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Abstract 
Providing domain knowledge needed by intelligent tutoring 
systems to teach a procedure to students is traditionally a 
difficult and time consuming task. This paper presents a 
system for making this process easier by allowing the 
automated tutor to acquire the knowledge it needs through a 
combination of programming by demonstration, 
autonomous experimentation, and direct instruction. 

Introduction 
Education researchers have long recognized that one-on-
one tutoring is a particularly powerful method of 
instruction (Bloom 1984). Unfortunately, it is a highly 
expensive one as well. Providing every student with a 
teacher to watch over him or her and provide situated, 
interactive instruction is often impractical.

Intelligent tutoring systems (Wenger 1987, Sleeman 
1982) attempt to make widespread one-on-one instruction 
possible by filling in for human instructors and providing 
some of the same types of interaction. Students can watch a 
tutoring system demonstrate how to perform a task or they 
can practice the task under the supervision of the 
automated tutor. Such systems should ideally allow the 
same kind of interactivity that a human instructor does. A 
student should be able to ask the system to suggest or 
perform a step when they become stuck and should be able 
to take over for the system when they feel confident with 
their ability to finish a task being demonstrated. However, 
providing the knowledge needed by an intelligent tutoring 
system to provide instruction in such a flexible manner 
represents a new burden.

For teaching a procedural task, an intelligent tutoring 
system must have knowledge of the task that is both robust 
and explicable. At any point, despite possible unexpected 
actions by the student, the system must be able to both 
select an appropriate action to take and be able to explain 
the reason for that selection to the student. The need for the 
ability to respond to a potentially large set of user actions 
means that scripting all of the system’s actions is highly 
impractical at best. A better way to equip such a system 
with the necessary knowledge is to provide it with a model 
of the task, enabling it to plan how to complete the task and 
to both dynamically adapt the plan to new situations and to 
provide explanations of these adaptations. 

Traditionally a programmer or knowledge engineer is 
required to work with a domain expert to formalize the 
expert’s procedural knowledge of a task into code or 
declarative statements that the intelligent tutor can use. 
Unfortunately, formalizing this knowledge can be both 
difficult and time consuming.

Researchers have explored a number of ways to facilitate 
providing procedural knowledge to an intelligent agent. 
Systems have been designed that use higher-level 
instruction languages to make knowledge engineering 
quicker and more easily understood (Badler, 1998). 
Alternatively, some systems seek to eliminate traditional 
programming through instruction (Huffman 1994), 
example solutions (Wang 1996) or experimentation (Gil 
1992). Most of this work focuses on providing agents with 
the knowledge to perform tasks as opposed to teaching the 
tasks. While learning how to do and how to teach how to 
do are similar problems, an agent that is to be an instructor 
has an extra requirement – it must be able to explain the 
rationale behind what it learns. In addition, most prior 
work focuses on learning from one source; each of the 
systems either learns inductively from actions taken in the 
environment, or from instruction by a human tutor. Only 
Pearson and Huffman (Pearson 1995) have tried to 
implement a system that combines learning by observation 
with direct instruction. 

This paper describes Diligent, a system that integrates 
programming by demonstration, autonomous 
experimentation, and direct instruction to learn domain 
knowledge needed to teach procedural tasks. Diligent has 
been implemented and integrated into STEVE (Soar 
Training Expert For Virtual Environments), an intelligent 
agent that cohabits virtual environments with students to 
teach them procedural tasks (Rickel 1999, 2000). The next 
three sections of the paper describe the environment 
Diligent learns in, the types of knowledge it learns, and its 
learning methods respectively. 

Diligent’s Environment 
The environment within which knowledge acquisition is 
assumed to occur consists of the domain simulation, the 
human instructor, and Diligent. 
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Figure 1: Environment for Learning 

We assume that human students learn procedures by
working with the intelligent tutoring system in a simulation 
of a real domain. Students can interact with this simulation 
by taking actions in a GUI that change the state of the 
domain. This same domain simulation can be used by the 
intelligent tutoring system to acquiring the domain 
knowledge to tutor students.

The domain simulator is responsible for providing an 
interface (e.g. the same GUI human students use) with 
which the human instructor can take actions within the 
domain. The simulator is also responsible for providing the 
learning system with records of actions (action 
observations) taken by the human expert or by the 
intelligent tutoring system. Each action observation 
consists of a pre-state, the action taken, and the effects of 
the action. (STEVE actually acquires the information from 
the simulator in a more complicated interface, but this 
simplified interface will suffice for this paper.) Finally, the 
domain simulation is responsible for accepting commands 
to execute actions in the simulated environment (action 
commands), so that Diligent can execute the same actions 
as the instructor. 

The human instructor provides input to the learning 
system through instruction, allowing them to guide its 
actions and provide information. Instruction may take the 
form of simple commands, answering questions the 
learning system poses, and directly specifying elements of 
knowledge in the ontology.

The learning system itself is responsible for utilizing 
action observations and instruction to acquire the 
knowledge in our ontology for teaching procedural tasks. It 
is assumed that the system can ask questions of the 
instructor and that it can issue action commands to the 
domain simulation. 

Ontology for Teaching Procedural Tasks 
Our task ontology has three main categories of knowledge 
that the learning system must acquire: procedures, 
operators and linguistic knowledge. 

Procedures 
There are two main requirements for our procedure 
representation. First, the representation must be sufficient 
to choose the next appropriate action while demonstrating a 
task or watching a student and, if asked, to explain the role 
of that action in completing the task. Second, the 
representation must be sufficient to allow the system to 
adapt procedures to unexpected student actions.

To meet these requirements, we represent procedures 
with a procedural net (plan) consisting of a set of steps, a 
set of end goals, and a set each of ordering constraints and
causal links between steps. Each step may either be a 
primitive action (e.g., press a button) or a composite action 
(i.e., itself a procedure). The end goals of the task simply 
describe a state the environment must be in for the task to 
be considered complete. Ordering constraints impose 
binary ordering relations between steps in the procedure. 
Finally, causal links represent the role of steps in a task; 
each causal link specifies that one step in the task achieves 
a precondition for another step in the task (or for 
termination of the task). For example, pulling out a 
dipstick achieves the goal of exposing the level indicator, 
which is a precondition for checking the oil level.

Such a representation is not uncommon in the AI 
planning community and has proven effective in a wide 
variety of research on task-oriented collaboration and 
generating procedural instructions (Delin et al. 1994, 
Mellish and Evans 1989, Young 1997). Used with partial 
order planning techniques this representation is sufficient 
to choose the next appropriate action while demonstrating a 
task or watching a student, and it also enables the system to 
explain the role of that action in completing the task. 
(Rickel 1999)

The causal links in this representation are key to both of 
these abilities. First, they support replanning by allowing 
the system to determine which parts of the task are still 
relevant to achieving the task's end goals. Previous tutoring 
systems based on procedural net representations (e.g., 
(Burton 82), (Munro 93), and (Rickel 88)), on the other 
hand, only represent steps and ordering constraints.  
Without causal links, which represent the role of steps in 
the task, these systems are incapable of adapting 
procedures to unexpected circumstances. Second, causal 
links are the foundation for generating explanations; 
specifically, by combining knowledge of the causal links in 
the plan with knowledge of which parts of the plan are still 
relevant, a rationale for actions or recommendations can be 
provided. (Rickel 1999) 



 

      
 

 
 

 
 

 
  

 
  

 

  

 

 

 

 

 

  
 

  
 

 
  

  
  

 
 

  

 
   

 
  

 

 
   

  
  

 

  

 
  

 
    

  
   

  

 
 

  
 

 
  

 

  

 

 

 

   

Operators 
Operators are used to represent the effects of actions in the 
domain by mapping the relation between the pre-state for 
an action and the effect it has. Many actions will have 
different outcomes depending on the state of the domain. 
For example, pressing a power button on a stereo will turn 
on the machine if it is off and will turn it off if it is already 
on. Thus the effect model may contain a number of 
different conditional effects, each one an effect the action 
has given a particular set of preconditions.

The system is responsible for deducing the set of 
preconditions that produce each conditional effect from 
different action observations. While learning, it is likely 
there will not be enough information to uniquely establish 
a set of preconditions for a given effect. To represent this
uncertainty, the preconditions are stored in a version space
(Mitchell 1977) that maintains sets of preconditions 
describing the most specific and general possible 
preconditions proven. This makes explicit both the known 
restrictions on what the preconditions may be as well as the 
remaining uncertainty at any point during learning. 

Linguistic Knowledge 
The intelligent tutoring system needs to be able to explain 
the task to students and the reasons behind decisions the 
system makes. For this communication to take place, the 
system needs to be able to describe the procedure and its 
components (steps, goals, ordering constraints and causal 
links). Diligent currently learns text fragments for the 
various elements of its ontology; these can be used with 
domain independent text templates to support natural 
language generation in the intelligent tutoring system. In 
the future, we plan to support the acquisition of more 
structured linguistic knowledge to support more 
sophisticated natural language generation techniques. 

How Diligent Learns this Knowledge 
Diligent, the learning module that we have developed and 
integrated into STEVE, begins learning about a procedure 
through a process of programming by demonstration 
(Cypher 1993). The human instructor issues a command 
for Diligent to observe his actions, and then performs the 
procedure by taking actions in the virtual environment. 
During this demonstration, Diligent receives action 
observation messages from the simulator, processing them 
to create operators and stores the list of actions as a 
demonstration. 

Diligent records actions as a human instructor executes 
each step in the task being learned, noting the state of the 
simulated environment before and after each action. For 
each action observed, an operator is created to model the 
effects of the action; each step in the task is recorded as an 
instance of an operator with a particular effect.

By the time the task is complete, Diligent has learned a 
series of steps that can be used to perform the task. This is 

the first portion of the procedure in our ontology. To 
establish the end goals of the task, the second part of our 
procedure representation, Diligent uses the cumulative 
effect of the steps on the environment. The instructor is 
then allowed to review this list and remove goals that are 
merely side effects of the procedure.

At this point, Diligent could derive the ordering 
constraints and causal links from its operator models, but 
there would most likely be errors. For the most part, during 
a demonstration Diligent only sees an action taken under 
one set of circumstances. To refine the operators’ models 
of actions’ effects, the system needs to see the actions 
performed under different circumstances. To produce 
action observations with different preconditions than seen 
during the instructor’s demonstration, Diligent experiments
with the task in the simulated world. 

These experiments are conducted by repeating the 
procedure once for each step in the original demonstration. 
Each time through, Diligent omits a different step to see 
how the absence of that step affects subsequent steps. 
These experiments are a relatively focused way for 
Diligent to learn on its own with a minimal amount of 
background knowledge of the task and environment.

Learning is performed by refining the preconditions of 
operators associated with each action. A modified version 
space maintains bounds representing the most specific and 
most general combinations of preconditions possible for 
that operator. The state of the world before each action the 
agent takes, and the changes that occur afterwards, are used 
to create new operators and update old ones. Successful 
applications of old operators under new conditions can be 
used to broaden the most specific representation of the 
operator’s preconditions. Conversely, actions that fail to 
replicate the changes of an old operator may be useful in 
narrowing down the most general set of preconditions for 
an operator. 

Ideally, these two bounds will meet to define the exact 
preconditions of an operator. However, even after 
experiments with a task are complete, it is likely that the 
general and specific sets of preconditions for each operator
will not have met. Many facets of the environment will not 
change at all during experiments with the demonstration, 
making it unclear how they relate to the steps in the task 
being learned. For this reason, Diligent maintains a third 
set of preconditions, known as the heuristic set. This 
heuristic set is bounded by the general and specific sets and 
focuses on preconditions whose states change during the 
execution of the step or during the execution of a previous 
step in the task.

This set represents Diligent’s assumption that the 
ordering of steps in a demonstration has significance. The 
agent assumes that the instructor has a reason for 
performing each step at a particular point – that effects of 
earlier actions are likely to be preconditions for later 
actions. This set gives Diligent a useful piece of knowledge 
from which to derive ordering constraints and causal links. 
Thus the heuristic set does not speed the learning of a 
proven set of preconditions, but improves the quality of a 



 

 
  

 
  

 

 
  

 

  

 
 

 
    

 
  

   

 

  

 

 
 

 
 

 
 

 
 

 

    
 

  
 

 
 

 
 

  
 

  
 

 
 

 
 

 
 

      

   
 

 
 

  
 

 
 

   
  

 

  
 

  
  

 
 

 

speedily examined set of precondtions. (For a complete 
discussion of how Diligent uses demonstration and 
experimentation to learn procedural knowledge see Angros 
1997, 2000.)

After the system has finished experimenting, it can use 
its refined operators to generate a more accurate model of 
the causal links and ordering constraints between steps in 
the procedure. The instructor can review the knowledge 
Diligent has acquired for STEVE by either examining a 
graph of the procedure representation produced or by
allowing STEVE to demonstrate its understanding of the 
task by trying to teach it back to the instructor. During this 
review, the instructor can use GUIs to refine the partial 
order plan produced by Diligent by adding or removing 
steps, ordering constraints, and causal links. Such 
modifications may be necessary if Diligent did not execute 
an action in a wide enough variety of circumstances to 
fully learn the preconditions of its effects. 

Future Work 
Although Diligent integrates programming by

demonstration, autonomous experimentation, and direct 
instruction, they are not completely interchangeable. It is 
expected that portions of the knowledge acquisition will be
performed by specific methods. These methods build 
specific support for the knowledge acquired. Because other 
methods used to acquire the same knowledge may not 
build up the same supporting information, it can be 
difficult to meaningfully integrate the knowledge from 
different sources. In particular, Diligent has a limited 
ability to accept instruction and to mix this form of 
learning with the observations that take place during the 
demonstration and experimentation. Current work is aimed 
at making Diligent more flexible, allowing the three 
methods to be used in any combination at any time. 
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