

Learning Domain Knowledge for Teaching Procedural Tasks

Andrew Scholer, Jeff Rickel, Richard Angros, Jr. and W. Lewis Johnson

Information Sciences Institute & Computer Sciences Department
University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292-6695

ascholer@isi.edu - rickel@isi.edu - angros@isi.edu - johnson@isi.edu

Abstract
Providing domain knowledge needed by intelligent tutoring
systems to teach a procedure to students is traditionally a
difficult and time consuming task. This paper presents a
system for making this process easier by allowing the
automated tutor to acquire the knowledge it needs through a
combination of programming by demonstration,
autonomous experimentation, and direct instruction.

Introduction
Education researchers have long recognized that one-on-
one tutoring is a particularly powerful method of
instruction (Bloom 1984). Unfortunately, it is a highly
expensive one as well. Providing every student with a
teacher to watch over him or her and provide situated,
interactive instruction is often impractical.

Intelligent tutoring systems (Wenger 1987, Sleeman
1982) attempt to make widespread one-on-one instruction
possible by filling in for human instructors and providing
some of the same types of interaction. Students can watch a
tutoring system demonstrate how to perform a task or they
can practice the task under the supervision of the
automated tutor. Such systems should ideally allow the
same kind of interactivity that a human instructor does. A
student should be able to ask the system to suggest or
perform a step when they become stuck and should be able
to take over for the system when they feel confident with
their ability to finish a task being demonstrated. However,
providing the knowledge needed by an intelligent tutoring
system to provide instruction in such a flexible manner
represents a new burden.

For teaching a procedural task, an intelligent tutoring
system must have knowledge of the task that is both robust
and explicable. At any point, despite possible unexpected
actions by the student, the system must be able to both
select an appropriate action to take and be able to explain
the reason for that selection to the student. The need for the
ability to respond to a potentially large set of user actions
means that scripting all of the system’s actions is highly
impractical at best. A better way to equip such a system
with the necessary knowledge is to provide it with a model
of the task, enabling it to plan how to complete the task and
to both dynamically adapt the plan to new situations and to
provide explanations of these adaptations.

Traditionally a programmer or knowledge engineer is
required to work with a domain expert to formalize the
expert’s procedural knowledge of a task into code or
declarative statements that the intelligent tutor can use.
Unfortunately, formalizing this knowledge can be both
difficult and time consuming.

Researchers have explored a number of ways to facilitate
providing procedural knowledge to an intelligent agent.
Systems have been designed that use higher-level
instruction languages to make knowledge engineering
quicker and more easily understood (Badler, 1998).
Alternatively, some systems seek to eliminate traditional
programming through instruction (Huffman 1994),
example solutions (Wang 1996) or experimentation (Gil
1992). Most of this work focuses on providing agents with
the knowledge to perform tasks as opposed to teaching the
tasks. While learning how to do and how to teach how to
do are similar problems, an agent that is to be an instructor
has an extra requirement – it must be able to explain the
rationale behind what it learns. In addition, most prior
work focuses on learning from one source; each of the
systems either learns inductively from actions taken in the
environment, or from instruction by a human tutor. Only
Pearson and Huffman (Pearson 1995) have tried to
implement a system that combines learning by observation
with direct instruction.

This paper describes Diligent, a system that integrates
programming by demonstration, autonomous
experimentation, and direct instruction to learn domain
knowledge needed to teach procedural tasks. Diligent has
been implemented and integrated into STEVE (Soar
Training Expert For Virtual Environments), an intelligent
agent that cohabits virtual environments with students to
teach them procedural tasks (Rickel 1999, 2000). The next
three sections of the paper describe the environment
Diligent learns in, the types of knowledge it learns, and its
learning methods respectively.

Diligent’s Environment
The environment within which knowledge acquisition is
assumed to occur consists of the domain simulation, the
human instructor, and Diligent.

mailto:johnson@isi.edu
mailto:angros@isi.edu
mailto:rickel@isi.edu
mailto:ascholer@isi.edu

Actions

Action
Commands

Action
Observations

Instructions

Questions
Instructor

Diligent

Domain
Simulation

Figure 1: Environment for Learning

We assume that human students learn procedures by
working with the intelligent tutoring system in a simulation
of a real domain. Students can interact with this simulation
by taking actions in a GUI that change the state of the
domain. This same domain simulation can be used by the
intelligent tutoring system to acquiring the domain
knowledge to tutor students.

The domain simulator is responsible for providing an
interface (e.g. the same GUI human students use) with
which the human instructor can take actions within the
domain. The simulator is also responsible for providing the
learning system with records of actions (action
observations) taken by the human expert or by the
intelligent tutoring system. Each action observation
consists of a pre-state, the action taken, and the effects of
the action. (STEVE actually acquires the information from
the simulator in a more complicated interface, but this
simplified interface will suffice for this paper.) Finally, the
domain simulation is responsible for accepting commands
to execute actions in the simulated environment (action
commands), so that Diligent can execute the same actions
as the instructor.

The human instructor provides input to the learning
system through instruction, allowing them to guide its
actions and provide information. Instruction may take the
form of simple commands, answering questions the
learning system poses, and directly specifying elements of
knowledge in the ontology.

The learning system itself is responsible for utilizing
action observations and instruction to acquire the
knowledge in our ontology for teaching procedural tasks. It
is assumed that the system can ask questions of the
instructor and that it can issue action commands to the
domain simulation.

Ontology for Teaching Procedural Tasks
Our task ontology has three main categories of knowledge
that the learning system must acquire: procedures,
operators and linguistic knowledge.

Procedures
There are two main requirements for our procedure
representation. First, the representation must be sufficient
to choose the next appropriate action while demonstrating a
task or watching a student and, if asked, to explain the role
of that action in completing the task. Second, the
representation must be sufficient to allow the system to
adapt procedures to unexpected student actions.

To meet these requirements, we represent procedures
with a procedural net (plan) consisting of a set of steps, a
set of end goals, and a set each of ordering constraints and
causal links between steps. Each step may either be a
primitive action (e.g., press a button) or a composite action
(i.e., itself a procedure). The end goals of the task simply
describe a state the environment must be in for the task to
be considered complete. Ordering constraints impose
binary ordering relations between steps in the procedure.
Finally, causal links represent the role of steps in a task;
each causal link specifies that one step in the task achieves
a precondition for another step in the task (or for
termination of the task). For example, pulling out a
dipstick achieves the goal of exposing the level indicator,
which is a precondition for checking the oil level.

Such a representation is not uncommon in the AI
planning community and has proven effective in a wide
variety of research on task-oriented collaboration and
generating procedural instructions (Delin et al. 1994,
Mellish and Evans 1989, Young 1997). Used with partial
order planning techniques this representation is sufficient
to choose the next appropriate action while demonstrating a
task or watching a student, and it also enables the system to
explain the role of that action in completing the task.
(Rickel 1999)

The causal links in this representation are key to both of
these abilities. First, they support replanning by allowing
the system to determine which parts of the task are still
relevant to achieving the task's end goals. Previous tutoring
systems based on procedural net representations (e.g.,
(Burton 82), (Munro 93), and (Rickel 88)), on the other
hand, only represent steps and ordering constraints.
Without causal links, which represent the role of steps in
the task, these systems are incapable of adapting
procedures to unexpected circumstances. Second, causal
links are the foundation for generating explanations;
specifically, by combining knowledge of the causal links in
the plan with knowledge of which parts of the plan are still
relevant, a rationale for actions or recommendations can be
provided. (Rickel 1999)

Operators
Operators are used to represent the effects of actions in the
domain by mapping the relation between the pre-state for
an action and the effect it has. Many actions will have
different outcomes depending on the state of the domain.
For example, pressing a power button on a stereo will turn
on the machine if it is off and will turn it off if it is already
on. Thus the effect model may contain a number of
different conditional effects, each one an effect the action
has given a particular set of preconditions.

The system is responsible for deducing the set of
preconditions that produce each conditional effect from
different action observations. While learning, it is likely
there will not be enough information to uniquely establish
a set of preconditions for a given effect. To represent this
uncertainty, the preconditions are stored in a version space
(Mitchell 1977) that maintains sets of preconditions
describing the most specific and general possible
preconditions proven. This makes explicit both the known
restrictions on what the preconditions may be as well as the
remaining uncertainty at any point during learning.

Linguistic Knowledge
The intelligent tutoring system needs to be able to explain
the task to students and the reasons behind decisions the
system makes. For this communication to take place, the
system needs to be able to describe the procedure and its
components (steps, goals, ordering constraints and causal
links). Diligent currently learns text fragments for the
various elements of its ontology; these can be used with
domain independent text templates to support natural
language generation in the intelligent tutoring system. In
the future, we plan to support the acquisition of more
structured linguistic knowledge to support more
sophisticated natural language generation techniques.

How Diligent Learns this Knowledge
Diligent, the learning module that we have developed and
integrated into STEVE, begins learning about a procedure
through a process of programming by demonstration
(Cypher 1993). The human instructor issues a command
for Diligent to observe his actions, and then performs the
procedure by taking actions in the virtual environment.
During this demonstration, Diligent receives action
observation messages from the simulator, processing them
to create operators and stores the list of actions as a
demonstration.

Diligent records actions as a human instructor executes
each step in the task being learned, noting the state of the
simulated environment before and after each action. For
each action observed, an operator is created to model the
effects of the action; each step in the task is recorded as an
instance of an operator with a particular effect.

By the time the task is complete, Diligent has learned a
series of steps that can be used to perform the task. This is

the first portion of the procedure in our ontology. To
establish the end goals of the task, the second part of our
procedure representation, Diligent uses the cumulative
effect of the steps on the environment. The instructor is
then allowed to review this list and remove goals that are
merely side effects of the procedure.

At this point, Diligent could derive the ordering
constraints and causal links from its operator models, but
there would most likely be errors. For the most part, during
a demonstration Diligent only sees an action taken under
one set of circumstances. To refine the operators’ models
of actions’ effects, the system needs to see the actions
performed under different circumstances. To produce
action observations with different preconditions than seen
during the instructor’s demonstration, Diligent experiments
with the task in the simulated world.

These experiments are conducted by repeating the
procedure once for each step in the original demonstration.
Each time through, Diligent omits a different step to see
how the absence of that step affects subsequent steps.
These experiments are a relatively focused way for
Diligent to learn on its own with a minimal amount of
background knowledge of the task and environment.

Learning is performed by refining the preconditions of
operators associated with each action. A modified version
space maintains bounds representing the most specific and
most general combinations of preconditions possible for
that operator. The state of the world before each action the
agent takes, and the changes that occur afterwards, are used
to create new operators and update old ones. Successful
applications of old operators under new conditions can be
used to broaden the most specific representation of the
operator’s preconditions. Conversely, actions that fail to
replicate the changes of an old operator may be useful in
narrowing down the most general set of preconditions for
an operator.

Ideally, these two bounds will meet to define the exact
preconditions of an operator. However, even after
experiments with a task are complete, it is likely that the
general and specific sets of preconditions for each operator
will not have met. Many facets of the environment will not
change at all during experiments with the demonstration,
making it unclear how they relate to the steps in the task
being learned. For this reason, Diligent maintains a third
set of preconditions, known as the heuristic set. This
heuristic set is bounded by the general and specific sets and
focuses on preconditions whose states change during the
execution of the step or during the execution of a previous
step in the task.

This set represents Diligent’s assumption that the
ordering of steps in a demonstration has significance. The
agent assumes that the instructor has a reason for
performing each step at a particular point – that effects of
earlier actions are likely to be preconditions for later
actions. This set gives Diligent a useful piece of knowledge
from which to derive ordering constraints and causal links.
Thus the heuristic set does not speed the learning of a
proven set of preconditions, but improves the quality of a

speedily examined set of precondtions. (For a complete
discussion of how Diligent uses demonstration and
experimentation to learn procedural knowledge see Angros
1997, 2000.)

After the system has finished experimenting, it can use
its refined operators to generate a more accurate model of
the causal links and ordering constraints between steps in
the procedure. The instructor can review the knowledge
Diligent has acquired for STEVE by either examining a
graph of the procedure representation produced or by
allowing STEVE to demonstrate its understanding of the
task by trying to teach it back to the instructor. During this
review, the instructor can use GUIs to refine the partial
order plan produced by Diligent by adding or removing
steps, ordering constraints, and causal links. Such
modifications may be necessary if Diligent did not execute
an action in a wide enough variety of circumstances to
fully learn the preconditions of its effects.

Future Work
Although Diligent integrates programming by

demonstration, autonomous experimentation, and direct
instruction, they are not completely interchangeable. It is
expected that portions of the knowledge acquisition will be
performed by specific methods. These methods build
specific support for the knowledge acquired. Because other
methods used to acquire the same knowledge may not
build up the same supporting information, it can be
difficult to meaningfully integrate the knowledge from
different sources. In particular, Diligent has a limited
ability to accept instruction and to mix this form of
learning with the observations that take place during the
demonstration and experimentation. Current work is aimed
at making Diligent more flexible, allowing the three
methods to be used in any combination at any time.

References
Angros, Jr., Richard; W. Lewis Johnson; Jeff Rickel. 1997.
Agents that Learn to Instruct. AAAI Fall Symposium on Intelligent
Tutoring System Authoring Tools. Menlo Park, CA: AAAI Press.

Angros, Jr., Richard. 2000. Agents That Learn What To Instruct:
Increasing the Utility of Demonstrations by Actively Trying to
Understand Them. Ph.D. diss., University of Southern California.

Bloom, Benjamin S. 1984. The 2 sigma problem: The search for
methods of group instruction as effective as one-to-one tutoring.
Educational Researcher, 13(6):4-16.

Badler, Norman; Rama Bindganavale; Juliet Bourne; Martha
Palmer; Jianping Shi; and William Schuler. 1998. A
Parameterized Action Representation for Virtual Human Agents.
In Proceedings of the First Workshop on Embodied
Conversational Characters, 1-8.

Burton, Richard R. 1982. Diagnosing Bugs in a Simple
Procedural Skill. Intelligent Tutoring Systems. 157-183. Sleeman,
D. and J. S. Brown, eds. Academic Press.

Cypher, A. et al., eds. 1993. Watch What I Do: Programming by
Demonstration. Cambridge, Mass.: The MIT Press.

Delin, Judy; Anthony Hartley; Cecile Paris; Donia Scott; and
Keith Vander Linden. 1994. Expressing Procedural Relationships
in Multilingual Instructions. Proceedings of the Seventh
International Workshop on Natural Language Generation.

Gil, Y. 1992. Acquiring Domain Knowledge for Planning by
Experimentation. Ph.D. diss., School of Computer Science,
Carnegie Mellon Univ.

Huffman, S. B.; and Laird, J. E. 1995. Flexibly instructable
agents. Journal of Artificial Intelligence Research, 3:271-324.

Mellish, Chris; and Roger Evans. 1989. Natural Language
Generation from Plans. Computational Linguistics 15 (4).

Mitchell, T. M. 1977. Version Spaces: A Candidate Elimination
Approach to Rule Learning. Procedings of the 5th International
Joint Conference on Artificial Intelligence, Cambridge, MA, 305-
310.

Munro, A. ; M. C. Johnson; D. S. Surmon; and J. L. Wogulis.
1993. Attribute-centered simulation authoring for instruction. In
Proceedings of the AI-ED 93 World Conference of Artificial
Intelligence in Education, 82-89. Edinburgh, Scotland.

Pearson, D. J. and S. C. Huffman. 1995. Combining Learning
from Instruction with Recovery from Incorrect Knowledge. ML-
95 workshop on agents that learn from other agents.

Rickel, Jeff. 1988. An Intelligent Tutoring Framework for Task-
Oriented Domains. Procedings of the International Conference on
Intelligent Tutoring Systems, 109-115, Montreal, Canada.

Rickel, Jeff; and W. Lewis Johnson. 1999. Animated Agents for
Procedural Training in Virtual Reality: Perception, Cognition, and
Motor Control. Applied Artificial Intelligence 13: 343—382.

Rickel, Jeff; and W. Lewis Johnson. 2000. Task-Oriented
Collaboration with Embodied Agents in Virtual Worlds.
Embodied Conversational Agents. Boston: MIT Press.

Sleeman, D. and J. S. Brown, eds. 1982. Intelligent Tutoring
Systems. Academic Press.

Wang , X. 1996. Learning Planning Operators by Observation and
Practice. Ph.D. diss., School of Computer Science, Carnegie
Mellon Univ.

Wenger, Etienne. 1987. Artificial Intelligence and Tutoring
Systems. Los Altos, CA: Morgan Kaufmann.

Young, R. Michael. 1997. Generating Descriptions of Complex
Activities. Ph.D. thesis, University of Pittsburgh.

