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Abstract. To study how robots can work better with humans as a team, 
we have designed an agent-based online testbed that supports virtual 
simulation of domain-independent human-robot interaction. The simu-
lation is implemented as an online game where humans and virtual robots 
work together in simulated scenarios. This testbed allows researchers to 
carry out human-robot interaction studies and gain better understanding 
of, for example, how a robot’s communication can improve human-robot 
team performance by fostering better trust relationships among humans 
and their robot teammates. In this paper, we discuss the requirements, 
challenges and the design of such human-robot simulation. We illustrate 
its operation with an example human-robot joint reconnaissance task. 

Keywords: Human robot interaction · Intelligent virtual agent · Social 
simulation 

1 Introduction 

Robots have become increasingly prevalent and no doubt will become an integral 
part of future human society. From factory robotic arms, to expressive humanoids, 
robots have evolved from machines operated by humans to autonomous intelli-
gent entities that operate with humans. As robots gain complexity and auton-
omy, it is important yet increasingly challenging for humans to understand their 
decision process. Research has shown that people will more accurately trust an 
autonomous system, such as a robot, if they have a more accurate understanding 
of its decision-making process [21]. Trust is a critical element to how humans and 
robots perform together [22]. For example, if robots are more suited than humans 
for a certain task, then we want the humans to trust the robots to perform that 
task. If the robots are less suited, then we want the humans to appropriately 
gauge the robots’ ability and have people perform the task manually. Failure to 
do so results in disuse of robots in the former case and misuse in the latter [28]. 
Real-world case studies and laboratory experiments show that failures in both 
cases are common [22]. 
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Successful human-robot interaction (HRI) therefore relies on the robot’s abil-
ity to make its decision-making process transparent to the people it works with. 
However, while hand-crafted explanations have been effective in providing such 
transparency [10], we are interested here in pursuing a more general approach to 
explanation that can be reused across domains. As a first step toward that goal, 
we need an experimental testbed that will allow us to quantify the effectiveness 
of different explanation algorithms in terms of their ability to make a robot’s 
decision-making process transparent to humans. 

There are several challenges and requirements in the design and implemen-
tation of such a testbed. The first challenge is how to model a HRI scenario that 
facilitates the research of robot communication. Section 2 surveys the literature 
on HRI simulations, and Sect. 3 presents the requirements that we extracted from 
that survey with respect to studying human-robot trust relationships. A second 
challenge for such a simulation is the generation of the autonomous behaviors 
of the robots within that scenario. The robot’s decision-making must account 
for the complex planning, noisy sensors, faulty effectors, etc. that complicate 
even single-robot execution and that are often the root of trust failures in HRI. 
Section 4 describes how we use a multiagent social simulation framework, Psy-
chSim [24,31], as the agent-based platform for our testbed. Importantly for our 
purposes, PsychSim includes sensitivity analysis algorithms for explanations [30] 
that are based in a general decision-theoretic agent framework [16]. 

The resulting virtual simulation thus provides an experimental testbed that 
allows researchers to carry out online human-subject studies and gain better 
understanding of how a robot’s communication can improve human-robot team 
performance by fostering better trust relationships among humans and their 
robot teammates. In this paper, we discuss the design decisions in the imple-
mentation of the agent-based online testbed that supports virtual simulation of 
domain-independent HRI. 

2 Related Work 

There is a large body of work on simulating HRI. In the review presented here, 
we take the perspective of the needs of a testbed specifically for studying human-
robot trust. Many HRI simulations seek a high-fidelity re-creation of the physical 
capabilities of a robot and the physical environment it operates in. For example, 
Gazebo Player is a 3D simulation framework that contains several models of 
real robots with a variety of sensors (e.g., camera, laser scanner) [19]. Although 
this framework supports various kinds of dynamic interaction, dynamic objects 
(especially humans) are not integrated in the framework. Another high-fidelity 
simulation environment, USARSim, models urban search-and-rescue robots to 
provide a research tool for the study of HRI and multirobot coordination [23]. 
USARSim includes realistic simulations of the physical environment and the 
physical robots, focusing on tasks like maneuvering through rubble, fallen build-
ings, etc. 

While simulation of physical interaction is important for HRI, the emphasis 
of our human-robot trust testbed is more on the social interaction. Thus for the 



230 N. Wang et al. 

time being, we instead focus on simulations that use lower-fidelity models of the 
physical environment, and use an agent-based simulation to highlight the robot’s 
decision-making challenges (e.g., planning, coordination). For example, Military 
Operations in Urban Terrain (MOUT) have been modeled within multiagent 
simulations that capture both team coordination and HRI [11]. However, these 
particular agents generate the behavior for both the robots and the humans. 
While such a simulation can provide useful insight into the impact of different 
coordination strategies on team performance, we instead need an interactive 
simulation to gather behavior data from human participants. 

A variety of interactive simulations have modeled scenarios in which people 
work with a simulated robot subordinate. One environment used the ADAPT 
framework [37] to build a simulated marketplace, which a semi-autonomous 
robot navigates based on multimodal directions from human soldiers [6]. The 
Mixed Initiative eXperimental (MIX) testbed [1] supported a simulation of a 
generic military crew station to study the differential impact of autonomous 
systems that are teleoperated, semi-autonomous, or adaptive between the two 
[8]. Human operators worked with unmanned vehicles under their direction to 
perform reconnaissance tasks in a hostile environment. This testbed has been 
successful in measuring the impact of the level of the robot’s autonomy on the 
cognitive load and, in turn, task performance of those operators. 

The cooperative nature of this joint reconnaissance task and the comple-
mentary responsibilities of humans and robots represent two critical features for 
our human-robot trust scenario. However, we first need to adapt the task to 
move the robots away from being directly supervised by a human operator and 
instead give them full autonomy. In other words, we wish to elevate the robot 
to the status of teammate, rather than subordinate. By removing the human 
from the supervisory role, we allow for the possibility for both misuse and disuse 
of the robot, which is critical in being able to induce trust failures. 

Fully autonomous robots have shared a simulated space with people in sce-
narios like emergency response [34], assisted living [3], and joint cooking tasks 
[39]. The platforms used for these scenarios, like SIGVerse [39] and  the HRI  
extension of SimVis3D [14], do provide an environment for creating simulations 
of joint tasks between people and autonomous robots where we could induce 
the needed trust failures. However, to systematically vary the robot’s domain-
level and communication-level capabilities, we also require an underlying agent 
platform on which we can explore general-purpose algorithms for both decision-
making and explanation generation. 

HRI Design 

The examination of relevant HRI simulations with respect to the needs of trust 
exercises leads to the following list of requirements for our testbed: 

1. The simulation should encourage the human and the robot to work together as 
a team (as in [6,8,11]). The mission should require joint effort, so that neither 

3 
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the person nor the robot can achieve the objective by working in isolation. 
We thus design a joint reconnaissance mission, where the robot scouts out 
potential dangers to its human teammates, who are responsible for conducting 
a detailed search to locate a hostage and gather other important intelligence. 
Thus, the robot cannot achieve the search objective itself, while the human 
teammates run the risk of being harmed if they ignore the robot’s scouting 
reports. 

2. The simulation should encourage people to work along-side the robot, instead 
of just being its tele-operators (as in real-world scenarios like bomb disposal 
or disaster response, or in simulated scenarios [6,8]). This means that, in the 
scenario, the robot should be able to complete its tasks fully autonomously 
without the human teammate’s input. The human teammate is not required 
to monitor the robot’s progress and give commands to the robot on what to 
do next at every step. 

3. With the robot’s being capable of acting without supervision, we must also 
assign the humans their own tasks; otherwise, they may revert to passively 
monitoring the robot’s actions. Thus, we designed the simulation so that the 
human is also moving through the simulated environment, instead of being a 
stationary observer/operator of the robot. Surveys have shown that one role 
that robot teammates might be expected to play is that of a reconnaissance 
scout, on the lookout for potential threats to their human teammates [38]. 
We therefore designed our task so that the robot serves as exactly such an 
advanced scout to sniff out danger, as its human teammates follow up with 
their own reconnaissance tasks (e.g., searching buildings to locate a hostage). 
By placing a time limit on completing the joint mission, we incentivize the 
human (and the robot) to continually pursue their own tasks in parallel. 

4. The simulation should encourage communication between humans and the 
robot, so that the robot can take an active role in establishing trust. To 
achieve this goal, we took away the interface elements that would provide 
users with constant situational awareness about the environment and the 
robots. For example, after the robot scouts a building, we could simply mark 
the building on the map as red or green to signal whether it is safe or unsafe for 
human teammates to enter. However, this would take away the opportunity 
for the robot to directly communicate with its teammates. Similarly, we could 
directly show the human team members the robot’s “raw” sensor readings, 
but again, this would take away an opportunity for the robot to explain 
its decisions based on those readings (not to mention potentially creating 
cognitive overload for the humans). Instead, the human teammates receive 
information (e.g., assessments, explanations) from the robot only when it 
actively communicates to them. 

5. The task performed by the human and the robot in the simulation should 
introduce sources of distrust (e.g. robot malfunction, uncertainty in the envi-
ronment, etc.). While people may occasionally distrust even a robot that 
never makes a mistake, we would rather ensure the occurrence of mistakes 
that threaten the trust relationship. Controlling these potential trust fail-
ures gives us a better opportunity to research ways to use explanation to 
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(re)establish trust. We therefore design the robot so that it will not have 
perfect knowledge of the environment and add variable limitations to the 
robot’s sensors (e.g., varying error rates in its detection of dangerous chem-
icals). Studies have shown that the frequency and significance of errors can 
greatly impact user trust in an online system (e.g., a series of small mistakes 
is worse than one big one [7]). We therefore expect that controlling the error 
dimensions will be essential in isolating these trust failures and identifying 
the best explanation algorithms for repairing them. 

6. While surveys can provide insight into the human-robot trust relationship, 
we also want more objective measures of trust in the form of behavioral 
data. Prior studies have used the “take-over” and “hand-over” behavior a 
human supervisor does to a robot worker (e.g. takes over a task the robot is 
currently performing and does it by himself instead) as a measure of the trust 
or distrust he had in the robot [41]. We follow a similar model in constructing 
our scenario to include behavioral indicators of disuse and misuse deriving 
from lack of trust and too much trust, respectively, in the robot. For example, 
if the human teammate follows the robot’s recommendation (e.g., avoids going 
into a building that the robot said was unsafe), this behavior would be an 
objective indicator of trust. In contrast, we might infer a lack of trust if the 
human asks the robot to re-search an area that the robot has already searched. 
Additionally, our user interface allows the human to choose to directly view 
the camera feed of the robot. Using this function can be an indication that 
the human teammates wishes to oversee the robot’s behavior and thus, a lack 
of trust. 

7. To ensure that the human teammate’s behavior can be indicative of his trust 
in the robot (e.g., following the robot’s recommendation), the robot’s mis-
takes (e.g., incorrectly identifying a building as safe) should have an inherent 
cost to its human teammates. Otherwise, there will be no reason for the 
human teammates to not act based on the robot’s communication. Studies 
have shown that people will follow the requests of even an incompetent robot 
if the negative consequences are somewhat trivial [36]. We therefore design 
our game so that inappropriate trust of the robot can potentially lead to 
failure to complete the mission and to even “death” of the player. 

Agent-Based Simulation of HRI 

To meet these requirements, we have implemented an agent-based online testbed 
that supports virtual simulation of domain-independent HRI. Our agent frame-
work, PsychSim [24,31], combines two established agent technologies—decision-
theoretic planning [16] and recursive modeling [12]. Decision-theoretic planning 
provides an agent with quantitative utility calculations that allow agents to 
assess tradeoffs between alternative decisions under uncertainty. Recursive mod-
eling gives the agents a theory of mind [40], allowing them to form beliefs about 
the human users’ preferences, factor those preferences into the agent’s own deci-
sions, and update its beliefs in response to observations of the user’s decisions. 
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The combination of decision theory and theory of mind within a PsychSim agent 
has proven to be very rich for modeling human decision-making across a wide 
variety of social and psychological phenomena [32]. This modeling richness has in 
turn enabled PsychSim agents to operate in a variety of human-agent interaction 
scenarios [15,17,18,26,27]. 

PsychSim agents generate their beliefs and behaviors by solving partially 
observable Markov decision problems (POMDPs) [9,16]. The POMDP model’s 
quantitative transition probabilities, observation probabilities, and reward func-
tions are a natural fit for our application domain, and they have proven suc-
cessful in both robot navigation [4,20] and  HRI [29]. In our own work, we have 
used POMDPs to implement agents that acted as 24/7 personal assistants that 
teamed with researchers to handle a variety of their daily tasks [5,33]. In precise 
terms, a POMDP is a tuple, �S, A, T, Ω, O, R�, that we describe in terms of our 
human-robot team. 

The state, S, consists of objective facts about the world, some of which may 
be hidden from the robot itself. By using a factored state representation [2,13], 
the model maintains separate labels and values of each feature of the state, such 
as the separate locations of the robot, its human teammate, the hostage, and the 
dangerous chemicals. The state also includes feature-value pairs that represent 
the respective health levels of the teammate and hostage, any current commands 
from the teammate, and the accumulated time cost so far. Again, while this state 
represents the true value of all of these features, the robot cannot directly access 
this true state. 

The robot’s available actions, A, correspond to the possible decisions it can 
make. Given its search mission, the robot’s primary decision is where to move to 
next. We divide the environment into a set of discrete waypoints, so the robot’s 
action set includes potentially moving to any of them. The robot also makes 
a decision as to whether to declare a location as safe or unsafe for its human 
teammate. For example, if the robot believes that dangerous chemicals are at its 
current location, then it will want its teammate to take adequate preparations 
before entering. Because there is a time cost to such preparations, the robot 
may instead decide to declare the location safe, so that its teammates can more 
quickly complete their own reconnaissance tasks in the building. 

The state of the world changes in response to the actions performed by the 
robot. We model these dynamics using a transition probability, T function that 
captures the possibly uncertain effects of these actions on the subsequent state. 
We simplify the robot’s navigation task by assuming that a decision to move 
to a specific waypoint succeeds deterministically. However, we could relax this 
assumption to decrease the robot’s movement ability, as is done in more realistic 
robot navigation models [4,20]. The robot’s recommendation decision affects the 
health of its teammate and the hostage, although only stochastically, as there 
is no guarantee that the teammate will follow the recommendation. Instead, a 
recommendation that a building is safe (unsafe) has a high (low) probability of 
decreasing the teammate’s health if there are, in fact, chemicals present. 

As already mentioned, the robot and human teammate have only indirect 
information about the true state of the world. Within the POMDP model, this 
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information comes through a subset of possible observations, Ω, that are prob-
abilistically dependent (through the observation function, O) on the true values 
of the corresponding state features. We make some simplifying assumptions, 
namely that the robot can observe the location of itself and its teammate with 
no error (e.g., via GPS). 

However, it cannot directly observe the locations of the hostage or dangerous 
chemicals. Instead, it receives a local reading about their presence (or absence) 
at its current location. For example, if dangerous chemicals are present, then the 
robot’s chemical sensor will detect them with a high probability. However, there 
is also a lower, but nonzero, probability that the sensor will not detect them. In 
addition to such a false negative, there is also a potential false positive reading, 
where there is a low, but nonzero, probability that it will detect chemicals even 
if there are none present. 

Partial observability gives the robot only a subjective view of the world, 
where it forms beliefs about what it thinks is the state of the world, computed via 
standard POMDP state estimation algorithms. For example, the robot’s beliefs 
include its subjective view on the location of the hostage, potentially capturing 
statements like: “There is an 80 % probability that the hostage is being held 
at my current location.” or “If you visit this waypoint, there is a 60 % chance 
that you will be exposed to dangerous chemicals.” By varying the accuracy of 
the robot’s observation models, we will decrease the accuracy of its beliefs and, 
subsequently, its recommendations to its human teammates. 

On the other hand, the structured dependency structure of the observation 
function gives the robot explicit knowledge of the uncertainty in its own observa-
tions. It can thus communicate its noisy sensor model to its human teammates, 
potentially making statements like, “My chemical sensor has a 20 % chance of 
generating a false negative.” Therefore, even though a less capable robot’s rec-
ommendations may be less reliable to its teammate, the robot will be able to 
explicitly explain that inaccuracy in a way that mitigates the impact to the trust 
relationship. 

PsychSim’s POMDP framework instantiates the human-robot team’s mission 
objectives as a reward, R, that maps the state of the world into a real-valued 
evaluation of benefit for the agent. The highest reward is earned in states where 
the hostage is rescued and all buildings have been explored by the human team-
mate. This reward component incentivizes the robot to pursue the overall mission 
objective. There is also an increasingly positive reward associated with level of 
the human teammate’s health. This reward component punishes the robot if it 
fails to warn its teammate of dangerous buildings. Finally, there is a negative 
reward that increases with the time cost of the current state. This motivates 
the robot to complete the mission as quickly as possible. By providing different 
weights to these goals, we can change the priorities that the robot assigns to 
them. For example, by lowering the weight of the teammate’s health reward, 
the robot may allow its teammate to search waypoints that are potentially dan-
gerous, in the hope of finding the hostage sooner. Alternatively, lowering the 
weight on the time cost reward might motivate the robot to wait until being 
almost certain of a building’s threat level (e.g., by repeated observations) before 
recommending that its teammate visit anywhere. 
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The robot can arrive at such policies based on its POMDP model of the 
world by determining the optimal action based on its current beliefs about the 
state of the world [16]. Rather than perform an offline computation of a complete 
optimal policy over all possible beliefs, we instead take an online approach so 
that the robot makes optimal decisions with respect to only its current beliefs 
[35]. The robot uses a bounded lookahead procedure that seeks to maximize 
expected reward by simulating the dynamics of the world from its current belief 
state. In particular, the robot first uses the transition function to project the 
immediate effect of a candidate action, and then projects a finite number of steps 
into the future, weighing each state against its reward function. Following such 
an online algorithm, the robot can thus choose the optimal action with respect 
to its current beliefs. 

On top of this POMDP layer, PsychSim provides a suite of algorithms that 
are useful for studying domain-independent explanation. By exploring variations 
of these algorithms within PsychSim’s scenario-independent language, we ensure 
that the results can be re-used by other researchers studying other HRI domains, 
especially those using POMDP-based agents or robots. To begin with, Psych-
Sim agents provide support for transparent reasoning that is a requirement for 
our testbed. PsychSim’s original purpose was human-in-the-loop social simula-
tion. To identify and repair errors in a social-simulation model, the human user 
must be able to understand the POMDP reasoning process that the agents went 
through in generating their simulation behavior. In other words, the agents’ rea-
soning must be transparent to the user. To this end, PsychSim’s interface made 
the agent’s reasoning process available to the user, in the form of a branching 
tree representing its expected value calculation. The user could expand branches 
as needed to drill down into the agent’s considerations across possible decisions 
and outcomes. 

This tree provided a maximum amount of transparency, but it also pro-
vided a high volume of data, often obscuring the most salient features from the 
analyst. Therefore, PsychSim imposes a piecewise linear structure on the under-
lying agent models that allows it to quantify the degree to which state features, 
observations, and goals are salient to a given decision [30]. PsychSim exploits 
this capability to augment the agent’s reasoning trace by highlighting points of 
possible interest to the user. For example, the interface can identify the belief 
that the decision is most sensitive to (e.g., quantifying how saving time along 
a particular route outweighs the increased threat level). We have some anecdo-
tal evidence that the identification of such critical points was useful in previous 
applications like human-in-the-loop modeling and tutor recommendations. 

In this work, we apply this capability to the robot’s explanations to its human 
teammate. In explaining its recommendation that a certain building is safe, the 
robot can use this sensitivity analysis to decide whether the most salient reward 
component is the minimization of time cost or the maximization of teammate 
health. It can then easily map the identified motivation into natural-language 
expression. Similarly, it can use its lookahead process to generate a natural-
language expression of the anticipated consequences to its teammates who violate 
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its recommendation—e.g., “If you visit this location, you will be exposed to the 
toxic chemicals that are here, and your health will suffer.” By implementing 
robots that use different explanations of its decision-making process, we can 
quantify the differential impact that they have on human-robot trust and team 
performance. 

Discussion 

During the design process of an interactive simulation, there is a delicate bal-
ance between simulation and game. We learned to maintain this balance to make 
sure that the simulation serves our purpose of a testbed for studying human-
robot trust. For example, we leave out common game elements like scoring, 
using mission success/failure as a performance indicator. This encourages the 
human teammate to focus on the mission with the robot, instead of trying to 
maximize a score that’s indicative of his personal performance. We also omitted 
the usual game elements that help game players’ situational awareness, but dis-
courage communication between players and robot, as we observed in our early 
playtesting. 

Our immediate next step is to use the testbed to gather data on how a 
robot’s explanations of its decision process impact human-robot trust and team 
performance. The explanations are currently provided by the robot during the 
mission. We are planning to extend the robot’s explanation to continue after the 
mission is completed. This offers the robot an opportunity to “repair” the trust 
relationship with its teammate, particularly when the mission ends in failure. 

The current robot only interacts with people who are its teammates. However, 
robots in the real world will often have to interact with people who do not share 
its same mission objective. A future variation of our scenario can include, for 
example, civilian bystanders in the town where the mission is carried out. The 
relationships between the robot and people in these different roles will call for 
different explanation strategies used by the robot. For example, the robot may 
not want to offer explanations of its decisions to civilians in order to maintain 
social distance and relative power. The need to maintain social distance will likely 
engender additional considerations of communication tactics like politeness. 

Finally, we are exploring the transition of the scenario from a simulated robot 
to a physical one. Compared to virtual simulations, teaming up with a physical 
robot that operates in the same space as a human can potentially increase the 
stakes of trusting the robot. Additionally, we expect this physical testbed to 
elevate certain dimensions (e.g., robot embodiment) in importance, as well as 
providing a higher-fidelity testbed for studying the factors that impact human-
robot trust. 
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