ⇢ L is the probability that all S 2 will be
present in a sequence generated by the process defined above. (By an argument
similar to the one used to prove (P3), the probability of a set of sentences will
be equal to the probability of the conjunction.)

3.3 Approximability

The generative process described so far cannot be directly implemented, since
there is no way to know for sure that a theory remains consistent as we add sen-
tences at random. However, we can asymptotically approach PL() by eliminating
inconsistent possibilities when we find them.

I assume in this section that G is such that we can sample from it. It may be
possible that some interesting choices of G result in an approximable PL without
a sampleable G.

Suppose we want to approximate PL(A). I shall call a partial sequence
S1, S2, ..., Sn a prefix. Consider the following Monte Carlo approximation:

t=1, y=1, n=1.
loop :

// Reset the p r e f i x at the beg inn ing o f each loop .
p r e f i x=none
// Unt i l we get A or neg (A) ,
whi le not (s=A or s=neg (A)) :

// Get a random sentence .
s=generate ()
// Append sample to the sequence so f a r .
p r e f i x=push (s , p r e f i x)
// Spend time t l ook ing f o r c on t r ad i c t i o n s .
c=check (p r e f i x , t)
// I f a c on t r ad i c t i on i s found ,

https://B)/PL(B).We

i f c :
// backtrack .
pop (p r e f i x)

// I f the generated p r e f i x conta in s A,
i f (s=A) :

// increment y .
y=y+1

// Otherwise ,
e l s e :

// increment n .
n=n+1

// Increment t at the end o f each loop .
t=t+1

The variables y and n count the number of positive and negative samples,
while t provides a continually rising standard for consistency-detection on the
sampled prefixes. (I will use the term “sample” to refer to generated prefixes,
rather than individual sentences.) To that end, the function check(,) takes a
prefix and an amount of time, and spends that long trying to prove a contra-
diction from the prefix. If one is found, check returns true; otherwise, false. The
specific proof-search technique is of little consequence here, but it is necessary
that it is exhaustive (it will eventually find a proof if one exists). The function
neg() takes the negation; so, we are waiting for either A or ¬A to occur in each
sample. The prefix is represented as a FILO queue. push() adds a sentence to
the given prefix, and pop() removes the most recently added sentence.

The inner loop produces individual extensions at random, backtracking when-
ever an inconsistency is found. The loop terminates when a theory includes either
A or ¬A. The outer loop then increments y or n based on the result, increments
t, erases the prefix, and re-enters the inner loop to get another sample.

yTheorem 2. will approach PL(A). n+y

Proof. Since every inconsistency has a finite amount of time required for detec-
tion, the probability of an undetected inconsistency will fall arbitrarily far as t
rises. The probability of consistent samples, however, does not fall. Therefore,
the counts will eventually be dominated by consistent samples.

The question reduces to whether the probability of a consistent sample con-
taining A is equal to PL(A). We can see that this is the case, since if we assume
that the generated sentences will be consistent with the sentence so far, then the
generation probabilities are exactly those of the previous section. ⇤

3.4 Comparison

It would be interesting to know how this prior compares with the priors which
have been defined via Turing machines.

In order to compare the first-order prior with priors for sequence prediction,
we need to apply the first-order prior to sequence prediction. We can do so

https://PL(A).We

by encoding bit sequences in first-order logic. For example, f1 can serve as a
logical constant representing the sequence to be observed and predicted; f2() can
represent adding a 0 to the beginning of some sequence; and f3() can represent
adding a 1. So, to say that the sequence begins “0011...” we would write f1 =
f2(f2(f3(f3(f4)))), where f4 is a logical constant standing for the remainder of
the sequence. The probability of a bit sequence can be taken as the probability
of a statement asserting that bit sequence. Define PLS to be the resulting prior
over bit sequences.

It seems possible to show that PLS is exponentially equivalent to M0
2 from

section 1. M0
2 will dominate PLS , because PLS can be defined by a Turing

machine which takes an infintie stream of random bits, interpretes them as first-
order sentences, and outputs all (location, bit) pairs which follow deductively
from them. Since M0

2 is constructed from a universal Turing machine, it will have
this behavior with some probability. Inconsistent theories will start outputting
inconsistent pairs, and so will not be included in M0

2. Thus we get the behavior
of PLS . On the other hand, since first-order logic can encode computations,
it seems that we can encode all the enumerations included in M0

2. However,
the encoding may not be efficient enough to get us multiplicative dominance.
Exponential dominance seems possible to establish, since the expression-length
of the representation of a bit-tape in first-order logic will be linear in the bit-
length of that tape.

Since this development is insufficiently formal, the statement remains a con-
jecture here.

4 Conclusion & Questions

One hopeful application of this prior is to human-like mathematical reasoning,
formalizing the way that humans are able to reason about mathematical conjec-
tures. The study of conjecturing in artificial intelligence has been quite success-
ful5, but it is difficult to analyse this theoretically, especially from a Bayesian
perspective.

This situation springs from the problem of logical omniscience [3]. The logical
omniscience problem has to do with the sort of uncertainty that we can have
when we are not sure what beliefs follow from our current beliefs. For example, we
might understand that the motion of an object follows some particular equation,
but be unable to calculate the exact result without pen and paper. Because
the brain has limited computational power, we must expect the object to follow
some plausible range of motion based on estimation. Standard probability theory
does not model uncertainty of this kind. A distribution which follows the laws
of probability theory will already contain all the consequences of any beliefs (it
is logically omniscient). Real implementations cannot work like that.

An agent might even have beliefs that logically contradict each other.
Mersenne believed that 267−1 is a prime number, which was proved false

5 For example, AM[4] and Graffiti[2].

in 1903, [...] Together with Mersenne’s other beliefs about multiplication
and primality, that belief logically implies that 0 = 1. [3]

Gaifman proposes a system in which probabilities are defined only with respect
to a finite subset of the statements in a language, and beliefs are required to
be consistent only with respect to chains of deduction in which each statement
occurs in this limited set.

I will not attempt to address this problem to its fullest here, but approxima-
tions to PL such as the one in section 3.3 seem to have some good properties in
this area. If the proof of some statement X is too long for some approximation
A(t, X, Y) to PL(X|Y) to find given time t, then S will be treated exactly like
a statement which is not provable: it will be evaluated with respect to how well
it fits the evidence Y , given the connections which A(t, X, Y) can find within
time t. For example, if some universal statement 8x.S[x] can be proven from
Y , but the proof is too long to find in reasonable time, then the probability
of 8x.S[x] will still tend to rise with the number of individual instances S[i]
which are found to be true (although this cannot be made precise without more
assumptions about the approximation process).

It is not clear how one would study this problem in the context of Solomonoff
induction. Individual “beliefs” are not easy to isolate from a model when the
model is presented as an algorithm. The problem of inconsistent beliefs does not
even arise.

I do not claim that the first-order prior is a complete solution to this prob-
lem. For example, we do not get the desirable property that as we see arbitrarily
many instances of a particular proposition, the probability of the universal gen-
eralization goes to 1. This fits with the semantics of first-order logic, but seems
to be undesirable in other cases.

References

1. G. Boolos, J.P. Burgess, and R.C. Jeffrey. Computability and Logic. Cambridge
University Press, 2007.

2. Dinneen M. Brewster, T. and V. Faber. A computational attack on the conjectures
of graffiti: New counterexamples and proofs. Discrete Mathematics, 147:1–3, 1992.

3. H. Gaifman. Reasoning with limited resources and assigning probabilities to arith-
metical statements. Synthese, 140(1951):97–119, 2004.

4. D. Lenat and J. Brown. Why am and eurisko appear to work. Artificial Intelligence,
23(3):269 – 294, 1984.

5. M. Li and P. Vitányi. An introduction to Kolmogorov complexity and its applications
(2. ed.). Graduate texts in computer science. Springer, 1997.

6. J. Schmidhuber. Hierarchies of generalized Kolmogorov complexities and nonenu-
merable universal measures computable in the limit. International Journal of Foun-

dations of Computer Science, 13(4):587–612, 2002.
7. B. Weatherson. From classical to intuitionistic probability. Notre Dame Journal of

Formal Logic, 44(2):111–123, April 2003.

