Computers & Graphics 37 (2013) 193-201

Contents lists available at SciVerse ScienceDirect M

&GRAPHICS

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Special Section on Touching the 3rd Dimension

Adapting user interfaces for gestural interaction with the flexible action
and articulated skeleton toolkit

Evan A. Suma®*, David M. Krum?, Belinda Lange ?, Sebastian Koenig?, Albert Rizzo?, Mark Bolas "

2 Institute for Creative Technologies, University of Southern California, 12015 Waterfront Drive, Los Angeles, CA 90094, United States
P School of Cinematic Arts, University of Southern California, 900 West 34th Street, Los Angeles, CA 90089, United States

ARTICLE INFO

ABSTRACT

Article history:

Received 9 September 2012
Received in revised form

25 November 2012

Accepted 30 November 2012
Available online 7 December 2012

Keywords:

Natural interaction
Gesture

User interfaces
Video games
Middleware

We present the Flexible Action and Articulated Skeleton Toolkit (FAAST), a middleware software
framework for integrating full-body interaction with virtual environments, video games, and other user
interfaces. This toolkit provides a complete end-to-end solution that includes a graphical user interface
for custom gesture creation, sensor configuration, skeletal tracking, action recognition, and a variety of
output mechanisms to control third party applications, allowing virtually any PC application to be
repurposed for gestural control even if it does not explicit support input from motion sensors. To
facilitate intuitive and transparent gesture design, we define a syntax for representing human gestures
using rule sets that correspond to the basic spatial and temporal components of an action. These
individual rules form primitives that, although conceptually simple on their own, can be combined both
simultaneously and in sequence to form sophisticated gestural interactions. In addition to presenting
the system architecture and our approach for representing and designing gestural interactions, we also
describe two case studies that evaluated the use of FAAST for controlling first-person video games and
improving the accessibility of computing interfaces for individuals with motor impairments. Thus, this
work represents an important step toward making gestural interaction more accessible for practi-

tioners, researchers, and hobbyists alike.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Recent advances in low-cost depth sensing technology have
led to a proliferation of consumer electronics devices that can
sense the user’s body motion. The release of the Microsoft Kinect
in late 2010 has sparked the rapid formation of a large and active
community that has explored a myriad of uses ranging from
informal hobbyist “hacks” to scientific research projects and
commercial applications. However, despite the widespread acces-
sibility of full-body motion sensing devices, designing intuitive
and powerful gestural interactions remains a challenge for devel-
opers. In general, though the Kinect holds the record for the
fastest selling consumer electronics device in history, the sales of
many commercial Kinect for Xbox 360 game titles have been
poor, which has been partially attributed to the lack of well-
designed games that integrate body motion seamlessly into the
experience [1,2]. Indeed, research has shown that performing
physical arm movements and gestures can have a profound
impact on the user’s attitudinal and emotional responses to visual
stimuli [3-5]. These observations point to the need for both a

* Corresponding author.
E-mail address: suma@ict.usc.edu (E.A. Suma).

0097-8493/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cag.2012.11.004

theory of “gesture design” as well as the tools to enable the
creation and customization of gestural interactions for 3D user
interfaces and interactive media.

An important motivator for our work is the application of
video game technology toward advances in the areas of rehabi-
litation [6] and health [7]. While the clinical value of leveraging
motion gaming technology has received increased recognition in
recent years, these applications pose several notable challenges
for designers. Unlike commercial games, body-based control in a
clinical setting is not “one-size-fits-all,” and must be customiz-
able based on individual patient medical needs, range of motion,
and motivation level. For example, a client with impaired arm
movement would require a therapy game that encourages motion
just outside the boundary of comfort, but not so far that achieving
the required body pose becomes overly frustrating or impossible.
Thus, the gestural interactions need to be designed on a per-client
basis by the clinician, who often may not possess intimate
technical knowledge and programming skills. Furthermore, these
interactions need to be easily and immediately adjustable as the
patient improves or encounters problems.

To facilitate the integration of full-body control with third party
applications and games, we developed a middleware software frame-
work known as the Flexible Action and Articulated Skeleton Toolkit
(FAAST). The toolkit enables the adaptation of existing interfaces for

www.elsevier.com/locate/cag
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2012.11.004
http://dx.doi.org/10.1016/j.cag.2012.11.004
http://dx.doi.org/10.1016/j.cag.2012.11.004
mailto:suma@ict.usc.edu
http://dx.doi.org/10.1016/j.cag.2012.11.004

194 E.A. Suma et al. /| Computers & Graphics 37 (2013) 193-201

gestural interaction even though they never intended to support
input from motion sensors. To achieve the goal of intuitive and
transparent gesture design, we defined a syntax for representing
complex gestural interactions using rule sets that correspond to the
basic spatial and temporal components of an action. These “action
primitives” are represented as plain English expressions so that their
meaning is immediately discernible for both technical and non-
technical users, and are analogous to interchangeable parts on an
assembly line—generic descriptors that can be reused to replicate
similar gestural interactions in two completely different end-user
applications. FAAST provides a complete end-to-end framework that
includes a graphical user interface for custom gesture creation, sensor
configuration, skeletal tracking, action recognition, and a variety of
output mechanisms to control third party applications such as 3D
user interfaces and video games. FAAST can either be used to support
development of original motion-based user interfaces from scratch or
to repurpose existing applications by mapping body motions to
keyboard and mouse events, and thus represents an important step
toward making gestural interaction design and development more
accessible for practitioners, researchers, and hobbyists alike. In this
paper, we present the FAAST system architecture (Section 3), our
approach for representing and designing gestural interactions
(Section 4), supported output modalities for manipulating arbitrary
user interfaces (Section 5), and two case studies in which FAAST was
evaluated within a specific application domain: controlling first-
person video games for entertainment and increasing user interface
accessibility for individuals with motor impairments (Section 6).

2. Previous work
2.1. Gesture recognition

Computational analysis of human motion typically requires sol-
ving three non-trivial problems: detection, tracking, and behavior
understanding [8]. In this paper, the software libraries from OpenNI
and Microsoft Research provide both user detection and skeletal
tracking, so FAAST subsequently focuses on recognizing the action
being performed by the tracked user and generating an appropriate
output. The quantity of literature focusing on action and gesture
recognition from the computer vision and machine learning commu-
nities is vast (see [9], [10] for reviews). While approaches based on
the statistical modeling, such as Hidden Markov Models [11] and
condensation algorithms [12], are often highly sophisticated, such
methods would often be treated as “black box” algorithms by non-
technically oriented users. While this may be permissible for a video
game scenario where a user wants to recognize several distinct
gestures by example, they are not appropriate for use in clinical
settings where the fine-tuning of individual motions based on patient
requirements is essential. For example, to be useful for motor
rehabilitation, the clinician must precisely specify the motion thresh-
olds for gesture activation so that the elicited movements are just
beyond the comfortable range of motion, but still within the patient’s
ability to perform. Thus, the method described in this paper aims to
be comprehensible for non-technical users without obscuring the
low-level motion mechanics for adjustment at runtime. Our approach
is perhaps most conceptually similar to gesture recognition methods
based on the spatio-temporal finite-state machines [13], although we
represent states as simple lists of plain English expressions that
describe their spatio-temporal attributes.

2.2. Human motion representation

The use of animated virtual characters has led to the develop-
ment of a variety of high-level markup languages for designing
behaviors with synchronized gestures, facial expressions, and

spoken dialog. Examples include the virtual human markup lan-
guage (VHML) [14], avatar body markup language (ABML) [15], and
numerous others (see [16] for a review). While such languages are
useful for designing characters that communicate both verbally and
non-verbally, physical behaviors are generally represented as pre-
recorded animation files or high-level behaviors that will be
calculated through inverse kinematics (e.g. pointing at an object).
As they generally do not include specifications for representing the
mechanics of the physical motions themselves, they are not appro-
priate for designing gestural input for real-time user interfaces.

It is perhaps more informative to examine human movement
representations from other domains. Laban Movement Analysis
(LBA) is a formal and universal language for describing human
movement, including both its low-level muscular attributes and
high-level expressive features [17]. Although originally derived
from the study of dance, LMA has been applied to a variety of
domains, such as analyzing the motion of subjects who had been
affected by stroke [18]. LMA defines four components of move-
ment encompassing both kinematic and non-kinematic features:
Body, Space, Effort, and Shape. While this method provides a rich
analytic language for describing human motion, it is also highly
complex - LMA certification programs typically require many
hours of comprehensive study encompassing both the theory and
applications of the framework. Since our goal was to provide a
motion representation that is accessible for non-technical users
with minimal training, it does not require the rich, complex
conceptualization of low-level muscular anatomy nor the high-
level analysis of expressivity provided by LMA. Therefore, we
focused on defining a relatively simpler plain English format to
represent the kinematic aspects of motion without the use of
anatomical jargon.

2.3. Software frameworks

The initial version of FAAST was released in late 2010, shortly
after the release of the Microsoft Kinect, and supported a very
limited set of interactions, such as extending the arm directly
forward to activate a key press [19]. After the initial interest in the
toolkit, mouse control with the user’s hand was subsequently
added. The idea for generating virtual input events was inspired
in part by GlovePIE, a programmable input emulator that maps
signals from a variety of hardware devices such as the Nintendo
Wiimote into keyboard, mouse, and joystick commands [20].
Another similar solution is Kinemote, which allows mouse control
of Windows applications and games using a floating hand and a
“Palm Click & Drag” metaphor [21]. However, to the best of our
knowledge, FAAST is the first software toolkit that defines a
simple yet powerful action syntax and provides an interface for
non-technically oriented users to design gesture recognition
schemes in an intuitive way.

3. System overview

FAAST is designed as middleware between the depth-sensing
camera skeleton tracking libraries and end-user applications.
Currently supported hardware devices include the Kinect sensor
using the Microsoft Kinect for Windows SDK and any OpenNI-
compliant sensor using the NITE skeleton tracking library from
PrimeSense. Fig. 1 illustrates the toolkit’s architecture. To make
the toolkit as device agnostic as possible, communication with
each skeleton tracker is split into separate modules that are
dynamically selected and loaded at runtime. Each module reads
data from its respective tracker into a generic skeleton data
structure. Thus, FAAST is easily extensible by adding new mod-
ules to support future devices and software libraries.

E.A. Suma et al. /| Computers & Graphics 37 (2013) 193-201 195

Microsoft OpenN
Kinect SDK Pe
Reader
Reader
Generic
Skeleton
Model
A4
\ .
FAAST » ~ Action
Recognition
Core < Module

VRPN S Emulator
erver
Module
1 |
network keyboard/mouse

connection events

' .

2 4

Target
Application

Fig. 1. The FAAST architecture consists of modules that read skeleton data from
depth sensing camera libraries, an action recognition module, an emulator module
that sends simulated keyboard and mouse events to the active window, and a
VRPN server to broadcast the position and orientation of each skeleton joint to
networked applications.

Once a skeleton has been read from the sensor, FAAST then
processes this data in an action recognition module. Based on the
actions being performed, the core application then invokes an
emulator module that sends simulated keyboard and mouse
events to the active window. The core FAAST application includes
a graphical user interface (GUI) that allows the user to create
custom gesture schemes and bind these actions to specific
emulator events. For example, the user may choose to send
a “left arrow key press” event when the user leans to the left
by a certain number of degrees (see Fig. 2). It is possible to specify
any number of gestures, each of which contains user-defined lists
of gestural input criteria and output user interface commands to
be generated upon activation. Thus, FAAST allows users to control
off-the-shelf applications and games using body motion, even
though these interfaces only accept input from standard keyboard
and mouse setups. The methods for representing gestural input
and generating output for arbitrary user interfaces are described
in more detail in the following two sections.

In addition to simulating keyboard and mouse events, FAAST
also streams the position and orientation of each skeleton joint
using a Virtual Reality Peripheral Network (VRPN) server, which is
a network interface that has become a popular standard for
facilitating communication between VR applications and physical

tracking devices [22]. This allows developers to read skeleton data
into their applications in a device-independent manner using the
same standard protocols that are commonly used by the commu-
nity. FAAST is currently being officially supported by two com-
mercial virtual world development environments for this
purpose, 3DVIA Studio [23] and the Vizard virtual reality toolkit
from WorldViz [24].

The FAAST GUI is composed of three windows that can be moved
together or independently: the main window for configuring the
toolkit, the viewer for displaying sensor data, and the console for
displaying messages to the user (see Fig. 2). The main window is
split into four tabs for configuring the sensor hardware, VRPN server,
display preferences, and gestural interactions. Initially, the gesture
GUI began as a simple text window where the user would type a
single input motion and a corresponding output command. How-
ever, preliminary feedback with users indicated that the utility of
this interface was limited, since it was unclear how one would
intuitively combine multiple input motions and output commands
within a single gesture. Additionally, remembering all the valid
skeleton joint names and output commands placed too much of a
burden on users’ working memories. Through iterative development
and testing, we developed a more intuitive user interface that uses a
tree GUI element for representing gestures. A gesture is composed of
an input list and an output list, each of which can contain an
arbitrary number of items. Items appear as plain English expressions
so as to be easily comprehensible to non-technical users, and are
constructed and edited through dialog boxes with drop-down
menus (see Fig. 3). Each item can also be disabled/enabled, copied,
and repositioned in the list through click-and-drag interactions.
While the interactions provided by this interface appear to be quite
straightforward for novice users, it does not currently incorporate a
“visual preview” of the defined gestures using a virtual human
model, and this may be an area for future improvement.

4. Representing and designing gestural interactions

In this section, we describe our representation scheme for the
individual components that compose gestural interactions, fol-
lowed by FAAST’s capabilities for designing complex gestures
using this core mechanic.

4.1. Decomposing complex gestures

In order to enable users to design custom gestural interactions,
we considered how to decompose complex body movements into
atomic components. These simple action primitives form the
conceptual “building blocks” that can be combined in FAAST to
form more complicated gesture recognition schemes. To make
these actions comprehensible and intuitive for non-technical users,
they are constructed by selecting terms from drop down boxes to
produce plain English expressions, similar to the way they might be
described in everyday conversation (see Fig. 3). For example, to
design an action that activates when the user extends the left hand
directly out in front of the body, the user would select parameters
to form an expression such as: “left hand in front of torso by at least
16 inches.” For each action specified, the user must also specify the
comparison (either “at least” or “at most”), the numeric threshold for
activation, and the units of measurement.

4.1.1. Position constraints
Position constraints refer to the relative spatial relationship
between any two skeletal joints, depicted as follows:

{body part}{relationship}{bodypart}
by{comparison}[threshold]{units}

196 E.A. Suma et al. /| Computers & Graphics 37 (2013) 193-201

i | Flexible Action and Articulated Skeleton Toolkit B =B

ISensor l Server I.Dispiayz Gestures

=- Example Gesture New Gesture
(= <Input>
... body: lean left by at least 15 degrees
= <Qutput>
i keyboard: hold left_arrow until complete

Disable
Delete
Connect Stop Emulator Load Save

P EB|loBE| X

FAAST Viewer

»
B | FAAST Console

Example Gesture deactivated.
Example Gesture activated.
Example Gesture deactivated.
Example Gesture activated.

\

Fig. 2. A screenshot of FAAST’s gesture creation interface. The specified example gesture activates when the user leans to the left by 15 degrees. When the user performs
this action, a left arrow key down event is sent to the application with current operating system focus. The corresponding key up event is sent when the user returns to the

original position.

F- bl
Add position constraint @Jﬂ

[righthand '] [infrontof '] [torso 'l

Body Part

by |atleast | 16

Relationship

inches b

Body Part

[Cancel

A 4

Fig. 3. Rules are defined using drop-down boxes that form plain English expres-
sions. These action primitives form the basis for more complicated gestures.

{body part}=head, neck, torso, waist, left shoulder, left elbow, left
wrist, left hand, right shoulder, right elbow, right wrist, right
hand, left hip, left knee, left ankle, left foot, right hip, right knee,
right ankle, right foot {relationship}=to the left of, to the right of,
in front of, behind, above, below, apart from {units}=centimeters,
meters, inches, feet

4.1.2. Angular constraints

It is also useful to consider cases when users flex or straighten
one of their limbs, determined by calculating the angle of
intersection between the two vectors connecting the limb’s joint
locations. Angular constraints are depicted as follows:

{limb}flexed

by{comparison}[threshold{units}

{limb}=Ileft arm, right arm, left leg, right leg
{units}=degrees, radians

4.1.3. Velocity constraints
Velocity constraints refer to the speed at which a particular
body part is moving, depicted as follows:

{body part}{direction}
by{comparison}[threshold{units}

{body part}=head, neck, torso, waist, left shoulder, left elbow, left
wrist, left hand, right shoulder, right elbow, right wrist, right
hand, left hip, left knee, left ankle, left foot, right hip, right knee,
right ankle, right foot {direction}=to the left, to the right,
forward, backward, up, down, in any direction {units}=cm/sec,
m/sec, in/sec, ft/sec.

4.1.4. Body constraints

In addition to the constraints listed above, it is also useful to
consider body actions that are more “global,” i.e. movements of
the whole body relative to the camera, as opposed to positioning
individual body parts relative to one another. We define two
angular body actions, lean and turn, depicted as follows:

lean{left,right, forward, backward}
by{comparison}[threshold{units}

turn{left,right}
by{comparison}[thresholdl{units}

{units}=degrees, radians

Additionally, we also define a jump action. Measuring the
height of a jump is not immediately obvious, however, because
the height value of each skeleton joint is relative to the sensor, not
the floor. Thus, to detect jumps, we leverage the fact that these
actions occur very quickly, and consider the lowest height value
of the feet over a previous window of time to be the height of the
floor (experimentally determined to be 0.75 s). The jump action
activates when both feet rise above this floor height value by the
specified distance threshold. We found that when the user stands

E.A. Suma et al. /| Computers & Graphics 37 (2013) 193-201 197

in one spot, which is frequently the case when interacting with
depth sensors due to the restricted field of view, jump detection is
quite reliable. Jump actions are depicted as follows:

jump by{comparison}[thresholdl{units}

{units}=centimeters, meters, inches, feet

4.1.5. Time constraints

The last type of constraint we consider is the temporal delay
between the individual actions that constitute a gesture. In
informal testing, we determined that it can be useful to be able
to define action timing based on either previous action’s start
time or stop time, depending on the specific gesture being
designed. Thus, time constraints are depicted as

wait for [minimum] to [maximum]seconds

after action{starts, stops}

4.2. Designing complex gestures

The atomic actions described in the previous section are
intentionally simple, and as a result the interaction possibilities
provided by each individual constraint are limited. However, by
combining these “action primitives” both simultaneously and in
sequence, sophisticated gestural interactions can be represented.
Thus, we developed a methodology for designing complex ges-
tures using the previously described atomic actions as conceptual
building blocks. Gestures are represented as a set of action
constraints that can be combined simultaneously, sequentially
over time, or any combination of the two.

4.2.1. Simultaneous actions

Any input actions that are added without a time constraint
separating them are treated as simultaneous events. The overall
gesture will only be activated when all of the input conditions are
simultaneously true at a given moment in time. For example, to
create an interaction that requires the user to move both hands
together in a quick “push” action out in front of the body, one
could specify the following gesture:

position : right hand in front of torso
by atleast 16 inches
position : left handin front of torso

by atleast 16 inches
position : right hand apart fromleft hand

by at most 10 inches

velocity : right hand forward
by at least 5 ft/sec
velocity: left hand forward

by at least 5 ft/sec

4.2.2. Sequential actions

By combining position, angular, velocity, and body constraints
simultaneously, users can finely tune body pose and movement at
a singular moment in time. However, many gestures require
multiple actions to be performed in sequence. We represent this
behavior using time constraints as separators between actions.
When a time constraint is encountered, the action recognizer
waits until the minimum time has elapsed (which may be zero),
and then starts checking for the next action in the sequence
to activate. If the actions do not activate before the maximum time
has elapsed, the gesture resets and action recognition resumes from
the very beginning of the sequence. For example, the following
sequence represents a “wave” gesture, that activates when the user’s

right hand moves rapidly back and forth relative to the elbow:

position : right hand to the right of
right elbow by at least 4 inches
time : wait 0 to 0.5 seconds
after action stops
position : right hand to the left of
right elbow by at least 4 inches
time : wait 0 to 0.5 seconds
after action stops
position : right hand to the right of

right elbow by at least 4 inches

4.2.3. Combining simultaneous and sequential actions

The combination of simultaneous and sequential actions allows
users to design complex gestures that FAAST can recognize in real-
time. There is no predetermined bound on the complexity or
number of gestures that users may build, and so ultimately they
are limited only by their own creativity. Furthermore, because the
gestures are created by combining rules that are individually simple,
the process of tweaking the parameters of the action is easily
discernible. The following example combines the sequential action
of flapping the arms with a forward body pose, and represents an
interaction that might be appropriate for controlling a flying game:

body : lean forwardby at least 20 degrees
position : left handto the left of
left shoulder by at least 16 inches
position : right hand to the right of right
shoulder by at least 16 inches
position : left hand below left shoulder
by at most 4 inches
position : right hand below right shoulder
byatleast4inches
time : wait 0 to 0.5 seconds
after action stops
body : lean forward by at least 20 degrees
position : left handbelow left shoulder
by at least l6inches
position : right hand below right shoulder

byatleastl6inches

5. Manipulating arbitrary user interfaces

After designing the input criteria for gesture activation, it is
necessary to define the output that FAAST should generate when
the user performs a gesture. Similar to the representation scheme
for gestural input, FAAST provides a robust set of output events,
which can be combined simultaneously and sequentially. This
approach allows the user to design sophisticated macros that can
manipulate arbitrary user interfaces in a variety of ways, ranging
from simple events to complex behaviors. All generated output is
sent directly to the application that has the current operating
system focus via calls to the underlying Windows API.

5.1. Output events

In order to design the mechanisms for manipulating arbitrary
interfaces, FAAST supports a number of output event types that
correspond to common input methods for off-the-shelf PC appli-
cations. Similar to the approach used in Section 4, the rules
defining output are constructed by selecting terms from drop

198 E.A. Suma et al. /| Computers & Graphics 37 (2013) 193-201

down boxes to form plain English expressions (see Fig. 4). Possible
output events include:

e Keyboard events: These events refer to singular keystrokes,
which can be specified as a “press” (a key down followed
immediately by a matching key up event) or a “hold” for either
a fixed amount of time or until the gesture is deactivated.

e Typing events: These events generate a series of key presses for
a complete string of text, allowing sentences and phrases to
typed into an interface.

e Mouse button events: These events refer to singular action of a
mouse button (left, right, or middle), following the same
“press” and “hold” rules as keyboard events.

o Mouse wheel events: These events refer to a movement of the
mouse scroll wheel (up or down) for a specified number of
clicks.

o Mouse move events: These events refer to a movement of the
mouse cursor, specified in either absolute coordinates
(a specific position on the desktop) or relative coordinates
(a position in relation to the cursor’s current location).

e VRPN button events: FAAST can also send button signals over a
network using the same VRPN server as the skeleton data. A
total 255 buttons are supported, which are specified by an
index number. These events follow the same “press” and
“hold” rules as keyboard events.

o FAAST events: These events are special FAAST system com-
mands, which are included for convenience of operating the
application remotely. Commands include “stop emulator,”
“start emulator,” and “resume emulator.”

e Time events: These events specify a temporal delay that can be
inserted between output events.

5.2. Output macros

The user can create any number of output events for a single
gesture. When the gesture is activated, the output events will be
executed, starting at the beginning of the list. If a time event is
encountered, then FAAST will wait the specified amount of time
before continuing. Any events that are not separated by a time
delay will be executed immediately. This architecture allows for
the creation of complicated macros that can achieve a wide
variety of user interface tasks usually performed with a keyboard
and mouse. For example, a gestural application launcher could be

d B
Add mouse button event [EJ@

| hold ~| |ieft button ~|

[for v] 1 seconds

I [Cancel

L%

Fig. 4. Similar to our gestural representation scheme, output rules are defined
with drop-down boxes that form plain English expressions, which can be
combined simultaneously and sequentially to form complex macros.

created by defining gestures using the following output scheme:

keyboard : pressleftwindows

time : wait0.1l seconds
type : [applicationname]
time : wait0.1 seconds

keyboard : pressenter

By default, the set of output events is only executed once per
gesture activation. However, there are scenarios where it may also
be desirable to execute output events repeatedly until the user
stops performing the gesture. Therefore, the user is also given the
option of looping the output events with a specified timeout value,
which may be zero (at which point, the output events are executed
every frame that the gesture is active). For example, Fig. 5 shows a
manipulation scheme using four complementary gestures that
when executed repeatedly allow users to gradually control mouse
cursor by moving the right hand relative to the shoulder.

6. Case studies

Starting as a very simple toolkit, FAAST evolved gradually based
on experimentation in a variety of contexts and user feedback from
the wider community. In this section, we detail the observations,
conclusions, and limitations of using FAAST to adapt user interfaces
for gestural interaction in two specific areas: (1) control of first-
person video games for entertainment and (2) improving user
interface accessibility for individuals with motor impairments.

6.1. First-Person video game control

To assess the effectiveness of using FAAST for control of first-
person video games, we attempted to design gestural interactions
for the action role-playing game Elder Scrolls V: Skyrim, published
by Bethesda Softworks. A popular, critically acclaimed game that
sold over 3.4 million units in the first two days of release, Skyrim
is an ideal test case because it has a control scheme commonly
found in first-person video games, but also involves a rich level of
interaction with the virtual world.

6.1.1. Locomotion

Locomotion is one of the common and fundamental tasks
performed when interacting with 3D user interfaces [25]. To
initiate movement in the game world, we used FAAST to simulate
a walking-in-place scheme, which has been to positively con-
tribute to the user’s sense of presence compared to joystick
locomotion [26]. Through trial-and-error experimentation, we
determined that two separate gestures, “left foot step” and “right
foot step” could be defined to produce walking-in-place locomo-
tion, both of which was mapped to the ‘w’ key for forward motion
in the game. The definition for each gesture is as follows:

LeftFootStep
{Input)
position : leftfootaboverightfoot
byatleast6 inches
{Output)
keyboard : holdwforl.5 seconds
RightFootStep
{Input)
position : rightfootaboveleftfoot
byatleast6 inches
{Output)
keyboard : holdwforl.5 seconds

E.A. Suma et al. /| Computers & Graphics 37 (2013) 193-201 199

-

B ' Flexible Action and Articulated Skeleton Toolkit

[ETHE=S|E=NTER ™)

‘ Sensor | Server] Display' Gestures

£ Mouse Up
i ¢|.<.Input>

Bl <Qutput>

= Mouse Down
& <Input>

EI <Qutput>

£ Mouse Left
=) <Input>

B <Qutput>

B- Mouse Right
5 <Input>

FEI <0utput>

i.. position: right hand above right shoulder by at least 8 inches

i.. mouse: move by relative distance (0, -8)

... position: right hand below right shoulder by at least 8 inches

i.. mouse: move by relative distance (0, 8)

position: right hand to the left of right shoulder by at least 8 inches

i-- mouse: move by relative distance (-8, 0)

i position: right hand to the right of right shoulder by at least 8 inches

i.. mouse: move by relative distance (8, 0)

New Gesture

Add

Copy

Disable

Delete

Start Emulator

Connect

Load] [Save 1

Fig. 5. By executing output events repeatedly in a loop, users can control user interfaces continuously over time. In this example, moving the right hand relative to the
shoulder will produce gradual movement of the mouse cursor in one or more directions.

While this locomotion metaphor is reasonably effective, we do
note that there is a slight delay in detecting when the user stops
walking. In general, there is a tradeoff between responsive
detection when the user stops and providing continuous motion
between steps. However, the amount of time that the camera is
moving after the user stops is relatively small (less than a second),
and appears to be within tolerable limits.

However, fine camera control is a more serious limitation of using
the Kinect for locomotion. Turning left and right is an important
component of aiming in combat oriented games, and our first choice
of body lean proved too coarse for effective gameplay. Currently, we
believe that gestural input is not well suited for fine camera control
in first-person games due to the precision required, and this problem
remains an area for future work. Therefore, we would suggest
augmenting a gestural control scheme for these types of games with
an another interaction method for turning and aiming, such as a
handheld controller or an external orientation tracker.

6.1.2. Manipulation

While gestural interaction is challenging for locomotion, it is
particularly well suited for many manipulation tasks in first-
person video games. In Skyrim, combat is achieved through
keyboard or mouse commands that refer to the avatar’s left hand,
right hand, or both simultaneously. The specific function that
each hand performs in the game depends on the current activity
that is equipped, which could be a variety of weapons, items, or
spells. In the case of spellcasting, if the same spell is equipped in
both hands, then moving the hands forward together produces a
singular, more powerful version of the spell. It proved relatively
simple to map quick forward movements of each hand (using
both position and velocity constraints) to control these behaviors
in an intuitive way.

The action of switching the currently equipped weapon or
spell is particularly well suited to gestural input, and it is here

that our approach proved particularly effective. Equipping a
sword could be achieved by reaching a hand down below the
waist, and then quickly drawing the hand upward above the head.
Most interestingly, we found that drawing symbols in the air and
other complicated hand movements using sequential position
constraints were an entertaining method of spellcasting that
extremely evocative of fictional works from the fantasy genre.
However, while powerful, these gestures require a fair amount of
trial-and-error to tweak the positional thresholds until they work
seamlessly. Additionally, due to the differences in body types, the
parameters for a particular user may not translate perfectly to
others. This points to a future need for the capability of auto-
matically calculating these positional thresholds based on the
user’s motion, or alternatively specifying thresholds as percen-
tages of the user’s body size and limb length.

Additionally, it is also common in video games, particularly
those from the role-playing genre, for there to be multiple
contexts for interaction. For example, we found that occasionally
while experimenting with the game, a virtual character would
approach the avatar and initiate conversation. With no method of
selecting dialog options via gesture, the user would have to
approach the mouse and keyboard and perform this task manu-
ally. In the future, it would be beneficial to provide multiple
interaction contexts, each with their own set of interactions, that
the user could switch between using gestures based on the
immediate game task. Additionally, it may also be possible to
extract context information automatically from third-party appli-
cations, but this is an ambitious, non-trivial question beyond the
scope of the current work.

6.2. Accessibility for individuals with motor impairments
Children with motor impairments such as cerebral palsy and

adults with neurological impairments often have severe difficulty
manipulating computing interfaces that are designed for people

200 E.A. Suma et al. /| Computers & Graphics 37 (2013) 193-201

with typical fine-grained motor control and reaction times.
To increase accessibility to interactive entertainment content
for these children and adults, a team of physical therapists and
psychologists experimented with using FAAST to provide control
mechanisms for simple desktop and web based PC games that
these children and adults could manipulate. This application
highlights the unique advantages for FAAST - it provides the
capability for domain experts (non-programmers) to design
gestural interactions that can be customized to fit the needs of
individual patients that vary widely in individual capabilities.
During this testing phase, the researchers and clinicians provided
feedback based on each round of evaluation with patients, and we
iteratively improved the user interface based on their experiences
and suggestions. In this section, we summarize some of the major
feedback and problems they encountered, along with our mod-
ifications to the toolkit that addressed these issues.

Initial technology testing sessions were completed in the lab
setting, followed by user testing sessions in the clinical setting
(two clinics in the Los Angeles area). Each of the testing sessions
followed the same protocol. Following informed consent, the
participant and clinician were provided with information about
how the FAAST system works and were provided information
about the game they were going to play. Both the participant and
clinician were involved in the decision making process of map-
ping gestures to individual key presses within the game, based on
their knowledge about the game and their comfort and ability to
perform different gestures. Testing sessions ranged from 30 min
to 2.5h in length, depending on the time limitations of the
clinician/participant, the amount of time taken to design the
gestures, technical difficulties, and number of games attempted.
During the session, participants and clinicians were asked to
provide comments and feedback on the system and their experi-
ence. Following completion of the testing session, both the
participant and clinician were also asked to provide feedback on
the session and suggestions for improvements to the system. The
researchers also noted technical difficulties and potential changes
to the systems based on their experience. The feedback was
analyzed and revision suggestions were prioritized and some
were implemented before the next testing session. Other revi-
sions were added to the list of future changes. A total of six
participants and four clinicians took part in multiple testing
sessions.

The application was initially difficult to use when customizing
interactions for individual patients because there did not exist an
easy way for evaluators to have the patient test single move-
ments/gestures and then perform multiple gestures together
without having to set up different files. This increased the time,
effort and frustration associated with entering and testing ges-
tures. Based on this feedback, we added the capability to enable
and disable gestures on the fly. While a simple modification, this
capability saved a substantial amount of time for the evaluator,
made the session run more smoothly, and caused less frustration
for both the evaluator and the patient.

The evaluators were able to design gestures to activate various
keyboard and mouse commands that vary across different
games—for example, some games require a button hold, others
require a quick single button press and release or multiple button
presses in quick succession. For the latter situation, it is difficult
for patients to repeat a gesture multiple times in quick succession.
This initial feedback provided the motivation for adding the
looping behavior that repeatedly generates output events. How-
ever, there is still an issue when a third party software or game
has multiple rules for one button - for example, ‘jump’ might
result from a single button press of ‘w’ key, however ‘higher jump’
or ‘flying’ might result only when the ‘w’ key is pressed multiple
times in quick succession. This means that the same key must be

controlled by different gestures to perform each of these actions.
While not insurmountable in the current setup, this does provide
an additional layer of complexity that we plan to address in the
future.

One major difficulty of using gestures to control third party
applications and online web browser games is that the applica-
tions not only require key strokes to play the game, but often
require complicated navigation through menus to set up the
game and during the game to add features, level up, etc.
Currently, FAAST is unable to intuitively support the navigation
through these menus with many different options, and so the
evaluator must intervene using a keyboard and mouse. While the
evaluators indicated that the ability to control the mouse cursor
with FAAST is a good start toward solving this interaction
challenge, but with complicated menus with many options this
becomes tedious and impossible for most motor-impaired
patients. In the future, it may be possible to detect when text
menus are displayed on screen through computer vision techni-
ques and then automatically target specific regions on the screen
to make menu selection more intuitive via gestural input.

When playing in a web browser, using the mouse control
function, the player is not confined to the active (game) window
and therefore, it is difficult for some patients to stay within the
game area, causing frustration and providing a limited and
less engaging game-play experience. Evaluators suggested
that being able to limit the mouse or confine the mouse within
an area identified by the user (for example, by drawing a box in
which the mouse can move) would be helpful in this situation.
This feature is currently being implemented for a future version of
the toolkit.

Finally, evaluators also suggested that future versions of FAAST
could be augmented with a set of pre-programmed default
gestures that can be adapted and modified for individual users
and applications. As we collect more information on how FAAST is
used by real world practitioners, we plan to analyze this data and
identify the useful common gestures that can be provided
automatically.

Overall, the use of FAAST with patients has allowed research-
ers and clinicians to explore how patients with limited or
abnormal movements can interact with web browser games and
other third party applications. The targeted evaluation has pro-
vided us with important feedback that would not have been
identified without testing without this specialized group of
patients, and has allowed us to expand and improve FAAST's
capabilities. Although there are a number of improvements to be
made in the future to increase usability for individuals with
motor impairments, FAAST is still able to provide patients with
a level of accessibility to interact with third party applications
and games that has been a major challenge in the past.

7. Conclusion

In this paper, we describe a core mechanic for designing and
customizing gestural interactions and present an integrated
toolkit that enables the adaptation of existing user interfaces for
body-based control. By providing gesture design tools that are
transparent and easily discernible to non-technical users, along
with the capability of repurposing third party applications, FAAST
is particularly useful not only for entertainment purposes, but
also for researchers and clinicians working in domains such as
rehabilitation and accessibility for individuals with motor impair-
ments. While FAAST was designed to take advantage of OpenNI-
compliant depth sensors such as the Microsoft Kinect, we expect
that our approach will be extended to support other types of full-
body tracking hardware as they become available. With access to

E.A. Suma et al. /| Computers & Graphics 37 (2013) 193-201 201

more complex and robust skeleton, hand, and finger tracking data,
however, this process of defining rule sets may become more
complicated. Thus, in the future, we plan to develop graphical
user interface frontends that can generate rule sets automatically
from recorded gestures or visual representations of human
motion (e.g. keyframing), and explore hybrid methods that
combine the fine tuning capabilities of our rule-based approach
with the convenience of statistical gesture recognition classifiers.

The toolkit is free software that we have made available for
download and use with a non-restrictive license [27]. In the time
since initial release, the popularity of FAAST has grown consider-
ably, and the most exciting consequence of this wide adoption has
been observing the many creative and novel uses of the toolkit by
members of the community. Building on the existing user base,
we believe that our easy-to-understand rule-based gesture crea-
tion paradigm will further empower hobbyists, researchers, and
practitioners to design rich gestural interactions in novel ways
that we have not expected.

References

[1] Hughes D. Microsoft Kinect shifts 10 million units, game sales remain poor, Hulig.
¢ http://www.huliq.com/10177/microsoft-kinect-shifts-10-million-units-game-
sales-remain-poor). Accessed on Sept 8, 2012.

[2] Stein S Kinect. 2011: where art thou, motion?, CNET, http://reviews.cnet.
com/8301-21539_7-20068340-1039 >. Accessed on Sept 8, 2012.

[3] Cacioppo JT, Priester JR, Berntson GG. Rudimentary determinants of attitudes.
II: arm flexion and extension have differential effects on attitudes.] Pers Soc
Psychol 1993;65(1):5-17.

[4] Meier BP, Robinson MD. Why the associations between affect and vertical
position. Psychol Sci 2004;15(4):243-7.

[5] Tucker D. Towards a theory of gesture design, MFA thesis. University of
Southern California; 2012.

[6] Lange B, Suma EA, Newman B, Phan T, Chang C-Y, Rizzo A, et al. 2011.
Leveraging unencumbered full body control of animated virtual characters
for game-based rehabilitation. In: HCI international. 2011. p. 243-52.

[7] Rizzo A, Lange B, Suma EA, Bolas M. Virtual reality and interactive digital
game technology: new tools to address obesity and diabetes.] Diabetes Sci
Technol 2011;5(2):256-64.

[8] Wang L, Hu W, Tan T. Recent developments in human motion analysis.
Pattern Recognition 2003;36(3):585-601.

[9] Turaga P, Chellappa R, Subrahmanian VS, Udrea O. Machine recognition of
human activities: a survey. IEEE Trans Circuits Syst Video Technol
2008;18(11):1473-88.

[10] Mitra S, Acharya T. Gesture recognition: a survey. IEEE Trans Syst Man
Cybern Part C 2007;37(3):311-24.

[11] Yamato], Ohya], Ishii K. Recognizing human action in time-sequential
images using hidden Markov model. In: IEEE computer vision and pattern
recognition. 1992. p. 379-85.

[12] Black M], Jepson AD. A probabilistic framework for matching temporal
trajectories: condensation-based recognition of gestures and expressions.
In: European conference on computer vision, vol. I. 1998. p. 909-24.

[13] Hong P, Turk M, Huang TS. Gesture modeling and recognition using finite
state machines. In: IEEE automatic face and gesture recognition. 2000.
p. 410-15.

[14] Beard S, Reid D. MetaFace and VHML: a first implementation of the virtual
human markup language. In: Workshop on embodied conversational agents.
2002.

[15] Kshirsagar S, Magnenat-Thalmann N, Guye-Vuilléeme A, Thalmann D, Kamyab K,
Mamdani E. Avatar markup language. In: Eurographics workshop on virtual
environments. 2002. p. 169-177.

[16] Carretero MDP, Oyarzun D, Ortiz A, Aizpurua I, Posada]. Virtual characters
facial and body animation through the edition and interpretation of mark-up
languages. Comput Graphics 2005;29(2):189-94.

[17] Laban R, Ulmann L. The mastery of movement 3rd edition. Macdonald and
Evans; 1971.

[18] Foroud A, Whishaw IQ. Changes in the kinematic structure and non-
kinematic features of movements during skilled reaching after stroke: a
Laban Movement Analysis in two case studies.] Neurosci Methods
2006;158(1):137-49.

[19] Suma EA, Lange B, Rizzo A, Krum DM, Bolas M. FAAST: the flexible action and
articulated skeleton toolkit. In: IEEE virtual reality. 2011. p. 245-6.

[20] <http://www.glovepie.org/>.

[21] <http://www.kinemote.net/).

[22] Taylor RM, Hudson TC, Seeger A, Weber H, Juliano], Helser AT. VRPN: a
device-independent, network-transparent VR peripheral system. In: ACM
virtual reality software and technology. 2001. p. 55-61.

[23] <http://www.3dvia.com/studio/).

[24] <http://www.worldviz.com/products/vizard/).

[25] Bowman DA, Kruijff E, LaViola JJ, Poupyrev 1. 3D user interfaces: theory and
practice. Addison Wesley Longman Publishing Co., Inc.; 2004.

[26] Usoh M, Arthur K, Whitton MC, Bastos R, Steed A, Slater M, et al. Walking, >
walking-in-place > flying, in virtual environments. In: ACM conference on
computer graphics and interactive techniques (SIGGRAPH). New York, New
York, USA:ACM Press; 1999. p. 359-64.

[27] <http://projects.ict.usc.edu/mxr/faast/>.

http://www.huliq.com/10177/microsoft-kinect-shifts-10-million-units-game-sales-remain-poor
http://www.huliq.com/10177/microsoft-kinect-shifts-10-million-units-game-sales-remain-poor
http://reviews.cnet.com/8301-21539_7-20068340-1039
http://reviews.cnet.com/8301-21539_7-20068340-1039
http://www.glovepie.org/
http://www.kinemote.net/
http://www.3dvia.com/studio/
http://www.worldviz.com/products/vizard/
http://projects.ict.usc.edu/mxr/faast/

	Adapting user interfaces for gestural interaction with the flexible action and articulated skeleton toolkit
	Introduction
	Previous work
	Gesture recognition
	Human motion representation
	Software frameworks

	System overview
	Representing and designing gestural interactions
	Decomposing complex gestures
	Position constraints
	Angular constraints
	Velocity constraints
	Body constraints
	Time constraints

	Designing complex gestures
	Simultaneous actions
	Sequential actions
	Combining simultaneous and sequential actions

	Manipulating arbitrary user interfaces
	Output events
	Output macros

	Case studies
	First-Person video game control
	Locomotion
	Manipulation

	Accessibility for individuals with motor impairments

	Conclusion
	References

