

Proc. of the 8th Conference on Computer Generated Forces and Behavioral Representation, Orlando, FL, May 1999

Continuous Planning and Collaboration
for Command and Control

in Joint Synthetic Battlespaces
Jonathan Gratch

Randall W. Hill, Jr.
University of Southern California

Information Sciences Institute
4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292-6695

310-822-1511
{gratch,hill}@isi.edu

Keywords:
Planning, Command and Control

ABSTRACT: In this paper we describe our efforts to model command and control entities for Joint Synthetic
Battlespaces. Command agents require a broader repertoire of capabilities than is typically modeled in simulation.
They must develop mission plans involving multiple subordinate units, monitor execution, dynamically modify mission
plans in response to situational contingencies, collaborate with other decision makers, and deal with a host of
organizational issues. We describe our approach to command agent modeling that addresses a number of these
issues through its continuous and collaborative approach to mission planning.

1. Introduction Continuous Planning
To realistically model C2 behavior requires a continuous

Two of the challenges in modeling command and control planning capability. Planning is a reasoning process that
(C2) entities in a Joint Synthetic Battlespace (JSB) are to generates an ordered set of tasks from a goal description
provide operational realism and cost effective deployment (addresses issue 1). For the purposes of modeling the C2
of these entities. The lack of realism in existing synthetic activities in a JSB, it is not sufficient to establish a
C2 forces usually stems from being unable to: (1) behave mission plan, launch the aircraft, and wait until the aircraft
in a goal-directed manner, particularly in situations not return to determine success. Plans sometimes fail,
strictly covered by doctrine; (2) dynamically modify situational interrupts (mission exceptions) occur, and
mission plans in response to a situational contingency; (3) opportunities arise, all making it necessary to re-plan the
collaborate in group decision making and behavior; and mission during the execution phase. C2 entities must
(4) vary organizational behavior by modeling differences continually assess the situation, monitor the execution of
in role, organization, and perspective among individual mission plans, and react to conditions affecting their goals
entities. To be cost effective, synthetic C2 forces need to: and plans before and during the mission by dynamically
(5) behave autonomously, reducing the requirement for replanning so that their goals may be achieved in new
human control in JSB exercises; (6) represent a wide situations (issue 2). When a continuous planning
range of organizations and scenarios. In this paper we capability is combined with a sufficiently deep domain
describe our efforts to support such abilities through the theory of air operations, C2 entities become more capable
development of a flexible, integrated model of C2 of autonomous behavior (issue 5), covering a wide range
behavior involving multiple echelons in the domain of of scenarios (issue 6).
Army Attack Helicopter Battalion operations. Here we
focus on two key aspects of the behavior required to Collaborative Behavior
accomplish this goal: continuous planning and Mission planning and execution is a collaborative
collaborative behavior. enterprise (issue 3) involving C2 entities distributed

across multiple echelons. Not only must these entities be
capable of continuous planning, but they must also model

mailto:gratch,hill}@isi.edu

each other’s goals (issue 1) and plans, and reason about
how decisions they make will affect others. Factors such
as the entity’s role, perspective and the "management
culture" of the organization will affect the content and
form of communications among [14], and will ultimately
change the overall behavior of the organization (issue 4).
Without collaboration, autonomous group behavior is not
possible (issue 5). Like continuous planning,
collaboration requires an understanding of C2 operations
domain, to include models of domain-specific C2
communications, organizations, and relationships. Given
these models, it is possible to represent a range of
different organizations (issue 6).

This combination of capabilities has been developed in
constructing the Soar cognitive architecture [12];
intelligent forces (IFORs) for individual synthetic aircraft;
and command forces (CFORs), which command
organizations of individual aircraft. We have developed
and demonstrated these capabilities within the domain of
the Army Attack Helicopter Battalion. We will illustrate
the capabilities of our system with examples from this
domain.

2. Related work

Before proceeding to the technical details of our
approach, it is useful to set some context by contrasting
our methods with alternative simulation technology. Prior
models of planning have almost exclusively focused on
the problem of plan generation, without consideration of
the dynamics of how the plan would be executed or
modified. For example, the Defense Advanced Research
Projects Agency’s (DARPA) JFACC program has
supported planning tools that focus primarily on plan
generation and plan evaluation. In contrast, models that do
account for dynamics tend to focus exclusively on
reactions to the exclusion of deliberate planning. For
example, the finite state models used by semi-automated
forces (SAFs) are excellent for reacting to immediate
threats, but require a human in the loop to ensure goal-
directed behavior. Each of these extremes can be
reasonable (the JFACC has many hours to generate and
perfect a plan, whereas individual vehicles often must
immediately react). However, modeling forces at the
company and battalion level (where C2 can make the most
timely use of enhanced situation monitoring platforms)
requires tight integration of plan generation, plan
execution/monitoring, and plan repair.

Modeling C2 nodes also brings to the forefront
organizational issues that have been largely ignored in
past simulation efforts. SAF models rely on human
controllers to de-conflict interactions between units and to

manage coordinated activities. However, as we extend
simulation to higher levels of command, we must model
the reasoning involved in coordination. For example,
when an battalion commander adjusts a mission to the
evolving situation, he must coordinate his various
subordinate units and reason about the constraints that
arise across these units and other friendly forces in the
area of operations. Realistic models must account for the
fact that the U.S. doctrine allows considerable autonomy
to commanders when missions change dynamically. So
during execution, a battalion commander might alter his
plans without waiting for approval as long as the changes
are consistent with the overall intent.

Our modeling technology resembles some of the more
innovative approaches to command and control modeling.
For example, SRI’s CPEF system also provides a similar
integrated model of plan generation, monitoring, and
repair [11]. There are key differences, however, in scope
and focus. CPEF is designed as a human in the loop
decision support tool for staff at the JFACC. The most
closely related work is the Command Entity (CE)
developed by Calder et al. as part of DARPA’s Command
Forces program [2]. Like Soar/CFOR, CE is a relatively
domain independent approach to C2 modeling and has
been successfully applied to modeling battalion and
company level commanders for army ground operations.
CE is based on constraint satisfaction methods [9], a
fundamentally different reasoning methodology than the
planning approach underlying our technology. Planning
and constraint satisfaction methods offer unique
advantages and disadvantages and it is hard to
characterize one as being more or less suitable to C2
modeling. The general view in the AI reasoning
community is that constraint satisfaction methods are
more efficient (allowing their application to larger
problems) but they are not as easy to use, either in terms
of incorporating domain knowledge into them or in terms
of understanding their reasoning process. Recent
advances in planning research suggest ways of combining
these advantages, representing the domain as a planning
problem but automatically translating it into a constraint
satisfaction problem [13]. Although this hybrid approach
is still too restrictive for the type of reasoning discussed in
this paper, it suggests a long-term development scheme
where we can present domain developers with the
advantages of the planning perspective today, and shield
them from future changes in the underlying
implementation.

Plan
Management

Activities

Domain
Plans

Plan Manager

Continuous
Planner

Organizational
Model

Domain
Model

Situation
Assessment

Figure 1: Soar/CFOR Architecture

3. Continuous Planning

The details of the technical approach are described by
function. We first describe how Soar/CFOR addresses the
issue of continuous planning. Next, we discuss the
planner’s support for modeling a distributed organization
of C2 nodes. Next, we describe intelligent forces
(IFORs). Finally we describe our approach to knowledge
/ software engineering. Figure 1 illustrates the basic
architecture of a Soar/CFOR C2 agent.

Planning is a key capability that separates command
agents from the more reactive automated forces typically
modeled in simulations such as ModSAF. Planning
requires predicting the outcome of events into the future
and proactively deciding on appropriate courses of action.

Prior work in deliberative mission planning has tended to
focus on plan generation. In contrast, researchers who
have tried to embed planning agents in realistic and
dynamic environments have increasingly advocated the
view that plan generation, plan execution/monitoring, and
plan repair are fundamentally inseparable (the 1998 AAAI
workshop on Distributed Continual Planning was devoted
to this integrated view of planning). Our Soar/CFOR
planner builds on planning algorithms that support this
integrated view: specifically, IPEM [1] and XII [4]. These
planners share many features with traditional AI planning
systems like SIPE [15] but interleave the plan generation
process with execution and repair activities.

Plans in Soar/CFOR are hierarchically organized
sequences of tasks. Each task corresponds to some process
and the task description includes (1) initiation or
preconditions of the process, (2) completion conditions,
(3) interruption conditions, and (4) the responsible entity
(who performs the process). Task conditions are used to
assess the validity of generated plans and enable the

planner to monitor the plan’s proper execution. Tasks can
be further decomposed into subtasks. Typically, this
decomposition is context dependent: depending on the
current or projected situation, different subtasks may be
appropriate. (Different decompositions can be thought of
as alternative courses of action to accomplish the high-
level task.) If the planner chooses a particular
decomposition, the context validating this decision
recorded in the plan structure so that, if the context
changes, the planner can verify whether the decomposition
is still appropriate. For example, a helicopter company
may choose to fly in a column (maximizing speed)
because it believes there are no enemy forces in its avenue
of approach. If subsequent intelligence contradicts this
assumption, a C2 agent can recognize that a slower but
safer formation is more appropriate.

The Soar/CFOR planner supports dynamic plan
monitoring and repair by performing continuous situation
monitoring. On-board sensors and situation reports are
assessed by domain-specific routines to maintain a current
awareness of the situation. The planner continuously
compares this awareness against its current plans, and uses
these comparisons as inputs into the reasoning underlying
plan monitoring and repair. For example, if a battalion
commander, modeled by Soar/CFOR, receives a report
that one of its companies has reached the holding area, the
planner recognizes that this information satisfies the
completion condition of the ingress task. This in turn
allows the planner to infer that the ingress has terminated
and the company is now prepared to engage. In contrast,
a report that the company is delayed might violate the
current constraints in the plan and force some repair
activities. So if the delayed flight was to engage in a
coordinated attack with another company, the battalion
commander might delay the second company’s departure,
or even cancel the entire mission.

 Figure 2: An example of two interacting plans

Algorithmic Details

More specifically, Soar/CFOR plans by constraint posting
in the same fashion as other classical planners such as
SNLP [10]. Constraints are added in response to threats in
the current plan network. For example, if an action has an
open precondition, the planner tries to resolve this threat
by identifying an existing action that establishes the effect
(simple-establishment) or introduce a new action (step-
addition). Both activities add constraints to the current
plan. Simple-establishment asserts a protection constraint
that protect the effect from the moment it is created until it
is used by the precondition, and binding constraints that
ensure the effect unifies with the open-precondition. Step-
addition posts a constraint to include the new action in
addition to the constraints posted by simple-establishment.
Unlike SNLP, actions have duration: they must be
explicitly initiated and terminated and actions may fail.
Actions can also be decomposed hierarchically.

We refer to actions as tasks and the set of constraints
introduced by the planner as a plan network. Besides this
network, the planner maintains a declarative
representation of the perceived state of the world or
current world description (CWD). The CWD allows the
planner to monitor the execution of task and detect any
surprising changes in the environment. The planner may
only initiate tasks whose preconditions unify with the
CWD (and are not preceded by any uninitiated tasks).
Similarly, tasks are terminated when all of their effects
appear in the CWD. Task initiation and termination may
be interleaved with other planning operations. As the
CWD reflects the perceived state of the world, it may
change in ways not predicted by the current plan network.

For example, some external process modifying the
environment is detected by changes to the CWD not
predicted by the current set of executing tasks. These
changes may provide opportunities (as when an
unsatisfied precondition is unexpectedly observed in the
world). They may also threaten constraints in the plan
network, forcing the planner to modify the task network to
resolve them.

Figure 2 illustrates a set of tasks maintained in a task
network. Each task has a set of preconditions (predicates
listed at the bottom left of each task) and a set of effects
(predicates listed at the bottom right of each task). A
valid plan must ensure that each precondition is
established by some effect. In the figure, horizontal bars
illustrate correspond to the protection constraints. Each
protection constraint represents the fact that an effect is
being used to establish a precondition, and that the effect
must be protected during the duration of the protection
constraint. In the figure, one protection constraint is
possibly violated: the fact that the CSS unit is moving the
gas station threatens the protection constraint that the
attack helicopter needs the gas. This is only a possible
violation because the plan does not specify an ordering
between the two movement tasks. If the helicopters move
first, there is no problem. Planning works by identifying
such potential threats and resolving them (in this case by
deciding that the helicopters must depart before the gas
station can be moved).

Soar/CFOR has some general plan repair operators that
allow it to non-chronologically retract problematic
constraints from the plan network. The CFOR planner
augments this capability by incorporating a validation-
structure approach to plan repair [8]. The details of this

are unimportant to understand the basic ideas in this
article. The main point is that the planner has a number of
operations that allow it to modify its current plans. Some
of these operations add constraints to the plan network,
while other operations retract constraints.

4. Collaborative Behavior

Soar/CFOR supports the modeling of distributed planning
nodes in an organization. We have demonstrated this
capability in the context of Army aviation planning where
a battalion command agent plans collaboratively and
autonomously (no human in the loop) with his subordinate
attack company agents and a combat service support
(logistics) agent. The Soar/CFOR planner provides
domain-independent reasoning capabilities for
organizational modeling and thus provides considerable
leverage in modeling military command organizations.

Soar/CFOR is designed to model an organization of
agents that plan in a distributed and asynchronous manner.
Different organizational structures are easily represented
as input to the planner: one can manipulate the number
and type of elements, how they exchange information, and
the authority relationships between them. The
architecture also supports differing levels of autonomy
between commanders and their subordinates, thereby
facilitating the modeling or more or less rigid
organizational structures. For example, current military
doctrine specifies a relatively rigid and hierarchical
distributed planning process. This doctrine is represented
in Soar/CFOR as a data structure, rather than being
reflected in the planning architecture, making it is
relatively easy to program in alternative organizational
structures.

Three novel characteristics of the planner support this
reasoning. First, Soar/CFOR has the ability to maintain
multiple plans in memory and reason about their
interactions. Figure 2 illustrates that the planner is
reasoning about two plans (an attack helicopter plan and a
CSS plan), and that it can detect potential interactions
between plans of different agents. This allows a command
agent to not only reason about his own activities, but also
represent (to some level of detail) the activities of other
friendly units and the projected activities of enemy units.
This provides the command agent a more coherent picture
of the overall situation and allows the agent to understand
the interrelationships between plans and the consequences
of possible plan changes on other units. For example,
consider a situation where JSTARS identifies a large
movement of enemy ground forces. By modeling the
activities in its area of operations, a command agent can
identify which units are impacted by the new information,

which units to re-task, and how these changes affect other
friendly forces.

Second, Soar/CFOR maintains explicit representations of
plan management activities. These are activities that
provide structure to the process of planning and
implement protocols for how and when distributed
planning agents should exchange information. For
example, the Army has spent considerable effort
formalizing the planning process in what has become
known as the Military Decision Making Process (MDMP).
MDMP breaks planning into a sequence of tasks such as
mission analysis, course of action development, course of
action analysis, etc. These tasks differ from those usually
considered by traditional planning systems as they refer to
stages of the planning process, rather than primitive tasks
an agent performs in the world. (Plan management is
typically viewed as a form of meta-reasoning and has been
traditionally either ignored or modeled with very different
algorithms and data structures than those used in
planning.) In the Soar/CFOR planner, these plan
management activities are represented as an explicit plan
and are modeled using the same data structures as other
domain activities. The inputs and outputs of these plan
management tasks, in turn, determine the flow of
information between agents in the organization. The
advantage of this scheme is that (1) interactions between
planning agents can be programmed as easily as other
domain activities, (2) they can be programmed using the
same data structures, and (3) they provide a uniform
medium for supporting visualization and traceability of
the reasoning process.

Finally, Soar/CFOR supports the modeling of different
management styles, what we refer to as planning stances.
Specifically, a domain modeler can vary the degree to
which a C2 planning agent will be cooperative or
antagonistic to the activities of other agents. For example,
a commander will try to support or at least de-conflict
with the plans of other commanders, but will try to defeat
the plans of opposition forces. Soar/CFOR supports a
spectrum of such different styles. Additionally,
Soar/CFOR allows a domain modeler to represent several
distinctions related to authority and autonomy. For
example, one can indicate who a C2 agent has the
authority to command, and one can indicate whose
commands must be followed to the letter and whose are
open to counter proposals.

Algorithmic Details

These three characteristics—reasoning about multiple
plans, maintaining plan management plans, and modeling
management styles—are supported by a plan manager
that augments the planner’s basic reasoning capabilities.

Commander’s Orders

Attack-by-fire Defend

Task1

Task3

Task2
My details

Figure 3: Modeling authority

The plan manager keeps track of the fact that different
tasks in the plan network correspond to the activities of
different agents. Tasks are organized into a higher-level
data structure called “a plan.” Plans are intended to refer
to clusters of activities that are meaningful in a particular
domain. In a multi-agent application, different plans most
naturally refer the planner’s understanding of the activities
of different agents (e.g., my plans vs. my enemy’s plans).
The plan manager reasons about interactions between
plans and can alter the way the planner behaves towards
different plans in the plan network.

Planning stances are implemented by constraining the way
the planner may modify different plans in the plan
network. For example, by default the planner will try to
resolve every perceived problem in every plan it
represents. However, one may not have the authority to
make changes in some units’ plan, and one generally
wants there to be problems in the plans of adversaries.
The plan manager realizes these different behaviors by
changing the control properties associated with the
different plans in memory.

Figure 3 illustrates how overlapping plans can be used to
model a notion of authority. In military operations, one
has to accept orders from a commander. These orders
must be obeyed, but one has some flexibility in fleshing
out the details. A subordinate planning agent should
distinguish between the part of the plan that is fixed and
the part that it has the authority to alter, if for example, the
plans must be repaired during the execution of the orders.
This can be modeled by representing overlapping plans.
One plan contains the initial orders and is deemed
unmodifiable but executable through a suitable choice of
plan properties. This plan is contained within a larger
plan that allows modifications. Any changes made by the
subordinate agent only appear in the larger plan, and the
initial orders must remain unchanged.

Up to this point we’ve only discussed how to represent
different planning stances. However a plan management
strategy demands the ability to change stances
dynamically as plans are generated and executed. For
example, to implement the military decision-making
process, an agent must take a modifying stance towards
the mission plan until it has evolved to a satisfactory level.
At that point, it must commit to these plans (taking an
unmodifying stance), share them with the troops, and
make them available for execution (taking an executing
stance). If plans break down, the commander must return
to a modifying stance till the plan is repaired.

Dynamic stances are modeled by allowing plan properties
to be mentioned and modified by tasks in the plan
network. In this way we can create explicit plan
management plans that are generated and executed just as
any other plan handled by the planner. The only
difference is that the preconditions and effects of such
“plan management tasks” refer to properties maintained
by the plan manager and their execution signals the plan
manager to alter the current set of plan properties. This
will be illustrated in the next section.

5. Illustration

We illustrate some of capabilities of the planner by
describing a partial planning trace, focusing on the plan
management capabilities of the planner. The example is
taken from a battalion-level helicopter attack mission
which we have modeled in simulation. In this case, a
battalion consists of two attack companies and a combat
service support unit. Each company of helicopters
consists of five vehicles modeled using Soar/IFOR and a
company command agent modeled using the Soar/CFOR
planner. The battalion commander and a combat service
support unit are also modeled using Soar/CFOR. We
illustrate the capabilities of the planner by examining the
planning performed by the planning agents in the course
of a typical exercise. During such an exercise, the
battalion command agent receives orders from its
commanding unit (a brigade commander). This consists
of the goal of the battalion’s mission, a partial plan for
achieving it, and a list of enemy activity. The command
agent generates an abstract plan to achieve the goal and
sends it to the subordinate commanders, who in turn
further elaborate their portion of the battalion plan (each
avoiding the introduction of threats into their sibling’s
plan). The elaborated company plans are transmitted back
to the battalion commander, who verifies there are no
conflicts between the company plans (only the most
rudimentary plan merging is currently implemented). If
there are no problems, execution begins and each
commander agent monitors the execution from its
respective perspective.

 Figure 4: A battalion commander’s plan network

Changes in the environment can invalidate current
plans and replanning occurs in a layered fashion.
Plans become more specific as one moves down the
chain of command. This means a subordinate has
some latitude in executing and repairing a plan while
staying within the constraints mandated by their
superiors. This latitude is implemented by the
appropriate definitions of plan management tasks. If a
plan failure exceeds the scope of this authority (as
when they require modifying the partial plan given to
the subordinate), the unit’s commander must detect the
flaw, repair the plan, and communicate the change to
its subordinates.

Each commander represents several plans in a single task
network: there are base-level plans for each of the agents
the commander knows about. For example, a company
commander will have a base-level plan for its own
activities, those of its sibling company, and those of any
enemies it has been informed of. Each commander also
maintains a plan management plan that explicitly
implements the military decision making process. Figure 4
illustrates the plan network of the battalion commander at
the early stages of mission planning. There are three
plans. The plan management plan is in the box to the left
and is in partial stage of execution. The box in the middle
is the preliminary battalion base-level plan (only a single
abstract step at this point in the plan generation process).
The box on the right is the current expected plans of the
enemy forces related to this mission.

We will briefly describe the execution of two of the
battalion’s plan management tasks to give some flavor for

how plan management modulate the behavior of the
planner at the base level. These two task definitions are
illustrated in Figure 5: Receipt_of_Mission and
Develop_Plan. These are standard STRIPS [3] operator
definitions with one minor difference: the commands field
specifies the procedures that are to be executed at certain
specified times during the execution of the task.
Commands can occur at task initiation, termination or
failure and commands may generate bindings (thereby
implementing a primitive form of information gathering).

When a commander agent is sent a new mission, a domain
specific rule asserts the new goal of extracting the plan
contained with this order: plan-for(?me ?order ?plan).
This is achieved by adding a Receipt_of_Mission task to
the management plan. When initiated, the task invokes a
sequence of commands that create a new plan structure
and populate it with the partial plan contained within the
commander's order. The disable-modification command
makes this plan initially unmodifiable (i.e., the planner is
prevented from resolving flaws in this plan, local or
otherwise). Modifications can be made once the planner
initiates a Develop_Plan task. At the start of
Develop_Plan’s execution, the enable-modification
command changes the planner’s stance with respect to this
base-level plan. The planner is now free to resolve flaws
through its standard repertoire of plan modification
methods (simple-establishment, promotion, etc.). If all
goes well, all flaws will eventually be eliminated from the
plan, satisfying the effect that the plan is not flawed (as
well as other effects that I will not describe here). At this
point, the Develop_Plan operator can be terminated, and

ReceiptofMission {?recipient ?sender ?order ?suborder ?plan}
 :pre order{?sender ?recipient ?order}

:add suborder{?order ?recipient ?suborder}
order{?recipient ?recipient ?suborder}
plan-for{?recipient ?suborder ?plan}
plan{?plan}
plan-status{?recipient ?plan UNAPPROVED}

:bindings {{?recipient != ?sender} {?order != ?suborder}}
 :commands

:at-start ?plan = create-plan{}
:at-start ?suborder = extract-order{?recipient ?order}
:at-start populate-plan{?plan ?suborder}
:at-start disable-modification{?plan}

DevelopPlan{?group ?order ?plan ?lead ?second}
 :pre plan-for{?group ?order ?plan}

oriented-self{?group YES}
flawed{?plan}

 :add leadMission{?lead}
secondaryMission{?second}

 :del commonKn{?plan ?group}
flawed{?plan}

 :commands
:at-start enable-modification{?plan}
:at-end disable-modification{?plan}

Figure 5: Definition of some plan management tasks

the disable-modification command is executed, locking in
the changes made to this base-level plan.

Sometimes things do not go as expected. For example,
perhaps after the group begins executing the plan it
receives new information about enemy activity that
violates some protection constraint in the base-level plan
(say a location that was assumed to be safe to land is now
threatened). This threat is represented as an unexpected
event that asserts a FLAWED(P) predicate, which in turn
violates the effect established by Develop_Plan (which, in
fact, violates a maintenance constraint in ExecutePlan,
causing this task to fail). Without plan management, the
planner would immediately try to resolve the flaw in the
base-level plan P, ignoring the other members currently
executing this plan, (who may be unaware of the flaw). In
contrast, as P is unmodifiable, the planner is prevented
from resolving the flaw until it deliberately enables
modifications through the management plan. The planner
will deliberately add a Repair_Plan step that corrects the
plan (by re-enabling and then disabling modification), and
transmit the repaired plan, thereby reestablishing common
knowledge of the group activities.

6. Conclusions
In this paper we described our efforts to model command
and control entities for Joint Synthetic Battlespaces.
Command agents require a broader repertoire of
capabilities than is typically modeled in simulation. The
Soar/CFOR agent architecture supports these broader
requirements, allowing command agents to develop
mission plans involving multiple subordinate units,
monitor execution, dynamically modify mission plans in
response to situational contingencies, collaborate with
other decision makers, and deal with a host of
organizational issues. Ongoing work seeks to extend
these capabilities and demonstrate the generality of the

system by modeling other command entities such as Air
Force airborne command elements

7. Acknowledgements

We gratefully acknowledge the support of the Defense
Advanced Research Projects Agency (DARPA) under the
Advanced Simulation Technology Thrust (ASTT)
program, via subcontract L74158 with the University of
Michigan, under prime contract N61339-97-K-008.

8. References

[1] Ambros-Ingerson, J. A. and Steel, S. 1988.
“Integrating Planning, Execution and Monitoring,” in
AAAI-88.

[2] R. Calder,, R. Carreiro,, J. Panagos, G. Vrablik, B.
Wise. “Architecture of a Command Forces
Command Entity.” Proceedings of the Sixth
Conference on Computer Generated Forces and
Behavioral Representation. Orlando, FL, 1996.

[3] Fikes, R. E. and Nilsson, N. J., 1971. STRIPS: A
new approach to the application of theorem proving
to problem solving. Artificial Intelligence 2 (3-4).
189-208.

[4] Golden, K., Etzioni, O., and Weld, D. 1994.
“Omnipotence without Omniscience: Efficient Sensor
Management for Planning

[5] J. Gratch. "Task-decomposition planning for
command decision making," Proceedings of the Sixth
Conference on Computer Generated Forces and
Behavioral Representation, STRICOM-DMSO, July,
1996, pp. 37-45.

[6] R. Hill, J. Chen, J. Gratch, P. Rosenbloom, M.
Tambe, "Soar-RWA: Planning, Teamwork, and
Intelligent Behavior for Synthetic Rotary Wing
Aircraft," Proceedings of the 7th Conference on

Computer Generated Forces & Behavioral
Representation, Orlando, FL., May 12-14, 1998.

[7] R. Hill, J. Chen, J. Gratch, P. Rosenbloom, M.
Tambe, "Intelligent Agents for the Synthetic
Battlefield: A Company of Rotary Wing Aircraft,"
Proceedings of Innovative Applications of Artificial
Intelligence (IAAI-97), Providence, RI, July 1997.

[8] Kambhampati, S. and Hendler, J. 1992. A validation-
structure-based theory of plan modification and reuse.
Artificial Intelligence 55, pp 193-258.

[9] McAllester, D. and Rosenblitt, D. 1991. “Systematic
Nonlinear Planning,” in AAAI-91.

[10]Myers, K. L., 1998. Towards a Framework for
Continuous Planning and Execution. AAAI Fall
Symposium on Distributed Continual Planning,
Orlando FL.

[11]Newell, A. 1990. Unified Theories of Cognition.
Harvard Press.

[12]Mackworth, A. The logic of constraint satisfaction.
Artificial Intelligence 58, 1992.

[13] Selman, B. and Kautz, H. The role of domain-
specific knowledge in the planning as satisfiability
framework. Proceedings of the Fourth International
Conferences on Artificial Intelligence Planning
Systems (AIPS). Pittsburgh, PA, 1998.

[14]Rasmussen, J., Pejtersen, A., and Goodstein, L.
(1994). Cognitive Systems Engineering. New York:
John Wiley & Sons, Inc.

[15] D. Wilkins. Practical Planning. Morgan Kaufmann
Publishers, Inc., San Mateo, CA, 1988.

Author Biography

JONATHAN GRATCH is a computer scientist at the
University of Southern California Information Sciences
Institute (USC-ISI) and a research assistant professor in
the computer science department at USC. He completed
his undergraduate education in computer science at the
University of Texas at Austin in 1986. He received his
Ph.D. in 1995 from the University of Illinois in Urbana
Champaign. His research interests are in the areas of
planning, learning and decision theory.

RANDALL W. HILL, JR. is a project leader at the
University of Southern California Information Sciences
Institute (USC-ISI) and a research assistant professor in
the computer science department at USC. He received his
B.S. degree from the United States Military Academy at
West Point in 1978 and his M.S. and Ph.D. degrees in
computer science from USC in 1987 and 1993,
respectively. His research interests are in the areas of
integrated intelligent systems, cognitive modeling,
perception, and intelligent tutoring systems.

