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ABSTRACT: In this paper we describe our efforts to model command and control entities for Joint Synthetic 
Battlespaces. Command agents require a broader repertoire of capabilities than is typically modeled in simulation. 
They must develop mission plans involving multiple subordinate units, monitor execution, dynamically modify mission
plans in response to situational contingencies, collaborate with other decision makers, and deal with a host of 
organizational issues. We describe our approach to command agent modeling that addresses a number of these 
issues through its continuous and collaborative approach to mission planning. 

1. Introduction Continuous Planning
To realistically model C2 behavior requires a continuous 

Two of the challenges in modeling command and control planning capability. Planning is a reasoning process that 
(C2) entities in a Joint Synthetic Battlespace (JSB) are to generates an ordered set of tasks from a goal description 
provide operational realism and cost effective deployment (addresses issue 1). For the purposes of modeling the C2 
of these entities. The lack of realism in existing synthetic activities in a JSB, it is not sufficient to establish a 
C2 forces usually stems from being unable to: (1) behave mission plan, launch the aircraft, and wait until the aircraft 
in a goal-directed manner, particularly in situations not return to determine success. Plans sometimes fail, 
strictly covered by doctrine; (2) dynamically modify situational interrupts (mission exceptions) occur, and 
mission plans in response to a situational contingency; (3) opportunities arise, all making it necessary to re-plan the 
collaborate in group decision making and behavior; and mission during the execution phase. C2 entities must 
(4) vary organizational behavior by modeling differences continually assess the situation, monitor the execution of 
in role, organization, and perspective among individual mission plans, and react to conditions affecting their goals 
entities. To be cost effective, synthetic C2 forces need to: and plans before and during the mission by dynamically 
(5) behave autonomously, reducing the requirement for replanning so that their goals may be achieved in new 
human control in JSB exercises; (6) represent a wide situations (issue 2). When a continuous planning 
range of organizations and scenarios. In this paper we capability is combined with a sufficiently deep domain 
describe our efforts to support such abilities through the theory of air operations, C2 entities become more capable 
development of a flexible, integrated model of C2 of autonomous behavior (issue 5), covering a wide range 
behavior involving multiple echelons in the domain of of scenarios (issue 6). 
Army Attack Helicopter Battalion operations. Here we 
focus on two key aspects of the behavior required to Collaborative Behavior 
accomplish this goal: continuous planning and  Mission planning and execution is a collaborative 
collaborative behavior. enterprise (issue 3) involving C2 entities distributed 

across multiple echelons. Not only must these entities be
capable of continuous planning, but they must also model 

mailto:gratch,hill}@isi.edu


    
    

  
   

      
   
      
      

      
   

     
  

   

       
  

  
   

       
    

      
     

       
    

     
       

     
         

       
    

     
     

     
     

  
       
         

     
        

   
   

       
     

      
  

      
      

        
     

     
     

    
        

    
     
     

     
       

     
       

     
  

     
  

     
     

   
      

       
     

    
    

      
      

      
     
     

      
     

   
   

     
    

     
     

        
    

       
   

    
     

      
     

       
    

    

each other’s goals (issue 1) and plans, and reason about 
how decisions they make will affect others. Factors such 
as the entity’s role, perspective and the "management 
culture" of the organization will affect the content and 
form of communications among [14], and will ultimately 
change the overall behavior of the organization (issue 4).
Without collaboration, autonomous group behavior is not 
possible (issue 5). Like continuous planning, 
collaboration requires an understanding of C2 operations 
domain, to include models of domain-specific C2 
communications, organizations, and relationships. Given 
these models, it is possible to represent a range of 
different organizations (issue 6). 

This combination of capabilities has been developed in 
constructing the Soar cognitive architecture [12];
intelligent forces (IFORs) for individual synthetic aircraft;
and command forces (CFORs), which command 
organizations of individual aircraft. We have developed 
and demonstrated these capabilities within the domain of 
the Army Attack Helicopter Battalion. We will illustrate 
the capabilities of our system with examples from this 
domain. 

2. Related work 

Before proceeding to the technical details of our 
approach, it is useful to set some context by contrasting
our methods with alternative simulation technology. Prior 
models of planning have almost exclusively focused on 
the problem of plan generation, without consideration of 
the dynamics of how the plan would be executed or 
modified. For example, the Defense Advanced Research 
Projects Agency’s (DARPA) JFACC program has 
supported planning tools that focus primarily on plan
generation and plan evaluation. In contrast, models that do
account for dynamics tend to focus exclusively on 
reactions to the exclusion of deliberate planning. For 
example, the finite state models used by semi-automated 
forces (SAFs) are excellent for reacting to immediate 
threats, but require a human in the loop to ensure goal-
directed behavior. Each of these extremes can be 
reasonable (the JFACC has many hours to generate and 
perfect a plan, whereas individual vehicles often must 
immediately react). However, modeling forces at the 
company and battalion level (where C2 can make the most
timely use of enhanced situation monitoring platforms) 
requires tight integration of plan generation, plan 
execution/monitoring, and plan repair. 

Modeling C2 nodes also brings to the forefront 
organizational issues that have been largely ignored in 
past simulation efforts. SAF models rely on human 
controllers to de-conflict interactions between units and to 

manage coordinated activities. However, as we extend 
simulation to higher levels of command, we must model 
the reasoning involved in coordination. For example, 
when an battalion commander adjusts a mission to the 
evolving situation, he must coordinate his various 
subordinate units and reason about the constraints that 
arise across these units and other friendly forces in the 
area of operations. Realistic models must account for the 
fact that the U.S. doctrine allows considerable autonomy 
to commanders when missions change dynamically. So 
during execution, a battalion commander might alter his 
plans without waiting for approval as long as the changes
are consistent with the overall intent. 

Our modeling technology resembles some of the more 
innovative approaches to command and control modeling.
For example, SRI’s CPEF system also provides a similar 
integrated model of plan generation, monitoring, and 
repair [11]. There are key differences, however, in scope 
and focus. CPEF is designed as a human in the loop
decision support tool for staff at the JFACC. The most 
closely related work is the Command Entity (CE) 
developed by Calder et al. as part of DARPA’s Command 
Forces program [2]. Like Soar/CFOR, CE is a relatively 
domain independent approach to C2 modeling and has 
been successfully applied to modeling battalion and 
company level commanders for army ground operations. 
CE is based on constraint satisfaction methods [9], a 
fundamentally different reasoning methodology than the 
planning approach underlying our technology. Planning 
and constraint satisfaction methods offer unique 
advantages and disadvantages and it is hard to 
characterize one as being more or less suitable to C2 
modeling. The general view in the AI reasoning 
community is that constraint satisfaction methods are 
more efficient (allowing their application to larger 
problems) but they are not as easy to use, either in terms 
of incorporating domain knowledge into them or in terms
of understanding their reasoning process. Recent 
advances in planning research suggest ways of combining
these advantages, representing the domain as a planning 
problem but automatically translating it into a constraint 
satisfaction problem [13]. Although this hybrid approach
is still too restrictive for the type of reasoning discussed in
this paper, it suggests a long-term development scheme 
where we can present domain developers with the 
advantages of the planning perspective today, and shield 
them from future changes in the underlying 
implementation. 
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Figure 1:  Soar/CFOR Architecture 

3. Continuous Planning 

The details of the technical approach are described by 
function. We first describe how Soar/CFOR addresses the 
issue of continuous planning. Next, we discuss the 
planner’s support for modeling a distributed organization 
of C2 nodes. Next, we describe intelligent forces 
(IFORs). Finally we describe our approach to knowledge 
/ software engineering. Figure 1 illustrates the basic 
architecture of a Soar/CFOR C2 agent. 

Planning is a key capability that separates command 
agents from the more reactive automated forces typically 
modeled in simulations such as ModSAF. Planning 
requires predicting the outcome of events into the future 
and proactively deciding on appropriate courses of action. 

Prior work in deliberative mission planning has tended to
focus on plan generation. In contrast, researchers who 
have tried to embed planning agents in realistic and 
dynamic environments have increasingly advocated the 
view that plan generation, plan execution/monitoring, and
plan repair are fundamentally inseparable (the 1998 AAAI
workshop on Distributed Continual Planning was devoted 
to this integrated view of planning). Our Soar/CFOR 
planner builds on planning algorithms that support this 
integrated view: specifically, IPEM [1] and XII [4]. These
planners share many features with traditional AI planning
systems like SIPE [15] but interleave the plan generation 
process with execution and repair activities. 

Plans in Soar/CFOR are hierarchically organized
sequences of tasks. Each task corresponds to some process
and the task description includes (1) initiation or 
preconditions of the process, (2) completion conditions, 
(3) interruption conditions, and (4) the responsible entity 
(who performs the process). Task conditions are used to 
assess the validity of generated plans and enable the 

planner to monitor the plan’s proper execution. Tasks can 
be further decomposed into subtasks. Typically, this 
decomposition is context dependent: depending on the 
current or projected situation, different subtasks may be 
appropriate. (Different decompositions can be thought of 
as alternative courses of action to accomplish the high-
level task.) If the planner chooses a particular 
decomposition, the context validating this decision 
recorded in the plan structure so that, if the context 
changes, the planner can verify whether the decomposition
is still appropriate. For example, a helicopter company 
may choose to fly in a column (maximizing speed)
because it believes there are no enemy forces in its avenue
of approach. If subsequent intelligence contradicts this 
assumption, a C2 agent can recognize that a slower but 
safer formation is more appropriate. 

The Soar/CFOR planner supports dynamic plan 
monitoring and repair by performing continuous situation 
monitoring. On-board sensors and situation reports are 
assessed by domain-specific routines to maintain a current 
awareness of the situation. The planner continuously
compares this awareness against its current plans, and uses
these comparisons as inputs into the reasoning underlying
plan monitoring and repair. For example, if a battalion 
commander, modeled by Soar/CFOR, receives a report
that one of its companies has reached the holding area, the
planner recognizes that this information satisfies the 
completion condition of the ingress task. This in turn 
allows the planner to infer that the ingress has terminated
and the company is now prepared to engage. In contrast, 
a report that the company is delayed might violate the 
current constraints in the plan and force some repair
activities. So if the delayed flight was to engage in a 
coordinated attack with another company, the battalion 
commander might delay the second company’s departure, 
or even cancel the entire mission. 



    
     

         
        

    
     

  
        

  
   

     
   

     
    

    
       

     

      
    

  
   

   
   

     
       

     
    

       
      

         
      

   
   

      
     

     
         

       
 

    
      

     
      

    
    

    
    

      
        

    
           

     
    

     
     

         
     

     
   

    
   

      
   

       

    Figure 2: An example of two interacting plans 

Algorithmic Details 

More specifically, Soar/CFOR plans by constraint posting
in the same fashion as other classical planners such as 
SNLP [10]. Constraints are added in response to threats in
the current plan network. For example, if an action has an 
open precondition, the planner tries to resolve this threat 
by identifying an existing action that establishes the effect
(simple-establishment) or introduce a new action (step-
addition). Both activities add constraints to the current 
plan. Simple-establishment asserts a protection constraint
that protect the effect from the moment it is created until it
is used by the precondition, and binding constraints that 
ensure the effect unifies with the open-precondition. Step-
addition posts a constraint to include the new action in 
addition to the constraints posted by simple-establishment.
Unlike SNLP, actions have duration: they must be 
explicitly initiated and terminated and actions may fail. 
Actions can also be decomposed hierarchically. 

We refer to actions as tasks and the set of  constraints  
introduced by the planner as a plan network. Besides this 
network, the planner maintains a declarative 
representation of the perceived state of the world or 
current world description (CWD).  The CWD allows the 
planner to monitor the execution of task and detect any 
surprising changes in the environment. The planner may 
only initiate tasks whose preconditions unify with the 
CWD (and are not preceded by any uninitiated tasks). 
Similarly, tasks are terminated when all of their effects 
appear in the CWD. Task initiation and termination may 
be interleaved with other planning operations. As the 
CWD reflects the perceived state of the world, it may
change in ways not predicted by the current plan network. 

For example, some external process modifying the 
environment is detected by changes to the CWD not 
predicted by the current set of executing tasks. These 
changes may provide opportunities (as when an 
unsatisfied precondition is unexpectedly observed in the 
world). They may also threaten constraints in the plan
network, forcing the planner to modify the task network to
resolve them. 

Figure 2 illustrates a set of tasks maintained in a task 
network. Each task has a set of preconditions (predicates
listed at the bottom left of each task) and a set of effects 
(predicates listed at the bottom right of each task). A 
valid plan must ensure that each precondition is 
established by some effect. In the figure, horizontal bars 
illustrate correspond to the protection constraints. Each 
protection constraint represents the fact that an effect is 
being used to establish a precondition, and that the effect 
must be protected during the duration of the protection 
constraint. In the figure, one protection constraint is 
possibly violated: the fact that the CSS unit is moving the 
gas station threatens the protection constraint that the 
attack helicopter needs the gas. This is only a possible 
violation because the plan does not specify an ordering 
between the two movement tasks. If the helicopters move 
first, there is no problem. Planning works by identifying 
such potential threats and resolving them (in this case by 
deciding that the helicopters must depart before the gas 
station can be moved). 

Soar/CFOR has some general plan repair operators that 
allow it to non-chronologically retract problematic 
constraints from the plan network. The CFOR planner 
augments this capability by incorporating a validation-
structure approach to plan repair [8]. The details of this 



   
     

     
    

    

      
       
      

    
     

    
    

 
    

     

    
    

   
   
    

    
     

   
       

   
  

     
    

   
     

       
        

    
   

     
   

       
    
        

     
        

     
   

     
  

        
   

     

        
 

 
   

   
     

     
  

   
    
      
       

    
     

    
       

      
       

   
   
   

    
   

   
     

    
      

       
        

     

      
       

   
        

     
 

     
      
    

   
      

   
  

     
  

    
     

  
  

are unimportant to understand the basic ideas in this 
article. The main point is that the planner has a number of
operations that allow it to modify its current plans. Some 
of these operations add constraints to the plan network, 
while other operations retract constraints. 

4. Collaborative Behavior 

Soar/CFOR supports the modeling of distributed planning
nodes in an organization. We have demonstrated this 
capability in the context of Army aviation planning where 
a battalion command agent plans collaboratively and 
autonomously (no human in the loop) with his subordinate
attack company agents and a combat service support 
(logistics) agent. The Soar/CFOR planner provides 
domain-independent reasoning capabilities for 
organizational modeling and thus provides considerable 
leverage in modeling military command organizations. 

Soar/CFOR is designed to model an organization of 
agents that plan in a distributed and asynchronous manner.
Different organizational structures are easily represented 
as input to the planner: one can manipulate the number 
and type of elements, how they exchange information, and
the authority relationships between them. The 
architecture also supports differing levels of autonomy 
between commanders and their subordinates, thereby 
facilitating the modeling or more or less rigid 
organizational structures. For example, current military 
doctrine specifies a relatively rigid and hierarchical 
distributed planning process. This doctrine is represented 
in Soar/CFOR as a data structure, rather than being 
reflected in the planning architecture, making it is 
relatively easy to program in alternative organizational 
structures. 

Three novel characteristics of the planner support this 
reasoning. First, Soar/CFOR has the ability to maintain 
multiple plans in memory and reason about their 
interactions. Figure 2 illustrates that the planner is 
reasoning about two plans (an attack helicopter plan and a
CSS plan), and that it can detect potential interactions 
between plans of different agents. This allows a command 
agent to not only reason about his own activities, but also
represent (to some level of detail) the activities of other 
friendly units and the projected activities of enemy units.
This provides the command agent a more coherent picture
of the overall situation and allows the agent to understand
the interrelationships between plans and the consequences
of possible plan changes on other units. For example, 
consider a situation where JSTARS identifies a large 
movement of enemy ground forces. By modeling the 
activities in its area of operations, a command agent can 
identify which units are impacted by the new information, 

which units to re-task, and how these changes affect other
friendly forces. 

Second, Soar/CFOR maintains explicit representations of 
plan management activities. These are activities that 
provide structure to the process of planning and 
implement protocols for how and when distributed 
planning agents should exchange information. For 
example, the Army has spent considerable effort 
formalizing the planning process in what has become 
known as the Military Decision Making Process (MDMP).
MDMP breaks planning into a sequence of tasks such as 
mission analysis, course of action development, course of 
action analysis, etc. These tasks differ from those usually
considered by traditional planning systems as they refer to
stages of the planning process, rather than primitive tasks 
an agent performs in the world. (Plan management is 
typically viewed as a form of meta-reasoning and has been
traditionally either ignored or modeled with very different
algorithms and data structures than those used in 
planning.) In the Soar/CFOR planner, these plan
management activities are represented as an explicit plan 
and are modeled using the same data structures as other 
domain activities. The inputs and outputs of these plan 
management tasks, in turn, determine the flow of 
information between agents in the organization. The 
advantage of this scheme is that (1) interactions between 
planning agents can be programmed as easily as other 
domain activities, (2) they can be programmed using the 
same data structures, and (3) they provide a uniform 
medium for supporting visualization and traceability of 
the reasoning process. 

Finally, Soar/CFOR supports the modeling of different 
management styles, what we refer to as planning stances. 
Specifically, a domain modeler can vary the degree to 
which a C2 planning agent will be cooperative or 
antagonistic to the activities of other agents. For example, 
a commander will try to support or at least de-conflict 
with the plans of other commanders, but will try to defeat
the plans of opposition forces. Soar/CFOR supports a 
spectrum of such different styles. Additionally,
Soar/CFOR allows a domain modeler to represent several
distinctions related to authority and autonomy. For 
example, one can indicate who a C2 agent has the 
authority to command, and one can indicate whose 
commands must be followed to the letter and whose are 
open to counter proposals. 

Algorithmic Details 

These three characteristics—reasoning about multiple 
plans, maintaining plan management plans, and modeling 
management styles—are supported by a plan manager 
that augments the planner’s basic reasoning capabilities. 
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Figure 3: Modeling authority 

The plan manager keeps track of the fact that different 
tasks in the plan network correspond to the activities of 
different agents. Tasks are organized into a higher-level 
data structure called “a plan.” Plans are intended to refer  
to clusters of activities that are meaningful in a particular 
domain. In a multi-agent application, different plans most
naturally refer the planner’s understanding of the activities 
of different agents (e.g., my plans vs. my enemy’s plans). 
The plan manager reasons about interactions between 
plans and can alter the way the planner behaves towards 
different plans in the plan network. 

Planning stances are implemented by constraining the way
the planner may modify different plans in the plan 
network. For example, by default the planner will try to 
resolve every perceived problem in every plan it 
represents. However, one may not have the authority to 
make changes in some units’ plan, and  one  generally  
wants there to be problems in the plans of adversaries. 
The plan manager realizes these different behaviors by 
changing the control properties associated with the 
different plans in memory. 

Figure 3 illustrates how overlapping plans can be used to 
model a notion of authority. In military operations, one 
has to accept orders from a commander. These orders 
must be obeyed, but one has some flexibility in fleshing 
out the details. A subordinate planning agent should 
distinguish between the part of the plan that is fixed and 
the part that it has the authority to alter, if for example, the
plans must be repaired during the execution of the orders.
This can be modeled by representing overlapping plans. 
One plan contains the initial orders and is deemed 
unmodifiable but executable through a suitable choice of 
plan properties. This plan is contained within a larger 
plan that allows modifications. Any changes made by the 
subordinate agent only appear in the larger plan, and the 
initial orders must remain unchanged. 

Up to this point we’ve only discussed how to represent 
different planning stances. However a plan management 
strategy demands the ability to change stances 
dynamically as plans are generated and executed. For 
example, to implement the military decision-making 
process, an agent must take a modifying stance towards 
the mission plan until it has evolved to a satisfactory level.
At that point, it must commit to these plans (taking an 
unmodifying stance), share them with the troops, and 
make them available for execution (taking an executing 
stance). If plans break down, the commander must return
to a modifying stance till the plan is repaired. 

Dynamic stances are modeled by allowing plan properties
to be mentioned and modified by tasks in the plan 
network. In this way we can create explicit plan
management plans that are generated and executed just as 
any other plan handled by the planner. The only 
difference is that the preconditions and effects of such 
“plan management tasks” refer to properties maintained  
by the plan manager and their execution signals the plan 
manager to alter the current set of plan properties. This 
will be illustrated in the next section. 

5. Illustration 

We illustrate some of capabilities of the planner by 
describing a partial planning trace, focusing on the plan
management capabilities of the planner. The example is 
taken from a battalion-level helicopter attack mission 
which we have modeled in simulation. In this case, a 
battalion consists of two attack companies and a combat 
service support unit. Each company of helicopters 
consists of five vehicles modeled using Soar/IFOR and a 
company command agent modeled using the Soar/CFOR 
planner. The battalion commander and a combat service 
support unit are also modeled using Soar/CFOR. We 
illustrate the capabilities of the planner by examining the 
planning performed by the planning agents in the course 
of a typical exercise. During such an exercise, the 
battalion command agent receives orders from its 
commanding unit (a brigade commander). This consists 
of the goal of the battalion’s mission, a partial plan for 
achieving it, and a list of enemy activity. The command 
agent generates an abstract plan to achieve the goal and 
sends it to the subordinate commanders, who in turn 
further elaborate their portion of the battalion plan (each 
avoiding the introduction of threats into their sibling’s 
plan). The elaborated company plans are transmitted back 
to the battalion commander, who verifies there are no 
conflicts between the company plans (only the most 
rudimentary plan merging is currently implemented). If 
there are no problems, execution begins and each 
commander agent monitors the execution from its 
respective perspective. 



      
    
        
     
       

     
    

      
     
        

    
        

 

    
        

  
    

     
     

   
   

     
      

        
       

    
     

           
   

       
      

      
     

    
       

   
       

      
     

    
    

          
        

   
        

     
       

      
 

   
    

   
    

  
    

   
      
     

    
   

            
  

     Figure 4: A battalion commander’s plan network 

Changes in the environment can invalidate current 
plans and replanning occurs in a layered fashion. 
Plans become more specific as one moves down the 
chain of command. This means a subordinate has 
some latitude in executing and repairing a plan while 
staying within the constraints mandated by their 
superiors. This latitude is implemented by the 
appropriate definitions of plan management tasks. If a 
plan failure exceeds the scope of this authority (as 
when they require modifying the partial plan given to 
the subordinate), the unit’s commander must detect the 
flaw, repair the plan, and communicate the change to 
its subordinates. 

Each commander represents several plans in a single task
network: there are base-level plans for each of the agents 
the commander knows about. For example, a company 
commander will have a base-level plan for its own 
activities, those of its sibling company, and those of any 
enemies it has been informed of. Each commander also 
maintains a plan management plan that explicitly
implements the military decision making process. Figure 4
illustrates the plan network of the battalion commander at
the early stages of mission planning. There are three 
plans. The plan management plan is in the box to the left
and is in partial stage of execution. The box in the middle 
is the preliminary battalion base-level plan (only a single 
abstract step at this point in the plan generation process). 
The box on the right is the current expected plans of the 
enemy forces related to this mission. 

We will briefly describe the execution of two of the 
battalion’s plan management tasks to give some flavor for 

how plan management modulate the behavior of the 
planner at the base level. These two task definitions are 
illustrated in Figure 5: Receipt_of_Mission and 
Develop_Plan. These are standard STRIPS [3] operator 
definitions with one minor difference: the commands field 
specifies the procedures that are to be executed at certain 
specified times during the execution of the task. 
Commands can occur at task initiation, termination or 
failure and commands may generate bindings (thereby
implementing a primitive form of information gathering). 

When a commander agent is sent a new mission, a domain
specific rule asserts the new goal of extracting the plan 
contained with this order: plan-for(?me ?order ?plan). 
This is achieved by adding a Receipt_of_Mission task to 
the management plan. When initiated, the task invokes a 
sequence of commands that create a new plan structure 
and populate it with the partial plan contained within the 
commander's order. The disable-modification command  
makes this plan initially unmodifiable (i.e., the planner is 
prevented from resolving flaws in this plan, local or 
otherwise). Modifications can be made once the planner 
initiates a Develop_Plan task. At the start of 
Develop_Plan’s execution, the enable-modification 
command changes the planner’s stance with respect to this 
base-level plan. The planner is now free to resolve flaws 
through its standard repertoire of plan modification 
methods (simple-establishment, promotion, etc.). If all 
goes well, all flaws will eventually be eliminated from the
plan, satisfying the effect that the plan is not flawed (as
well as other effects that I will not describe here). At this 
point, the Develop_Plan operator can be terminated, and 



      

  

     
    
     
     

            
     

  
      

      
     
       

   
      

 
    

       
        
     

  
   

      
 

      
      

     
     

     
     
     

   
      

   

      
  

    
      
    

    
 

  
    

     
    
     
   

     
      

     

   

    
     

     
   

        
    

   
  

    

         
        

 
         

 
        

    
             

     
  

      
           
           
         
        
        

          
                  
                
               

ReceiptofMission {?recipient ?sender ?order ?suborder ?plan}
   :pre order{?sender ?recipient ?order} 

:add suborder{?order ?recipient ?suborder}
order{?recipient ?recipient ?suborder}
plan-for{?recipient ?suborder ?plan}
plan{?plan}
plan-status{?recipient ?plan UNAPPROVED}

:bindings {{?recipient != ?sender} {?order != ?suborder}}
   :commands 

:at-start ?plan  = create-plan{}
:at-start ?suborder = extract-order{?recipient ?order}
:at-start populate-plan{?plan ?suborder}
:at-start disable-modification{?plan} 

DevelopPlan{?group ?order ?plan ?lead ?second}
   :pre plan-for{?group ?order ?plan}

oriented-self{?group YES}
flawed{?plan}

   :add leadMission{?lead}
secondaryMission{?second}

   :del commonKn{?plan ?group}
flawed{?plan}

   :commands 
:at-start   enable-modification{?plan} 
:at-end   disable-modification{?plan} 

Figure 5: Definition of some plan management tasks 

the disable-modification command is executed, locking in
the changes made to this base-level plan. 

Sometimes things do not go as expected. For example, 
perhaps after the group begins executing the plan it 
receives new information about enemy activity that 
violates some protection constraint in the base-level plan
(say a location that was assumed to be safe to land is now
threatened). This threat is represented as an unexpected 
event that asserts a FLAWED(P) predicate, which in  turn 
violates the effect established by Develop_Plan (which, in
fact, violates a maintenance constraint in ExecutePlan, 
causing this task to fail). Without plan management, the 
planner would immediately try to resolve the flaw in the 
base-level plan P, ignoring the other  members  currently
executing this plan, (who may be unaware of the flaw). In 
contrast, as P is unmodifiable, the planner is prevented  
from resolving the flaw until it deliberately enables 
modifications through the management plan. The planner 
will deliberately add a Repair_Plan step that corrects the 
plan (by re-enabling and then disabling modification), and
transmit the repaired plan, thereby reestablishing common
knowledge of the group activities. 

6. Conclusions 
In this paper we described our efforts to model command
and control entities for Joint Synthetic Battlespaces. 
Command agents require a broader repertoire of 
capabilities than is typically modeled in simulation. The 
Soar/CFOR agent architecture supports these broader 
requirements, allowing command agents to develop 
mission plans involving multiple subordinate units, 
monitor execution, dynamically modify mission plans in 
response to situational contingencies, collaborate with 
other decision makers, and deal with a host of 
organizational issues. Ongoing work seeks to extend 
these capabilities and demonstrate the generality of the 

system by modeling other command entities such as Air 
Force airborne command elements 
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