
ICT Technical Report: ICT-TR-02-2009

Compact Representation of Reflectance Fields using Clustered Sparse
Residual Factorization

Hideshi Yamada∗ Pieter Peers† Paul Debevec†

Sony Corporation∗ University of Southern California†

Institute for Creative Technologies

Abstract

We present a novel compression method for fixed viewpoint re-
flectance fields, captured for example by a Light Stage. Our com-
pressed representation consists of aglobal approximation that ex-
ploits the similarities between the reflectance functions of different
pixels, and alocal approximation that encodes the per-pixel resid-
ual with the global approximation. Key to our method is a clustered
sparse residual factorization. This sparse residual factorization en-
sures that the per-pixel residual matrix is as sparse as possible, en-
abling a compact local approximation. Finally, we demonstrate that
the presented compact representation is well suited for high-quality
real-time rendering.

1 Introduction

Image-based relighting enables creating detailed relit images of a
scene under arbitrary distant illumination [Debevec et al. 2000].
The light transport through a scene is described by areflectance
field, and is captured during the data acquisition phase. Under the
assumption that the viewpoint is fixed, and the incident illumina-
tion is restricted to distant illumination only, this reflectance field is
a 4D function: parameterized over 2D outgoing illumination direc-
tions (i.e., camera pixels), and 2D incident illumination directions
(i.e., number of light sources on the Light Stage). Computing a re-
lit image consists of taking an inner product between the incident
illumination and each pixel’s reflectance function.

Image-based relighting owes its popularity to its simple, yet effec-
tive, nature. Lighting conditions can be changed at any time after
acquisition yielding photo-realistic results. Compared to a full light
transport simulation this requires relatively little computation, that
can be done at nearly interactive rates. Complex light transport
effects are essentially obtained for free with image-based relight-
ing. Due an increased interest in image-based relighting, the desire
for higher resolution reflectance fields (in both camera as lighting
space) has grown. This also increases storage and computational
requirements. Transmission and relighting speeds are becoming a
limiting factor when using these high resolution reflectance fields.

In this paper we describe and investigate a novel compression
method that is able to reduce the storage requirements by utiliz-
ing a different factorization method. In addition to reducing stor-
age requirements, our method similarly reduces the time required
to compute a relit image. Key to our method is asparse residual
factorization. This method is able to separate a collection of re-
flectance functions into a few basis functions, and at the same time
ensures that the difference between each reflectance function ex-
pressed in the new basis and the original reflectance function con-
tains as much as possible elements of (near) zero magnitude (i.e.,
has a sparse residual). Similar to [Sloan et al. 2003] we use a clus-
tered approach using our sparse residual factorization to obtain a
global approximation of the reflectance field. The per-pixel resid-
ual is afterwards compressed by keeping then largest elements.

This paper makes the following contributions:

∗Work performed while visiting USC/ICT in 2007

• A factorization method that minimizes the sparseness of the
residual of the factorization.

• A new technique for representing reflectance fields that attains
good compression ratios for both lossless and lossy compres-
sion.

• A relighting system that runs at interactive speeds on a CPU-
only implementation, and at real-time speeds on consumer
graphics hardware.

This paper is organized as follows. Section 2 overviews related
work. In Section 3, the different key components of the pre-
sented compression method are detailed: sparse residual factor-
ization (Section 3.2), clustered factorization (Section 3.3), and the
compression of the residual (Section 3.4). Next, we discuss our
real-time system in Section 4, followed by a discussion of the ob-
tained results in Section 5. Finally, Section 6 concludes this paper
with some thoughts on avenues for future research.

2 Related Work

We overview work related to the methods presented in this paper:
factorization, precomputed radiance transfer, and the compression
of reflectance fields.

Factorization. Matrix factorization has been used before for com-
pactly representing high dimensional datasets. Different tech-
niques such as principal component analysis (PCA) [Kautz and
McCool 1999; Furukawa et al. 2002; Vasilescu and Terzopoulos
2004], homomorphic factorization [Latta and Kolb 2002; Suykens
et al. 2003], independent component analysis (ICA) [Tsumura et al.
2003], non-negative matrix factorization (NMF) [Lawrence et al.
2004; Peers et al. 2006], clustered PCA [Sloan et al. 2003], and
sparse alternating constraint least squares (SACLS) [Lawrence et al.
2006] have been successfully applied to various problems in com-
puter graphics. The presented method is most similar to Sloanet
al. [Sloan et al. 2003] and Lawrenceet al. [Lawrence et al. 2006].
As in Sloanet al., we also use a clustered approach, but using a
different factorization method. Similar to Lawrenceet al., we also
enforce sparsity. However, the difference is that we enforce sparsity
on the residual, while they enforce sparsity on one of the factors.
Additionally, we use a different sparseness constraint.

Precomputed Radiance Transfer. Precomputed radiance trans-
fer is related to this paper in the sense that one of its goals is to
compactly represent the light transport through a virtual scene such
that it can be rendered at interactive rates using graphics hardware.
Although the presented method is specifically geared towards com-
pressing reflectance fields for image-based relighting, it is still very
related to precomputed radiance transfer. A large number of pre-
computed radiance transfer systems first represent the light trans-
port in a spherical harmonics basis [Sloan et al. 2002; Lehtinen and
Kautz 2003] which is well suited to express the low-frequency con-
tent in the transport matrix. High-frequency content, however, is
omitted or filtered out. Our acquired reflectance fields can contain
both low and high-frequency content. All-frequency precomputed
radiance transfer methods [Ng et al. 2003; Ng et al. 2004; Wang

1



ICT Technical Report: ICT-TR-02-2009

et al. 2004a] use sophisticated compression methods such as non-
linear wavelet approximations. In general, these methods do not
exploit the similarities between surface points/BRDFs/pixels.

Compression of Reflectance Fields.Compression of reflectance
fields has been addressed in a number of separate publications.

Debevecet al. [Debevec et al. 2000] briefly mention that by com-
pressing the incident illumination and the reflectance functions us-
ing JPEG compression, computational costs and storage require-
ments are reduced by a factor 20. However, no detailed statistics
are provided. Masseluset al. [Masselus et al. 2004] study the up-
sampling and compression of reflectance functions in detail. They
apply a non-linear wavelet approximation of each reflectance func-
tion separately using different kinds of wavelets. A 1 : 34 compres-
sion ratio is reported yielding only a 1% error on the reflectance
functions itself. However, due to the lack of high resolution re-
flectance functions, these results were obtained on upsampled re-
flectance functions (from 1280 samples to 256×64 samples). The
effect of this upsampling has not been investigated in detail. Both
of the previous methods focus on compressing the reflectance field
in the incident illumination domain.

Einarssonet al. [Einarsson et al. 2006] compressed the reflectance
field in image-space, arguing that due to their very low incident
illumination resolution, it is more optimal to exploit the spatial co-
herency. A 1 : 16 compression ratio is reported for both JPEG and
a wavelet based compression (using the Daubechies D4 wavelet).
In the first case, the linear radiance images are compacted into 8
bits using a gamma-correction. Due to this non-linear storage, each
of the JPEG images needs to be decompressed before a relit image
can be computed. This results in a slight increase in computational
cost.

Wong and Leung [Wong and Leung 2003] use a spherical harmon-
ics representation of the reflectance functions. Inter-pixel relations
are exploited using an image-space wavelet compression. Although
this method attains good compression ratios, the use of spherical
harmonics (25 coefficients) severely limits the ability to represent
specular reflections accurately. Leunget al. [Leung et al. 2006] ar-
gue that radial basis functions are a better choice for compressing
reflectance fields. Their analysis shows that the quality is slightly
less than using spherical harmonics. Again, accurately compress-
ing reflectance functions containing high frequency content is dif-
ficult. Wanget al. [Wang et al. 2004b] follow a similar approach,
except that they represent the reflectance functions using spherical
wavelets. For low compression ratios, their method is superior to
using spherical harmonics and radial basis functions. However, at
high compression ratios spherical harmonics yield less error.

Finally, Ho et al. [Ho et al. 2005] use a factorization method to
attain storage reduction. A principal component analysis is per-
formed on 16×16 image blocks. The subdivision in blocks ensures
that the computations are tractable and help to better exploit spatial
coherence. The obtained eigen-images are further compressed us-
ing the discrete cosine transform. The authors report compression
ratios between 1 : 100 and 1 : 500. However, since only a low num-
ber of principal components are kept (between 5 and 10), it is not
clear if this method is suited for reflectance functions with both low
and high frequency content.

Unlike our technique, none of these methods exploit both spatial
and incident illumination coherency for improving both compres-
sionandall-frequency relighting computations.

3 Compact Representation

In this section we derive the necessary theory for our compact fac-
tored representation. First a general overview is given, followed by
a detailed study and derivation of the sparse residual factorization
algorithm that lies at the core of our representation. Next, the clus-
tering algorithm is described, followed by a short description of the
residual compression method.

In this paper we will use the following notations: Scalars are de-
noted as: s, a vector as:v, and a matrix as:A. Functions are
denoted as:function(...). The i-th element of a vectorv is denoted
by vi . The element on thek-th column, andl-th row of a matrixA
is denoted byA l,k. The vector given by thel-th row a of matrix is
denoted by:A l .

3.1 Overview

Similarly to [Sloan et al. 2003], we create a global approximation of
the reflectance field using a clustered factorization (Subsection 3.3):

Rp,i ≈
terms

∑
t

Wp,tF
c(p)
t,i , (1)

whereR represents the reflectance field,p goes overn camera pix-
els, andi goes overm incident light directions.Fc(p) is a matrix
containing the basis functions for the clusterc(p), and is parame-
terized over termst and incident light directionsi. W is a matrix
that contains for each pixelp the weights corresponding to the basis
Fc(p), and is parameterized over pixelsp, and termst.

For many general reflectance fields this global approximation will
almost never be exact, unless a prohibitively large number of clus-
ters and terms is used. In particular, specular reflections and shad-
ows can pose problems. These effects are localized, and thus re-
quire very small clusters or many terms (approximately one per
camera pixel) to be represented accurately. Due to this local char-
acter, a better solution is to encode these effects locally per pixel.
This can be done by storing the (partial) residual of each pixel. The
residualE of a reflectance function is the difference between its
approximation and the original reflectance function:

Rp,i =
terms

∑
t

(
Wp,tF

c(p)
t,i

)
+Ep,i . (2)

From this equation, it is clear that the dimensionality of the residual
E is the same as the full reflectance fieldR. As such, this global-
local separation will not necessarily lead to a compact representa-
tion. Crucial for obtaining a reduction in storage requirements is
that this residual is easily compressible using, for example, a non-
linear approximation. To achieve a good non-linear approximation,
the residual should contain many zero (or insignificant) elements.
To ensure this, we develop a novel factorization method that ensures
that the residual is as sparse as possible.

In many cases, it is required that the residual is sparse in a specific
basis, such as a wavelet of a spherical harmonics basis. Transform-
ing both sides of equation (2) in a basisψ, we obtain:

(Rψ)p,i =
terms

∑
t

(
Wp,t(Fc(p)ψ)t,i

)
+(Eψ)p,i . (3)

Rψ is the original reflectance field expressed in the basisψ. Like-
wise,Fc(p)ψ is the projection of each basisFc(p) into the basisψ,
andEψ is the projection of the residual matrixE. From this equa-
tion it is clear that by factorizing the reflectance field expressed in
the desired basisRψ, the resulting residual is also expressed in this
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Figure 1: Illustration of the difference between theℓ1-norm and
theℓ2-norm. Left: Eight measurements are shown as dots through
which the optimal vertical line is fitted to minimize the error with
respect to theℓ2-norm (red) and theℓ1-norm (blue). The error
function is obviously sparser (i.e., yields a zero error at many mea-
surements) for theℓ1-norm than for theℓ2-norm. Right: the error
functions plots. Theℓ1-norm reaches its minimum at0, while the
ℓ2-norm reaches its minimum at0.25.

basis, and thus enforcing sparseness of the residual on the factor-
ization of the transformed reflectance field, yields a residual that is
sparse in the desired basis.

Because the basis transformation can be applied beforehand to the
reflectance fieldR, and is transparent to the actual factorization pro-
cess, we will drop the basis transformation and implicitly assume
that the reflectance field is implicitly expressed in the desired basis.

The remainder of this section is organized as follows. In subsec-
tion 3.2, we first discuss how to compute a factorization of the re-
flectance fieldR in W andF matrices, ignoring clustering (i.e., we
assume that there is only one cluster). Next, in subsection 3.3 the
clustering procedure in described. Finally, the compression of the
residualE is discussed (subsection 3.4).

3.2 Sparse Residual Factorization

In this section we discuss how to compute a factorization of a ma-
trix, such that the residual is as sparse as possible. Formally, an
n×m matrix R is decomposed into matricesW andF (with size
n× t, andt×m respectively), such that the residualE is sparse:

E max. sparse, s.t. R = WF +E. (4)

Compression is achieved if the number of termst is smaller than
n×m
n+m (excluding the residual). Sparseness is measured by counting
the number of non-zero elements. This can formally be denoted
using theℓ0-norm. Thus, we can recast Equation (4) as:

min||E||0, s.t. R = WF +E. (5)

This problem, however, is computationally intractable except for
small problem sizes. Fortunately, we can achieve a similar behavior
as theℓ0-norm by using theℓ1-norm instead. Anℓ1-minimization
has the property that it tends to prefer a sparse solution on the con-
dition that the solution is sufficiently sparse [Chen et al. 1999]:

min||E||1, s.t. R = WF +E, . (6)

Figure 1 shows an example that compares theℓ1-norm and the well-
known ℓ2-norm in order to give further insight in the properties
of the ℓ1-norm. Anℓ2 minimization tends to minimize the energy
over the whole residual, while anℓ1 minimization tends to prefer
elements of smaller magnitude, and in the limit yields a sparser
residual.

A similar factorization is used in [Ke and Kanade 2005] to obtain
a stable decomposition in the presence of outliers. It is interesting
to note that although the goal is different, a similar factorization is

obtained. To understand the relation between reducing the effect
of outliers and maximizing the sparseness of the residual consider
the following. Maximizing the sparseness of the residual means
that for at-dimensional approximation of the rows ofR, as many
rows as possible areexactly representable in this approximation.
The rows that do not exactly fit in thist-dimensional space are in
fact outliers. In other words, the non-zero elements in the residual
identify outliers.

To solve the minimization in Equation (6), and to computeW andF
we use an alternating iterative approach similar to [Lawrence et al.
2006]. At each iteration step eitherW or F is kept constant while
the other is optimized. Solving Equation (6) with one of the fac-
tors fixed, is equal to solving a constraintℓ1-minimization problem.
Furthermore, note that for a variableW and a fixedF, that each row
of W can be computed independently from the other rows. We can
therefore solve Equation (6) for each rowUi of W independently:

min||Ei ||1, s.t. Ri = W iF+Ei , (7)

whereEi is thei-th row of the residualE, andRi is thei-th row of
R. A similar formula exists for the columns ofF in caseW is fixed
andF is variable.

[Ke and Kanade 2005] identify two possible ways of solving this
constraintℓ1-minimization problem: using linear programming,
and using quadratic programming. They opt for using a quadratic
programming solution. However, a detailed comparison of both
methods is missing. We will therefore discuss and compare both
solutions in detail.

Linear Programming. Constraintℓ1-minimization problems can
be efficiently solved using Linear Programming. A number of effi-
cient, general, algorithms have been developed to solve these kinds
of problems (e.g., the simplex algorithm and interior point meth-
ods), and a large selection of software libraries are available that
implement these methods are available. We will therefore describe
thelinear programwithout assuming a specific algorithm or library.

More specifically, we adapt the linear program described in [Ab-
delmalek 1980] to fit our needs. In the so-called standard form of
linear programming [Dantzig 1963; Gill et al. 1991] the following
constraint optimization is solved in terms of a variablex ∈ ℜz:

mincTx s.t. Ax = b, x ≥ 0, (8)

wherecTx is the objective function,Ax = b a collection of equality
constraints, andx ≥ 0 a set of bounds. Reformulating Equation (7)
now yields the following translations:

z⇔ t +2n ; x⇔ (W i ,k, l) ; c⇔ (0,1,1) ;
A⇔ (F,+I ,−I) ; b⇔ Ri ,

wherez is the dimension of the vector of variablesx. Note thatW i
andRi have a length oft andn respectively.k and l represent the
positive and negative part of each element of (a row in) the residual
matrix (i.e., the residual rowEi = k− l), and thus theℓ1-norm of the
residual is the sum of both these partsk+ l (hence the1’s in c). Both
vectors have a length ofn. Because we are searching for the bestW
to minimize the residual, we introduce the shadow variablesW i in
x. These shadow variables do not contribute to the error functional
cTx, and thus they receive a zero weight inc. Finally, we need to
enforce thatRi −W iF = k − l, which is achieved by the particular
forms ofR (= W iF+k− l) andb (= Ri). A similar linear program
can be constructed for the columns ofF. Note that if a positive
residual is desired, the terml can be dropped.

We implemented the above algorithm using the GNU Linear Pro-
gramming Kit (http://www.gnu.org/software/glpk/).
We initialize eitherW or F to random values, and optimize the
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other according to the linear program. Next, we switch the roles
of W and F, and solve the other factor. We repeat this until the
ℓ1-error on the residual does not decrease anymore. Convergence
is usually reached in less than 10 iterations. Note that it is possible
to solve for the matrixW using a single linear program, instead of
a program for each rowW i as shown above. However, linear pro-
gramming has an exponential time complexity, and thus keeping the
program as small as possible is essential for obtaining a solution in
a reasonable time. Furthermore, the algorithm is not guaranteed
to converge to a global minimum, but in general when the residual
can be made reasonably sparse, the global minimum is likely to be
found.

Quadratic Programming. Constraint linear problems can be
solved using quadratic programming by using the Huber M-
estimator [Li and Swetits 1998; Huber 1991] instead of theℓ1-
norm:

ρ(t) =

{ 1
2 t2 if |t| ≤ γ
γ|t| − 1

2γ
2 if |t| > γ

(9)

whereγ is some positive scalar.ρ(t) approximates anℓ1-norm
when γ → 0. This estimator can be written as a minimum of a
convex quadratic program [Mangasarian and Musicant 2000]:

ρ(t) = min
x

1
2

x2 +γ|t− x|. (10)

By replacing theℓ1-norm in Equation (7) we get:

minρ(Ei), s.t. Ri = W iF+Ei . (11)

This can be rewritten as [Mangasarian and Musicant 2000]:

min
1
2
||Ei ||

2
2 +γ||W iF−Ri −Ei ||1, (12)

This problem can be efficiently solved using quadratic program-
ming. The standard form of a quadratic program is given by:

min
1
2

xTCx+cT
0 x, s.t. Ax = b, Dx ≤ t, (13)

wherex ∈ ℜz is the minimization variable,C andc0 determine the
cost function,A andb are a set of equality constraints, andD and
t are a set of inequality constraints. Equation (12) now yields the
following translations:

z⇔ t +2n ; x⇔ (W i ,Ei ,k) ;
C⇔ KTK , K = (0, I ,0) ; c0⇔ (0,0,γ) ;

D⇔
(
−F +I +I
+F −I +I

)
; t⇔ (+Ei ,−Ei),

wherez is the dimension of the vector of variablesx. Note thatW i
andRi have a length oft andn respectively. k represent theℓ1-
norm onW iF−Ri (i.e., the second term in equation (12)), and has
a length ofn. According to equation (12), the quadratic term only
depends on the residualEi . This is ensured by the definition ofC.
The linear term in equation (12) only depends onk weighted byγ.
This is mirrored by the definition ofc0. Note that similarly as in the
linear program a shadow variable,W i , is introduced with a similar
goal. Due to the introduction ofk, no equality constraints (A, and
b) are necessary. The inequality constraints ensure that whenk→ 0
thatRi→W iF+Ei . The advantage of formulating the program like
this, instead of following a similar approach as the linear program,
is that the dimensionalityz is less. Because the computation time is
directly proportional toz, this yields a faster quadratic program.

We implemented the above algorithm using QuadProg++, however
any other library can also be used. As before, we initialize either
W or F to random values, and optimize the other according to the
linear program. Next, we switch the roles ofW andF, and solve
the other factor.

Comparison. We compare both the linear and quadratic program
in terms of accuracy and computational cost.

To test accuracy, we factorize a matrixR = WF +E, that is gener-
ated by selecting random vectorsW andF (the number of terms is
preselected), and writing at random position inE a random value.
By controlling the number of randomly written values inE, we can
control the sparseness of the expected residual after factorization
of R in t terms. This allows us to compare the accuracy of both
methods. To compare the computational cost of both algorithms,
we generate matrices in a similar manner, but we now keep the
sparseness fixed to 10% percent, and increase the size of bothW
andF (both have an equal size and thusR is a square matrix). We
performed this test for a different number of terms.

For both tests, the linear program outperforms the quadratic pro-
gram in terms of speed and accuracy, expect for small matrices
(i.e., less than 100 elements) where the computational cost and ac-
curacy is similar for both methods. Furthermore, the linear pro-
gram scales better in terms of problem size and sparseness than
the quadratic program. This result is surprising, because quadratic
programming is the preferred solution of [Ke and Kanade 2005].
Therefore, we also tested the same quadratic and linear program
using different libraries (i.e., in Octave and Matlab) to ensure that
the obtained results are not skewed by library specific issues. How-
ever, similar results were obtained. In the remainder of this paper,
we will therefore perform sparse residual factorization using linear
programming.

3.3 Clustering

To create the global approximation we use a clustered factorization
approach. The general idea is to alternate between assigning pix-
els to the clusters that yield the best approximation, and finding the
best approximation for a given cluster. We bootstrap the clustered
factorization algorithm by assigning each pixel to a random clus-
ter. Next, we repeat the following two steps until convergence is
reached:

1. Compute a factorization per cluster. We apply one of the
factorization algorithms of Subsection 3.2. This yields for
each clusterk and pixelsq ∈ {p : c(p) = k} an approximation
Rq,i ≈ ∑t Wq,tFk

t,i .

2. Reassign each pixel to the optimal cluster.For each pixelp
we reassign it to the cluster that yields the best approximation
given the basis vectorsHk

t,i :

c(p) = argmink||E
k
p,i ||1, (14)

whereEk is the minimal residual (in anℓ1 sense) obtained by
solvingRp,i ≈ ∑t Wp,tFk

t,i for W (i.e., keepingFk fixed).

Although this algorithm gives a good clustered factorized approx-
imation of the reflectance field, it requires a significant amount of
computation time. As noted before, the time-complexity of the lin-
ear program used to compute the factorization is exponentially pro-
portional to the size of the matrixR. This size is determined by the
number of pixels in the cluster (i.e., the height of the reflectance ma-
trix R), and the length of each reflectance function (i.e., the number
of sampled light source positions).
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In order to speed up the clustered factorization, we first compute
the clusters on a low resolution (in camera pixels) reflectance field.
This reduces the height of the reflectance field matrixR. The idea
is that neighboring clustering will share many properties, and there-
fore, the important terms in their factorization will be very similar.
This scheme is similar in spirit to randomly selecting rows in large
matrices to factorize basis vectors. However, in this case a priori
knowledge of inter-pixel relations (i.e., 2D spatial neighborhoods)
are exploited, yielding a more coherent subsampling. Once a low
resolution clustered factorization is obtained, we assign each pixel
in the full resolution reflectance field to the most optimal cluster
from the low resolution reflectance field. Finally, an optional final
sparse factorization can be performed to further fine-tune the basis
functionsFk per cluster.

Assigning a cluster to each pixel of the full-resolution reflectance
field is still very time consuming, because the optimal weights (in
anℓ1-sense) have to be computed for each cluster. Ideally we would
like to reduce the number of clusters that need to be verified by ex-
cluding most of them a priori. This is achieved by only considering
clusters assigned to a small neighborhood around the pixel’s pro-
jected position in the low resolution version. The idea is that there
is a reasonable amount of spatial coherence between the low and
full-resolution versions of the reflectance field.

3.4 Compressing the Residual

The obtained residual from the previous factorization method is
sparse, making it well suited for further compression. Due to ap-
proximation errors, a large number of the elements in the residual
are not exactly zero, but near zero. Therefore, as a first step, weset
all elements below some small threshold to zero. To further con-
trol the compression ratio, we keep then largest elements for each
pixel’s residual.

When storage is of less concern, but rendering quality is of prime
interest, we select a large value forn. During rendering, we dynam-
ically choose the number of residual elements (< n) depending on
the desired frame rate or rendering quality.

4 Efficient Relighting

Techniques to render dimensionality-reduced reflectance functions
have been explored extensively [Sloan et al. 2002; Sloan et al. 2003;
Ng et al. 2004]. Similar to [Sloan et al. 2003], we precompute with
each incident illumination change, for each clusterk the inner prod-
ucts of the basis functionsFk and the incident illuminationl, result-
ing in a vector of lengtht (the number of terms). During rendering,
a weighted sum per pixel is computed with theset precomputed
valuesFkl and the pixel’s weightsW. Finally, the inner product of
the compressed residual matrixE and the incident illuminationl is
added:

Rp =
terms

∑
t

(
Wp,t

(
Fc(p)

t l
))

+Epl. (15)

The incident illumination vectorl is extracted at runtime from a
high resolution environment map using an angular Voronoi diagram
based sampling method [Masselus et al. 2002]. Implementing the
above relighting system on a CPU-only system is straightforward.
A hardware accelerated GPU implementation is a little bit more
complex. In the following subsections, we detail some GPU spe-
cific implementation aspects.

4.1 Global Approximation Relighting Computation

A number of publications have studied matrix-matrix multiplica-
tion, and matrix-vector multiplication implementations on GPUs.
Fatahalianet al. [Fatahalian et al. 2004] did an in-depth-study on
the efficiency of various matrix multiplication algorithms on a va-
riety of graphics hardware. Changhaoet al. [Jiang and Snir 2005]
developed automatic performance tuning strategies. In our applica-
tion, we opt for using a 2x2 scheme, called NV Single [Fatahalian
et al. 2004], because of its ease of implementation and computa-
tional efficiency.

The per cluster multiplication ofFkl is a straightforward matrix-
vector multiplication. We store 2x2 blocks of the matrixFk in four
component texels according to NV Single.

To computeW(Fkl), we note that each row of matrixW is poten-
tially assigned to a different cluster. It is therefore quite reasonable
to accessW per row unit. Consequently, each row of the matrixW
is stored and packed in four component texels. Due to this packing,
a single fragment program can obtain its pixel’s intensity value by
a simple inner product computation.

4.2 Sparse Residual Multiplication

Multiplying the incident illumination vector with the sparse resid-
ual matrix is the most costly part in our relighting algorithm. It is
therefore very important to do this as efficiently as possible. Sim-
ilar problems have been studied extensively [Krüger and Wester-
mann 2003; Bolz et al. 2003]. A compressed sparse row format
is commonly used (as described in [Mellor-Crummey and Garvin
2004]). To compute the sparse matrix-vector multiplication in par-
allel fragment programs, we store each of the non-zero coefficients
and an identification index, packed into a single texture. Next, we
generate an indirect texture that for each pixel, that refers to the
first non-zero residual coefficient in the previously defined texture.
Computing the inner product at runtime is now relatively straight-
forward.

5 Results and Discussions

We verified our compression method on a number of publicly
available reflectance fields (i.e.,http://gl.ict.usc.edu/
Data/LightStage/). In the discussion of the clustered sparse
residual factorization algorithm of Section 3, we treated the re-
flectance functions as monochromatic. However, real reflectance
fields usually consist of three color channels. In our implementa-
tion we treat each color channels of a reflectance function as an
independent monochromatic reflectance function. Thus, each re-
flectance function’s color channel will have an associated cluster
index.

Furthermore, to ensure that each cluster does not contain too many
or too few reflectance functions to achieve a successful factoriza-
tion, a minimum and maximum cluster size is enforced. Clusters
that are too small are merged to the second most optimal cluster.
Clusters that are too large are split into two equal-sized clusters (in-
creasing the number of clusters).

The computation costs of our method are asymmetric: decompres-
sion costs are very low, while compression requires significant ef-
fort. On average the compression timings ranged from 24 to 72
hours depending on the resolutions, the number of clusters and the
number of terms.

Visual Quality Analysis. Figure 2 shows two scenes containing a
helmet and a plant, relit with the St. Peter’s Basilica and Grace
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No Residual 2.77% Residual 9.88% Residual Reference4.74% Residual

Figure 2: Illustrating the visual effect on relit images of the helmet and plant datasetwith increasing number of residual coefficients. Both
datasets are factorized using128clusters, and4 terms. The number of residual terms used (from left to right) are:0%, 2.77%, 4.74%, 9.88%,
and100%. The differences with the reference image (i.e.,100%residual) are shown at the right top of each image.

9.88% Residual4.74% Residual 19.76% Residual

2.

3.

1.

ReferenceNo Residual

3.

2.

1.

Figure 3: The effect of increasing the number of residual terms on three selectedreflectance functions. Marked on the relit of the image of
the plant dataset (32 clusters, and4 terms) on the left are the three pixels for which the reflectance functions are shown on the right. Each
reflectance function is shown using0%, 4.74%, 9.88%, 19.76%, and100%of the residual.

Cathedral environment maps respectively. We compactly repre-
sented these reflectance fields using approximately 128 clusters and
4 terms. Each scene is relit and shown with different numbers of
residual elements included. The leftmost image shows the scene
with no residual added (i.e., reconstructed usingW andFk only),
while the rightmost shows a reference image (i.e., using the full
residualE). The differences of each image with respect to the ref-
erence image are shown in the details in the right top of each relit
image. The difference between the relit image without any resid-
ual and the reference image is significant; in particular the visually
important highlights are missing. However, when adding even a
few residual elements (3%− 5%), the visual difference decreases
dramatically. At 10% of the residual, the difference is difficult to
distinguish from measurement noise.

Figure 3 illustrates the effect of increasing the number of resid-
ual elements on a number of selected reflectance functions of the
plant scene (32 clusters, and 4 terms). The reflectance functions
are shown respectively with 0%, 4.74%, 9.88%, 19.76%, and 100%
of the residual. As can be seen, only a few large elements in the
residual contribute significantly to the reflectance function. Note
how specular highlights are added to the reflectance functions us-
ing only a few residual coefficients. Furthermore, note that we used
a very low number of clusters and terms to better illustrate these
effects.

Quantitative Error Analysis. To further investigate the effect of
the number of clusters, terms, and residuals, we plot the error as
a function of these parameters. There are a number of error met-
rics possible. In [Wong and Leung 2003; Wang et al. 2004b; Wang
et al. 2004a; Ho et al. 2005] the averagepeak signal to noise ratio
(PSNR) is used to characterize the error. This error metric is com-
monly used in the compression community. However, this metric is
not suited to characterize the error on compressed reflectance fields.
First, the notion ofpeak signalis not well defined when using mul-
tiple high dynamic range reflectance functions, since each function
can have a different peak. Furthermore, a specular peak in a re-
flectance function will mask much of the error in the diffuse compo-
nent. An alternative to directly computing the average PSNR on the
reflectance field is to compute the average PSNR on a large selec-
tion of generated relit images. However, this approach also suffers
from the same problems as noted before. Masseluset al. [Masselus
et al. 2004] use two different metrics to characterize the error on
the reconstruction and on the compression of reflectance functions.
For the compression they use the SobolevH1-norm, and for the re-
construction they compute the average relative error per reflectance
function. To better differentiate between the effects of the differ-
ent reflectance types (i.e., occluded vs. unoccluded, and specular
vs. diffuse) they compute the average over pixels with a similar re-
flectance type. We will follow the latter approach, and compute the
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Figure 4: Error and sparseness plots of the plant dataset. The colors indicate the number of clusters. The line pattern denotes the number of
terms. (a-c) The average relative error of all reflectance functions ofthe object, unoccluded reflectance functions, and specular reflectance
functions. (d) The average sparseness with respect to a noise threshold on all the reflectance functions of the object.

relative error as:

error =
1
n ∑

p




∑i

(
Rp,i − R̃p,i

)2

∑i R2
p,i


 , (16)

whereR̃p,i is the compressed approximation of the reflectance field
Rp,i . Figures 4 (a-c) show the average relative error plots for the
plant scene forunoccluded, specularandall the object’sreflectance
functions. Note that the horizontal axis uses a logarithmic scale.

A first observation that can be made from these error plots is that
the influence on the error of the number of clusters is less than that
of the number of terms. However, in terms of the compression ra-
tio, increasing the number of clusters is far less expensive (i.e., you
only need to store the additional basis functionsHk once), while in-
creasing the number of terms is much more expensive because you
need to store additional weightsW for eachpixel in the reflectance
field.

A second observation is that for unoccluded diffuse surfaces (Fig-
ure 4 (b)) the error is already low without including any residual
terms. Furthermore, for reflectance functions with a predominantly
specular behavior, the error is much higher, and drops very fast
with increasing the number of residual elements. The reason for
this is that the residual in the specular case consists largely of local-
ized effects that change rapidly between pixels. The low number of
clusters is unable to capture these differences, unless the number of
clusters is increased significantly (to approximately the number of
pixels).

A third observation is that it is generally better to store additional
residual terms, then to increase the number of terms. For example,
when looking at Figure 4 (c), we see that with 32 clusters, 16 terms,
and no residual, the error is approximately 16%. The error on 32
clusters, 4 terms, and 12 residual terms (that has approximately the
same storage cost per pixel) is just above 6%, and the error on 32
clusters, 8 terms, and 8 residual terms is just below 6%. The reason
for this is that the first few residual terms basically encode spec-
ular highlights and other high frequency phenomena. These high
frequency features change significantly (spatially) among different
reflectance functions in the same cluster, and are, therefore, difficult
to encode with only a few basis functions.

A final observation is that from a certain point on, it becomes more
interesting to add additional terms instead of extra residual ele-
ments. For example, in the case of the specular reflectance func-
tions (Figure 4 (c)), the error for 32 cluster, 8 terms, and 8 residual
elements is about equal to the error of 32 clusters, 4 terms, and 16
residual elements (this requires more data to be stored). In general
the error-plot decreases more slowly as the number of residual el-
ements increases, and thus at a certain point, the gain by jumping
to a different error-plot (with more terms) provides an advantage.
The reason for this is that the residual terms of smaller magnitude
encode mainly low frequency differences, and these can be repre-
sented more efficiently by additional terms.

In Figure 4 (d) the average sparseness of the plant scene in terms of
a noise threshold is shown. All elements with a magnitude less than
the noise threshold are considered to be noise and set to zero. Even
with a very low threshold of1

256, only about13 of the coefficients are
non-zero. Although this is a lossy compression, it is nearly lossless
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in that our threshold is below the camera noise threshold. Note that
the sparseness is almost independent of the number of clusters and
only slightly dependent on the number of terms. This is consistent
with the first observation made with respect to the average relative
error.

Comparative Analysis. To further investigate the performance of
our method, we compare it to clustered PCA [Sloan et al. 2003].
Furthermore, we also investigate the effect of including residual
terms in a clustered PCA approximation.

Figure 5 (left) shows the ratio of the relative average error of our
method versus clustered PCA. We vary for a fixed number of clus-
ters and terms, the amount residual terms for both methods. While
clustered PCA has not been developed for including residual terms,
it clearly shows the strength of our method. In general, our meth-
ods starts to outperform around 16 additional residual terms. As
expected, without adding any additional residual terms, clustered
PCA is superior since it specifically minimizes the error in this case.
Additionally, we also show the same reflectance function with in-
creasing number of residual terms as in figure 3 for clustered PCA.

If beforehand the maximum number of required terms is known,
then a different comparison with a clustered PCA approach can be
made. In this case, a clustered-PCA approximation with the max-
imum number of terms can be computed. During visualization, a
subset of largest vectors of each cluster with the desired size (less
than the maximum number of terms) can be selected for visualiza-
tion. This has similar runtime (CPU and memory) requirements
compared to the proposed clustered sparse matrix factorization ap-
proach where the residual terms + sparse terms equal the number of
PCA terms. We computed the average relative error for a clustered
PCA approximation of the plant scene computed with a maximum
of 64 terms, and using a subset of 16, versus a cluster sparse matrix
factorization approximation with 4, 8, and 16 terms, with respec-
tively 12, 8 and 0 residual terms. Both are computed with 64 clus-
ters. Figure 6 shows the relative error images. Clustered PCA sig-
nificantly outperforms, in terms of average error, our method when
no residual terms are included. However, when adding only a few
residual terms, our method clearly outperforms clustered PCA.

To better understand the difference for individual reflectance func-
tions, we generated the false color images (figure 6 bottom) for
these cases. A blue color indicates a lower error for the PCA ap-
proach, while a red color indicates a lower error for the sparse ma-
trix factorization approach. The intensity of the false color denotes
the magnitude of the difference in error between both approaches.
As can be seen, there are regions where each method excels. In
general we found that a clustering based on a sparse matrix factor-
ization yields better results for specular materials, and pure diffuse
materials. In these cases the residual encodes mostly very localized
differences to the factorized approximation. However, for glossy
materials a clustering based on PCA outperform our method. In
these cases, the differences with the cluster approximation covers a
larger solid angle. These differences cannot be efficiently encoded
by a few large coefficients.

Visualization Performance. Table 1 lists for all scenes the GPU
rendering speed and error as a function of the amount of resid-
ual that is added to the approximation. All measurements are
performed using an nVIDIA GeForce 8800GTX with 768Mb on-
board memory. The camera resolutions of the reflectance fields are
640× 422 for the plant dataset, 640× 640 for the helmet dataset,
512× 512 for the kneeling knight dataset, and 640× 854 for the
fighting knight dataset. The lighting resolution is 253 lighting di-
rections. As can be seen, the number of clusters has very little effect
on rendering speed. Increasing the number of terms though, reduces
the frame rate. Nevertheless, even with 30% of the full residual and

errors well below 1%, we are still able to achieve 50fps. Our sys-
tem is also suited for CPU interactive rendering (around 8fps) with
moderate residual levels (≈ 3−5%). The videos in the supplemen-
tal material contain animated sequences of these datasets rendered
using our GPU implementation.

Discussion.The total compression ratio is easily computed as fol-

lows: ratio ≈ (clusters×terms)
n +

(terms+residual)
m . The first term can

usually be neglected due to the large size ofn (i.e., the number of
pixels). For example, for the plant dataset, using 128 clusters, 4
terms, and 12 residual terms (≈ 5%) a ratio of 16

253 ≈ 6.3% is ob-
tained. These compression ratios are less than some of the ratios
reported in previous work. However, almost all of these methods
work on much higher resolution (in lighting directions) datasets,
making it easier to achieve higher compression ratios due to the fact
that there is more data to correlate. Furthermore, it should be noted
that not all methods are able to represent all-frequency reflectance
data accurately. Additionally, in many cases the exact error is not
known, and thus a qualitative comparison is not possible.

Although we only tested our method on reflectance fields of moder-
ate incident lighting resolution, we expect that the compression ra-
tios will improve when using higher incident resolution reflectance
fields. We expect that the efficiency of the factored representation
is sub-linearly dependent on the incident illumination resolution,
since it mainly represents the low and mid frequency content, that
is largely resolution independent. The compressed residual, on the
other hand, represent mostly high frequency content. This high fre-
quency content is largely undersampled in low and mid resolution
reflectance fields, and we expect that these localized high frequency
features will also scale sub-linearly in size.

Finally, we note that it is straightforward to extend our method to
obtain a residual that is sparse in a different basis, for example a
wavelet basis. Wavelets are well known to exploit spatial coheren-
cies and improve compression ratios. To obtain a sparse residual
in any basis, we first express each row (i.e., reflectance function) in
that basis. Next, we perform the factorization as described in Sec-
tion 3.2. The obtained result will be that the basis functionsFk and
the residual are expressed in this basis. We determined empirically
that using a Haar wavelet basis improved sparseness by 3% to 5%.
However, this resulted in our case in areductionin compression ra-
tios for a given level of quality. Because wavelets are a hierarchical
basis, the opportunity to leave out wavelet coefficients increases at
each additional wavelet level. Low frequency wavelets are usually
significant and cannot be left out easily. Thus, due to the fact that
in our case the incident illumination resolution is low, we do not
gain anything. We expect that when higher resolution reflectance
fields are used that wavelets will provide a significant advantage.
An additional advantage of a wavelet represented residual is that
localized differences over more then one lighting direction can be
more efficiently represented.

6 Conclusions

In this paper we presented a novel compression method for fixed
viewpoint reflectance fields. This method is based on a clustered
sparse residual factorization. The newly developed sparse resid-
ual factorization method ensures that the residual of the original
reflectance function and the factorized approximation contains as
many as possible (near) zero elements. The obtained residual is
therefore very easy to represent sparsely, and enables to us trade
off storage requirements versus accuracy. Our method shows good
compression ratios for both nearly lossless and lossy compression.
Additionally, we show that our method is well suited for real-time
hardware assisted rendering.
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Figure 5: A comparison of relative average error on our method versus clustered PCA for a varying number of residual terms.

CPCA 16 Terms 16 Terms, 0 Residual 8 Terms, 8 Residual 4 Terms, 12 Residual

Avg. Error: 0.0408 Avg. Error: 0.0176 Avg. Error: 0.0193Avg. Error: 0.0282

Figure 6: A comparison of clustered PCA (64 terms, 64 clusters) using a subset of the 16 most important factors, compared to clustered
sparse matrix factorization using 4, 8, and 16 terms and respectively 12, 8, and 0 residual terms. The bottom row shows the difference
between the average relative error of the clustered PCA approximation versus the clustered sparse matrix factorization approximation. A red
color indicates a larger error on the clustered PCA approximation, while a blue color indicates a larger error on the clustered sparse matrix
factorization approximation.

For future work we would like to investigate supplemental compres-
sion methods similar to [Wong and Leung 2003], by compressing
the obtained weights and residual elements in the camera-domain
using wavelet or DCT compression methods. This will most likely
reduce storage cost even further. Second, alternative algorithms
for computing the factorization instead of linear and quadratic pro-
gramming should be investigated. Currently we only looked at gen-
eral purpose algorithms, such as linear and quadratic programming,
for factorization. These general purpose algorithms are very ver-
satile, but the computational costs are considerable. Specialized
algorithm will most likely yield a more optimal factorization algo-
rithm. Finally, we would like to investigate the application of our
sparse matrix factorization method to other problems.
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