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Abstract. A Bayesian  prior  over  first-order theories is defined. It is  
shown that the prior can be approximated, and the relationship to pre-
viously studied priors is examined. 

1 Introduction & Motivation  

The purpose of this paper is to present a prior over theories in first-order logic, 
similar in nature to the priors of algorithmic probability. There are several pos-
sible motivations for such a prior. First, it is hoped that the study of priors over 
logics will be useful to the study of realistic reasoning. Probabilistic reasoning 
over logic gives us a structure of inference which is not as evident in non-logical 
universal priors. Second, logical theories may be easier to examine than other 
possible knowledge representations, motivating the learning of logical theories as 
a goal in itself (independent of prediction accuracy and other concerns). In this 
case, a theory of universal learning via logical theories may be useful. Third, the 
logical prior presented here may give some benefits even if the only consideration 
is prediction accuracy. 

The primary idea is that of the random theory. By building up first-order 
theories one random sentence at a time, a probability that a particular sentence 
becomes true can be defined. 

One way of motivating the approach is to consider what would happen if we 
attempted to apply the universal semidistribution M to beliefs in predicate cal-
culus. (I will rely on some concepts which are explained more fully in section 2.) 
M is a prior over bit-sequences. We can encode our beliefs about propositions 
as beliefs about sequences, by giving each sentence a number n (as is done in 
Gödel numbering, [1]), and using the bit at position n to represent the truth or 
falsehood of that sequence. Suppose we have an observation set, ⌃, of  sentences  
which we’ve accepted as true. We would like to know how to assign probabil-
ity to the other sentences. The obvious approach is to update M on the bits 
representing ⌃. Two main  problems  arise:  

– Consistency & Completeness. M does not know that the bits represent log-
ical sentences, so it will not assign probability based on the logical conse-
quences of ⌃. For example, for each  A 2 ⌃, some probability will still be 
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assigned to the negation of A. We  would  like  to assign  probability  1 to the  
consequences of ⌃, and  probability 0 to things  inconsistent with  ⌃. 

– Non-sequential enumeration. M is a mixture distribution composed of pro-
grams which output the bits of the sequentially. ⌃ will have recursively 
enumerable consequences, but due to the undecidability of the consequence 
relation, it will not be possible in general to enumerate these consequences 
in linear order. 

The second problem is more subtle than the first, but follows from it: if a dis-
tribution got the logical consequences right, then it would be enumerating them 
properly. The point is seperated out because it is an interesting divergence form 
M. To  illustrate  this  issue, suppose  that we  want to define  M0 which is a mixture 
distribution over arbitrary computable enumerations of bits, rather than only se-
quential enumerations. We understand the programs as printing a sequence of 
(location, bit) pairs, and take each pair to set the bit of the sequence at the 
given location. 

To make M0 well-defined, we need to decide what to do when conflicting 
pairs are given by a program. A program may print the pair (40,1) and later 
print (40,0). What contribution should the program make to the probability of 
that bit? 

Three options are: 

M0 

M0 

M0 

1

2 

3 

: The earliest pair for a given location is used. 
: The program is thrown out when it produces conflicting pairs. It no longer 
contributes anything to the distribution. 
: The latest pair for a location is used. If the program keeps printing con-
flicting bits for a location forever, it is not considered to contribute any prob-
ability for the distribution of that location (just as if it had never printed 
any pair for that location). 

2 

11 

The resulting priors are arranged in order of expressive power. M0 

model which M0 does, since we can wrap an M0 program in an output-checker 
contains any 

3 

2 

which keeps the program from printing any pair for a previously-set location. M0 

subsumes M0 , since we can replicate the behavior of “throwing out” a program 

1by printing conflicting pairs for all locations forever. Also, M0 

since we can deal with locations in sequential order. 
subsumes M, 

321Thus, we can establish M  M0  M0  M0 

tive dominance, to be defined) without too much trouble. It seems reasonable to 
(where  indicates multiplica-
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further conjecture M < M0 
< M0 

< M0 

M0 is related to generalized Kologorov complexity as discussed in [6], which 
. 

shows that such a distribution cannot be approximated. As such, it is not clear 
how useful it might be to the study of intelligence. 

Since consistency & completeness have not yet been dealt with, these distri-
butions are better thought of as alternative sequence prediction priors, rather 
than trying to interpret them as distributions over logical theories by the previously-
mentioned numbering. 



Enforcing both consistency and completeness will result in logical priors 
which look similar to the one to be described: a process generating random 
sentences is constrained in such a way as to guarantee that the results make 
sense in terms of the logic. 

2 Selected Background and Notation  

2.1 First-Order Logic 

We will be using first-order logic, defining the language L of first-order sentences 
as follows: 

– There is an infinite stock of variable symbols, v1, v2, ...  2 V, an infinite  stock  
of predicate symbols, p1, p2, ...  2 P, and  an infinite  stock of  function  symbols,  
f1, f2, ...  2 F . 

– The number of arguments fed to a predicate or function is referred to as 
its arity. For example, a  predicate  of  arity 2  is  typically referred  to as  a  
relation. A function of arity 0 is referred to as a constant, and a predicate of 
arity 0 is a proposition. For simplicity, the arity of a symbol will be inferred 
from its use here, rather than set ahead of time. If the same symbol is used 
with multiple arities, the uses are independent (so f2 would notate distinct 
functions in f2(v1) versus f2(v1, v2)). 

– An expression is a composition of function symbols and variable symbols, for 
example f1(f1(v1)). Specifically,  the  set  of  expressions  E are defined induc-
tively by: V ⇢ E , and  for every function  fn 2 F of arity a and expressions 
e1,e2,..., ea 2 E , we  have  fn(e1, e2, ...ea) 2 E . 

– For e1, e2 2 E , e1 = e2 is in L; this  represents  equality.  
– For pn 2 P of arity a and e1,e2,..., ea 2 E , we  have  pn(e1,e2,..., ea) 2 L. 
– For A, B 2 L, we  have  (A ^ B) 2 L and (A _ B) 2 L; these  represent  

conjunction and disjunction, respectively. (Parentheses will be omitted in 
this document when the intended grouping is clear.) 

– For S 2 L, we  have  ¬(S) 2 L. This represents negation. (Again, parentheses 
may be omitted.) 

– For any S 2 L and vn 2 V, we  have  8vn.(S) 2 L and 9vn.(S) 2 L, 
representing universal and existential quantification. (Parentheses may be 
ommited.) 

If sentence A logically implies sentence B (meaning, B is true in any situation 
in which A is true), then we write A ✏ B. The notation also applies to multiple 
premises; if A and B together imply C, we can write A, B ✏ C. Uppercase  greek  
letters will also be used to denote sets of sentences. We can write A 2 B to say 
that A does not logically imply B. 

If A implies B according to the inference rules (meaning, we can derive B 
starting with the assumption A), we write A ` B. This notation applies to 
multiple premises as well, and can be denied as 0. 
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The inference rules will not be reviewed here, but some basic results will be 
important. These results can be found in many textbooks, but in particular, [1] 
has material on everything mentioned here. 

Soundness. For a sentence S and a set of sentences , if  ` S, then  ✏ S. 
That is, the inference rules will never derive something that doesn’t logically 
follow from a set of premises. 

Completeness. For a sentence S and a set of sentences , if  ✏ S, then  
` S. That is, the inference rules can derive anything which logically follows 

from a set of premises. 
Since the rules for ` can be followed by a computer, this shows that ` is 

computably enumerable: a (non-halting) program can enumerate all the true 
instances of ` S. 

Undecidability. For a given and S, no general procedure exists which can 
decide whether ` S or 0 S. Completeness implies that we can know ` S 
if it is true; however, if it is not, there is no general way to determine 0 S. 

Encoding computations. Any computable function can be encoded in first-
order logic. This can be done, for example, by providing axioms related to the 
behavior of Turing machines. 

2.2 Algorithmic Information Theory 

B denotes the binary alphabet, {0, 1}; Bn denotes the set of binary strings of 
length n; B⇤ denotes the set of binary strings of any finite length; B1 denotes 
the set of binary strings of infinite length; and SB = B⇤ [ B1 denotes the set 
of finite and infinite binary strings. String concatenation will be represented by 
adjacency, so ab is the concatenation of a and b. 

Consider a class C1 of Turing machines with three or more tapes: an input 
tape, one or more work tapes, and an output tape. The input and output tape 
are both able to move in just one direction. Any Turing machine T 2 C1 defines 
a partial function  fT from B1 to SB: for input  i 2 B1 , fT (i) is considered to be 
the string which T writes to the output tape, which may be infinite if T never 
stops writing output. Now consider a universal machine from this class; that is, 
a machine  U 2 C1 such that for any other machine T 2 C1, there  is  a finite  
sequence of bits s 2 B⇤ which we can place on U ’s input tape to get it to behave 
exactly like T ; that  is,  fU (si) = fT (i) for all i. 

A distribution  M over SB can be defined by feeding random bits to U ; that  
1is, we take fU (i) for uniformly random i 2 B1 . 

The development here has been adapted from [5]. 
Now, how do we compare two distributions? 
P1 multiplicatively dominates P2 iff there exists ↵ > 0 such that P1(x) > 

↵P2(x) for any x. An intuitive  way of understanding  this  is  that  P1 needs at most 
1 M is not actually a probability distribution, but rather, a semimeasure. The 

Solomonoff distribution is a probability distribution defined from M: we apply the  
Solomonoff normalization to M, which  gives a  distribution over  B1. The  details of  
normalization will not be given here. 
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a constant amount more  evidence to reach  the same  conclusion  as  P2. 2 
Strict 

multiplicative dominance means that P1 multiplicatively dominates P2, but the  
reverse is not the case. This indicates that P1 needs at most a constant amount 
more evidence to reach the same conclusion as P2, but  we  can  find examples  
where P2 needs arbitrarily more evidence than P1 to come to the conclusion P1 

reaches. 
The main reason M is interesting is that it is multiplicatively dominant over 

any computable probability distribution for sequence prediction. This makes it 
a highly general  tool.  

P1 exponentially dominates P2 iff there exists ↵, > 0 such that P1(x) > 
↵P2(x) . This intuitively means that P1 needs at most some constant multiple 
of the amount of evidence which P2 needs to reach a specific conclusion. Strict 
exponential dominance again indicates that the reverse is not the case, which 
means that P2 needs more than multiplicatively more evidence to reach some 
conclusions that P1 can reach. 

We can also define (multiplicative or exponential) equivalence: two distribu-
tions are considered equivalent when they mutually dominate each other. 

3 A Notion of Logical Probabilities  

3.1 Requirements 

I will follow [7] in the development of the idea of a probability distribution 
over a language, since this provides a particularly clear idea of what it means 
for a continuous-valued belief function to fit with a logic. I shall say that the 
distribution respects the logic. The approach is to define probability as a function 
on sentences in a language, rather than by the more common -algebra approach, 
and require the probabilities to follow several constraints based on the logic. Since 
we are using classical logic, I will simplify their constraints for that case. 

Let L be the language of first-order logic from section 2. We want a proba-
bility function P : L ! R to obey the following rules: 

(P0) P (A) = 0 if A is refutable. 
(P1) P (A) = 1 if A is provable. 
(P2) If A logically implies B, then  P (A)  P (B). 
(P3) P (A) + P (B) = P (A _ B) + P (A ^ B). 

From these, we can prove other typical properties such as P (A) + P (¬A) = 1. 

3.2 Definition As a Generative Process 

The idea behind the prior is to consider theories as being generated by choosing 
sentences at random, one after another. The probability of a particular sentence 

2 This is true if we measure evidence by the log of the likelihood ratio. P1(x|e) =  
P1(x)P1(e|x)/P1(e), so  multiplicative dominance indicates  thatP1(e|x)/P1(e) doesn’t 
have to get too extreme to bridge the distance between P1 and P2. 



is taken to be the probability that it occurs in a theory randomly generated in 
this manner. 

To be more precise, suppose we have some random process to generate indi-
vidual sentences from our language L. This generation process will be denoted 
G, and the  probability that  S1, S2, ..., Sn are the first n statements generated 
will be written G(S1, S2, ..., Sn). G could be a highly structured process such as 
the M0 distributions mentioned in section 1, but this seems unecessarily compli-
cated.3 Unless otherwise mentioned, this paper will define G based on a simple 
probabilistic grammar on sentences, which generates sentences recursively by se-
lecting each syntactic element given in section 2.1 with some probability. When 
selecting from the variable, predicate, or function symbols, the subscript number 

1 1must be constructed, for example by assigning chance to each digit and 11 11 
chance to terminating the digit string. We define G(S1, S2, ..., Sn) = ⇧i

n 
=1G(Si). 

A theory  is  a set  of  sentences  in  L. To generate  a random  theory,  we  generate  
a sequence  of  sentences  S1, S2, S3, ...  according to the following process. For 
each Sn, use  sentences  from  G, but discarding those which are inconsistent with 
the sentences so far; that is, rejecting any candidate for Sn which would make 
S1 ^ ...^Sn into a contradiction. (For S1, the  set of preceding sentences  is empty,  
so we only need to ensure that it does not contradict itself.) 

Notice that there is no stopping condition. The sequence generated will be 
infinite. However, the truth or falsehood of any particular statement (or any 
finite theory) will be determined after a finite amount of time. (The remaining 
sentences generated will either be consequences of, or irrelevant to, the statement 
in question.) Shorter (finite) theories will have a larger probability of occurring 
in the sequence. 

In this way, we induce a new probability distribution PL on sentences from 
the one we began with, G. PL(S) is the probability that a sentence S will be 
present in a sequence S1, S2, S3, ... generated from G as described. Unlike G, PL 

respects the logic: 

Theorem 1. PL obeys (P0)-(P3). 

Proof. (P0) is satisfied easily, since the process explicitly forbids generation of 
contradictions. (P1) is satisfied, because a provable statement can never contra-
dict the sentences so far, so each will eventually be generated by chance as we 
continue to generate the sequence. Therefore, provable statements are generated 
with probability 1. (P2) is satisfied, by a similar argument: if we have already 
generated A, but  A implies B, then anything which contradicts B will contradict 
A, and hence never be generated. This means that B will never be ruled out, 
and so must eventually be generated at random.4 Therefore the probability for 
B is at least as high as that if A. 
3 If we did choose to use these, we would need to address the fact that they are only 

semimeasures, not full probability distributions. 
4 Notice, this means any theory generated in this manner will contain all of its logical 

consequences with probability 1. This allows us to talk just about what sentences 
are in the theory, when we might otherwise need to talk about the theory plus all 
its logical consequences. 
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We can extend the argument a bit further to show (P3). 
Since A ` A_ B and B ` A_ B, the  sentence  A_ B will occur in any theory 

in which A or B occurs. Moreover, if A_ B occurs, then it would be inconsistent 
for both ¬A and ¬B to occur later. As a result, either A or B will eventually 
occur. So PL(A _ B) equals the probability that either A or B occurs. 

If both A and B occur in a theory, then ¬(A ^ B) would be contradictory, 
so will not occur; therefore, A ^ B will eventually be generated. On the other 
hand, if A ^ B occurs in a sequence, it would be inconsistent for either ¬A or 
¬B to occur, so both A and B will eventually be present. PL(A^ B) equals the 
probability that both A and B occur in a sequence. 

Since PL(A_B) equals the probability that either A or B occurs, and PL(A^ 
B) equals the probability that both A and B occur, we have PL(A _ B) =  
PL(A) + PL(B) PL(A _ B). This proves (P3). ⇤ 

The conditional probability can be defined as usual, with PL(A|B) =  PL(A ^ 
B)/PL(B). We  can  also extend  the  definition  of  PL() to include probabilities of 
sets of sentences, so that PL( ) for ⇢ L is the probability that all S 2 will be 
present in a sequence generated by the process defined above. (By an argument 
similar to the one used to prove (P3), the probability of a set of sentences will 
be equal to the probability of the conjunction.) 

3.3 Approximability 

The generative process described so far cannot be directly implemented, since 
there is no way to know for sure that a theory remains consistent as we add sen-
tences at random. However, we can asymptotically approach PL() by eliminating 
inconsistent possibilities when we find them. 

I assume in this section that G is such that we can sample from it. It may be 
possible that some interesting choices of G result in an approximable PL without 
a sampleable  G. 

Suppose we want to approximate PL(A). I shall call a  partial sequence  
S1, S2, ..., Sn a prefix. Consider the following Monte Carlo approximation: 

t=1,  y=1,  n=1.  
loop  :  

// Reset the p r e f i x at the beg inn ing o f each loop . 
p r  e f i  x=none  
// Unt i l we get A or neg (A) , 
whi le  not  ( s=A  or  s=neg (A) ) :  

// Get a random sentence . 
s=generate ( ) 
// Append sample to the sequence so f a r . 
p r e f i x=push ( s  ,  p r e f i x  )  
// Spend time t l ook ing f o r c on t r ad i c t i o n s . 
c=check ( p r e f i x , t ) 
// I f a c on t r ad i c t i on i s found , 
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i f  c :  
// backtrack . 
pop ( p r e f i x ) 

// I f the generated p r e f i x conta in s A, 
i f  ( s=A) :  

// increment y . 
y=y+1 

// Otherwise , 
e l s e  :  

// increment n . 
n=n+1 

// Increment t at the end o f each loop . 
t=t+1 

The variables y and n count the number of positive and negative samples, 
while t provides a continually rising standard for consistency-detection on the 
sampled prefixes. (I will use the term “sample” to refer to generated prefixes, 
rather than individual sentences.) To that end, the function check(,) takes a 
prefix and an amount of time, and spends that long trying to prove a contra-
diction from the prefix. If one is found, check returns true; otherwise, false. The 
specific proof-search technique is of little consequence here, but it is necessary 
that it is exhaustive (it will eventually find a proof if one exists). The function 
neg() takes the negation; so, we are waiting for either A or ¬A to occur in each 
sample. The prefix is represented as a FILO queue. push() adds a sentence to 
the given prefix, and pop() removes the most recently added sentence. 

The inner loop produces individual extensions at random, backtracking when-
ever an inconsistency is found. The loop terminates when a theory includes either 
A or ¬A. The outer loop then increments y or n based on the result, increments 
t, erases  the  prefix, and  re-enters  the  inner  loop  to get another sample.  

yTheorem 2. will approach PL(A). n+y 

Proof. Since every inconsistency has a finite amount of time required for detec-
tion, the probability of an undetected inconsistency will fall arbitrarily far as t 
rises. The probability of consistent samples, however, does not fall. Therefore, 
the counts will eventually be dominated by consistent samples. 

The question reduces to whether the probability of a consistent sample con-
taining A is equal to PL(A). We  can  see  that this  is  the  case, since  if  we  assume  
that the generated sentences will be consistent with the sentence so far, then the 
generation probabilities are exactly those of the previous section. ⇤ 

3.4 Comparison 

It would be interesting to know how this prior compares with the priors which 
have been defined via Turing machines. 

In order to compare the first-order prior with priors for sequence prediction, 
we need to apply the first-order prior to sequence prediction. We can do so 

https://PL(A).We


by encoding bit sequences in first-order logic. For example, f1 can serve as a 
logical constant representing the sequence to be observed and predicted; f2() can 
represent adding a 0 to the beginning of some sequence; and f3() can represent 
adding a 1. So, to say that the sequence begins “0011...” we would write f1 = 
f2(f2(f3(f3(f4)))), where f4 is a logical constant standing for the remainder of 
the sequence. The probability of a bit sequence can be taken as the probability 
of a statement asserting that bit sequence. Define PLS to be the resulting prior 
over bit sequences. 

It seems possible to show that PLS is exponentially equivalent to M0 
2 from 

section 1. M0 
2 will dominate PLS , because  PLS can be defined by a Turing 

machine which takes an infintie stream of random bits, interpretes them as first-
order sentences, and outputs all (location, bit) pairs which follow deductively 
from them. Since M0 

2 is constructed from a universal Turing machine, it will have 
this behavior with some probability. Inconsistent theories will start outputting 
inconsistent pairs, and so will not be included in M0 

2. Thus we get the behavior 
of PLS . On  the other hand, since  first-order logic can  encode  computations,  
it seems that we can encode all the enumerations included in M0 

2. However,  
the encoding may not be efficient enough to get us multiplicative dominance. 
Exponential dominance seems possible to establish, since the expression-length 
of the representation of a bit-tape in first-order logic will be linear in the bit-
length of that tape. 

Since this development is insufficiently formal, the statement remains a con-
jecture here. 

4 Conclusion & Questions  

One hopeful application of this prior is to human-like mathematical reasoning, 
formalizing the way that humans are able to reason about mathematical conjec-
tures. The study of conjecturing in artificial intelligence has been quite success-
ful5, but  it is difficult to analyse this theoretically, especially from a Bayesian 
perspective. 

This situation springs from the problem of logical omniscience [3]. The logical 
omniscience problem has to do with the sort of uncertainty that we can have 
when we are not sure what beliefs follow from our current beliefs. For example, we 
might understand that the motion of an object follows some particular equation, 
but be unable to calculate the exact result without pen and paper. Because 
the brain has limited computational power, we must expect the object to follow 
some plausible range of motion based on estimation. Standard probability theory 
does not model uncertainty of this kind. A distribution which follows the laws 
of probability theory will already contain all the consequences of any beliefs (it 
is logically omniscient). Real implementations cannot work like that. 

An agent might even have beliefs that logically contradict each other. 
Mersenne believed that 267−1 is a prime number, which was proved false 

5 For example, AM[4] and Graffiti[2]. 



in 1903, [...] Together with Mersenne’s other beliefs about multiplication 
and primality, that belief logically implies that 0 = 1. [3] 

Gaifman proposes a system in which probabilities are defined only with respect 
to a finite subset of the statements in a language, and beliefs are required to 
be consistent only with respect to chains of deduction in which each statement 
occurs in this limited set. 

I will not attempt to address this problem to its fullest here, but approxima-
tions to PL such as the one in section 3.3 seem to have some good properties in 
this area. If the proof of some statement X is too long for some approximation 
A(t, X, Y ) to PL(X|Y ) to find given time t, then  S will be treated exactly like 
a statement which is not provable: it will be evaluated with respect to how well 
it fits the evidence Y , given  the  connections which  A(t, X, Y ) can find within 
time t. For example, if  some universal  statement  8x.S[x] can be proven from 
Y , but the  proof  is  too long to find  in  reasonable  time, then  the  probability  
of 8x.S[x] will still tend to rise with the number of individual instances S[i] 
which are found to be true (although this cannot be made precise without more 
assumptions about the approximation process). 

It is not clear how one would study this problem in the context of Solomonoff 
induction. Individual “beliefs” are not easy to isolate from a model when the 
model is presented as an algorithm. The problem of inconsistent beliefs does not 
even arise. 

I do not claim that the first-order prior is a complete solution to this prob-
lem. For example, we do not get the desirable property that as we see arbitrarily 
many instances of a particular proposition, the probability of the universal gen-
eralization goes to 1. This fits with the semantics of first-order logic, but seems 
to be undesirable in other cases. 
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