
S"nNFO COPY
AFRL-HE-WP-TP-2007-008

2002 Defense Modeling and
Simulation Office (DMSO)
Laboratory for Human Behavior
Model Interchange Standards

Michael van Lent
Randall Hill

Ryan McAlinden
Paul Brobst

University of Southern California
Institute for Creative Technologies

13274 Fiji Way
Marina del Rey CA 90292

July 2003

Interim Report for August 2002 - July 2003

___________________Air Force Research Laboratory
Approved for public release; Human Effectiveness Directorate
distribution is unlimited. Warfighter Interface Division

Cognitive Systems Branch
Wright-Patterson AFB OH 45433-7604

20071019520

NOTICE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report was cleared for public release by the Air Force Research Laboratory, Det 1,
Wright Site, Public Affairs Office and is available to the general public, including foreign
nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-HE-WP-TP-2007-0008

HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR

//SIGNED//

DANIEL G. GODDARD
Chief, Warfighter Interface Division
Human Effectiveness Directorate
Air Force Research Laboratory

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government's approval or disapproval of its ideas or findings.

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

July 2003 Interim August 2002 - July 2003
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
2002 Defense Modeling and Simulation Office (DMSO) Laboratory NAWC-TSD-BAA-2.3.2
for Human Behavior Model Interchange Standards 5b. GRANTNUMBER

5c. PROGRAM ELEMENT NUMBER
63832D

6. AUTHOR(S) 5d. PROJECT NUMBER
Michael van Lent, Randall Hill, Ryan McAlinden, Paul Brobst

5e. TASK NUMBER

5f. WORK UNIT NUMBER
0476DMO0

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

University of Southern California
Institute for Creative Technologies
13274 Fiji Way
Marina del Rey CA 90292

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
Air Force Materiel Command Defense Modeling and Simulation Office AFRL/HECS, DMSO
Air Force Research Laboratory 1901 N. Beauregard Street, Suite 500

Human Effectiveness Directorate Alexandria VA 22311-1705 11. SPONSOR/MONITOR'S REPORT

Warfighter Interface Division NUMBER(S)
Cognitive Systems Branch
Wright-Patterson AFB OH 45433-7604 AFRL-HE-WP-TP-2007-0008

12. DISTRIBUTION I AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.
AFRL/PA cleared on 26 June 2007, AFRL-WS-07-1525.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report describes the effort to address the following research objective: "To begin to define,
prototype, and demonstrate an interchange standard among Human Behavior Modeling(HBM)-related models in
the Department of Defense (DoD), Industry, Academia, and other Government simulations by establishing a
Laboratory for the Study of Human Behavior Representation Interchange Standard." With experience,
expertise, and technologies of the commercial computer game industry, the academic research community,
and DoD simulation developers, the Institute for Creative Technologies discusses their design and
implementation for a prototype HBM interface standard and also describes their demonstration of that
standard in a game-based simulation environment that combines HBM models from the entertainment
industry and academic researchers.

15.SUBJECTTERMS Human Behavior Modeling, Unreal Tournament, Human Behavior Modeling Interchange
Architecture, Interchange Protocol

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES John L. Camp

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR 54 code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

THIS PACE LEFT INTENTIONALLY BLANK

Table of Contents
1.0 Introduction .. I

1.1 P roject G oals .. 1
2.0 D M SO H B M Lab ... 2
3.0 Prototype HBM Interface Standard .. 5

3.1 D esign A pproach .. 6
3 .2 C on trol ... 7
3 .3 D ata ... 9

4.0 Simulation Environment and Human Behavior Models 18
4.1 Simulation Environment: Unreal Tournament 18

4.1.1 Modding and Native Functions .. 23
4.1.2 Unreal Tournament vs. DoD Simulations 24

4.2 H B M : Soar ... 27
4.3 HBM: AI.Implant (Proof) .. 30

5.0 Final Demonstration ... 32
6.0 F uture W ork .. 35

6.1 Games as Research Environments .. 35
6.2 HBM Interchange Standard .. 36
6.3 Spatial Representation ... 36
6.4 Combined Human Behavior Model ... 37

7.0 D eliverables .. 37
7.1 Start of Work Conference ... 37
7.2 Laboratory Design Document .. 38
7.3 D em onstration .. 38
7.4 Final R eport ... 38

Appendix A: Infiltration Mod .. 39
Appendix B: Additions/Modifications to Soar's MOUTbot UnrealScript 41
Appendix C: Monthly Reports ... 43

iii

THIS PAGE LEFT INTENTIONALLY BLANK

iv

1.0 Introduction

The research objective of the 2002 Laboratory for Human Behavior
Representation Interchange Standards effort has been: "To begin to define, prototype, and
demonstrate an interchange standard among HBM-related models in DoD, Industry,
Academia, and other Government simulations by establishing a Laboratory for the Study
of Human Behavior Representation Interchange Standard, addressing research needs in
NAWC-TSD BAA 2.3.2 ("Advanced Human Behavioral Representation Techniques")."
To address this research objective, researchers at the University of Southern California's
Institute for Creative Technologies have drawn on the experience, expertise and
technologies of the commercial computer game industry, the academic research
community, and DoD simulation developers. With these three communities ICT has
designed a prototype HBM interface standard and demonstrated that standard in a game-
based simulation environment that combines HBM models from the entertainment
industry and academic researchers.

1.1 Project Goals

As defined in the proposal and statement of work the 2002 Laboratory for Human
Behavior Representation Interchange Standards set out to accomplish three major tasks:

* The first task was to "Design, integrate, and document a laboratory capable of
running a modest (i.e., several) collection of CGFs (Computer Generated Forces)
from DoD (Department of Defense) and academia, and NPCs (Non-Playing
Characters) from El (Entertainment Industry) and academia that exchange data
and control according to the evolving HBM (Human Behavior Model)
interchange standard." The Defense Modeling and Simulation Office (DMSO)
HBM Lab contains four desktop systems and two laptops, all Windows/Linux
dual boot, as well as a full suite of development software. This lab has been set
up at ICT in Marina del Rey, CA and Section 2 of this final report documents the
laboratory facilities. This lab includes three HBMs, Soar and PMFServ from
academia and AI.Implant from the entertainment industry, as well as two
simulation environments, Unreal Tournament from the entertainment industry and
OneSAF TestBed from the DoD.

" The second task was to "Examine the HBM (Human Behavior Model)-related
attributes within each relevant CGF and NPC instance, then coordinate and
document the specification of these elements with the HSTC (HBM Standards
Technical Committee)." As the HSTC was never organized ICT, in collaboration
with other DMSO-selected research groups, undertook the design, coordination,
and documentation of a prototype Human Behavior Representation Interface
Standard. The standard defines both a multi-threaded control scheme and an
initial set of data elements (sensor inputs and control output) as described in
Section 3 of this final report. A related sub-task is to "Identify the HBM-related
elements of the task that require standardization." As described in Section 6.3,
spatial representation is an area that requires additional attention relating to
standardization.

* The third task was to "Collaborate with DMSO, designated contractors, and other
DMSO-sponsored laboratories in developing one or more scenarios derived from
both El and DoD domains to be the basis for this year's experimentation." The
Blackhawk Down-inspired, asymmetric, urban combat scenario, developed in
conjunction with DMSO, the University of Pennsylvania PMF (Perfornance
Moderator Function) team, Quicksilver software, and the AI.lmplant team from
BioGraphic Technologies is this demonstration scenario. For the first time this
scenario demonstrates three different human behavior models integrated into a
single virtual environment at the same time. In addition, these HBMs control
NPCs playing different roles (U.S. Army Ranger, civilian crowd, asymmetric
opponent) through slight variations of a single interface. The HBMs and
simulation environment are described in Section 4 and the demonstration scenario
is described in Section 5.

In addition to the sections already mentioned that describe how these three major tasks
were accomplished Section 6 presents some opportunities for future work. Finally,
Section 7 details when and how each deliverable defined in the statement of work was
satisfied.

2.0 DMSO HBM Lab

This section details the design for the laboratory for Human Behavior Representation
Interchange Standards at the University of Southern California's Institute for Creative
Technologies. The laboratory design consists of a description of the physical space the
lab will occupy, the computers the lab will contain, and the software that will be
supported. Based on this design the lab was completed in April, 2003.

Lab Space
The laboratory for Human Behavior Representation Interchange Standards occupies room
1115 on the I I floor of the North Tower building in Marina del Rey CA 90292. Room
I 115 contains five desks and desk chairs. In addition to the laboratory space there is also
be a programmer's office located next door in room H 30.

Hardware
The laboratory for Human Behavior Representation Interchange Standards consists of
seven computers; four desktop PCs, two notebook PCs, and a single, rack mounted
version management server. The four desktop PCs serve as the primary development
machines and support in house demonstrations. The two notebook PCs serve as the
primary demonstration machines for demonstrations at other facilities. Both the desktop
and notebook PCs are capable of running multiple simulation environments (OTB,
DISAF, Unreal Tournament), multiple human behavior model (HBM) components, and
are HLA capable. The exact specifications for the desktop PCs and notebook PCs are
listed below.

The ICT version management server is designed to support all the ongoing software
development projects at ICT. The laboratory for Human Behavior Representation
Interchange Standards makes use of this server to manage multiple versions of the both

2

HBM software developed at ICT and the software provided by outside collaborators for
integration and testing at ICT. In addition, the ICT also has an FTP server, a SourceForge
server, and a Microsoft Exchange server in place, all of which are utilized by the
laboratory for Human Behavior Representation Interchange Standards.

Desktop PCs
Four Dell Dimension 8200 desktop PCs (at $2,619.48 each)

Pentium 4 Processor at 2.8GHz
1GB PC800 RDRAM
80GB Ultra ATA/100 7200 RPM Hard Drive
18.1 inch Flat Panel Display
64MB nVIDIA GeForce4 Ti 4200 Graphics Card
Sound Blaster Live! Sound Card
Harman Kardon HK-206 Speakers
CD-RW/DVD Combo Drive
3.5 inch Floppy Drive
10/100 Fast Ethernet Card
Keyboard and Optical Mouse

Notebook PCs
Two Dell Inspiron 8200 notebook PCs (at $3,662.76 each)

Mobile Pentium 4 Processor at 2.2GHz
15.0 inch UltraSharp display
I GB DDR RAM
40GB Ultra ATA 5400RPM Hard Drive
3.5 inch Floppy Drive
CD-RW/DVD Combo Drive
64MB nVIDIA GeForce4 440 Go Graphics Card
Integrated Network Card and Modem
Internal TrueMobile Wireless Network Card
Nylon Carrying Case

Software
To be capable of running the multiple simulation environments required the desktop and
notebook PCs support two operating systems; Microsoft Windows 2000 and Linux. All
the PCs are dual boot, allowing the user to specify which operating system to use when
the computer is powered up. In addition to the operating systems the PCs are also loaded
with development environment software, simulation environment software, and a variety
of HBM component software.

Operating Systems
The desktop and notebook PCs support both Microsoft Windows 2000 and Linux in a
dual boot configuration. Our experience has been that Windows 2000 is more stable and
more secure that Windows XP at the present time. The Windows 2000 operating system

3

was delivered with the desktop and notebook PCs as part of the cost of those systems. If
a switch is necessary at a later time all PCs will be capable of supporting Windows XP
also.

Development Environments
For development in Windows 2000 the desktop and notebook PCs are loaded with
Microsoft Visual C++ 6.0. ICT currently has a site license for Visual C++ 6.0 that covers
the Human Behavior Representation Interchange Standards laboratory. Development in
Linux primarily relies on the gcc compiler and a variety of editors (emacs, vi) all of
which are freely available as part of the Linux distributions. The ICT version
management server runs the open Concurrent Version System (CVS) software.

Simulation Environments
Initially the laboratory for Human Behavior Representation Interchange Standards
supports three simulation environments. Unreal Tournament is a commercial computer
game published in 2001 by Epic Games Inc. Although Unreal Tournament is primarily
entertainment based it can also serve as a reasonably complex simulation environment for
small unit (squad-level) tactical combat. This is especially true with the addition of the
Infiltration mod that modifies the game setting and simulation rules into a much more
realistic tactical squad-level combat simulator. Unreal Tournament with the Infiltration
mod is supported on the desktop and notebook PCs. Six copies of Unreal Tournament
have been purchased for $20.00 each. The Infiltration mod is available for download free
of charge.

In addition, OneSAF Testbed has been installed in three additional machines (funded by a
non-DMSO project) that reside in the lab space. In addition to OneSAF Testbed, these
machines also have MPARS (the Mission Planning and Rehearsal Exercise). Finally, a
binary release of DISAF version 9.4 has been installed on the desktop machines in the
DMSO lab.

Human behavior modeling components
The primary focus of the Human Behavior Representation Interchange Standards project
is to develop interchange standards between a variety of HBM components the laboratory
also supports a number of these components.

The Soar architecture is "a unified architecture for developing intelligent systems". Soar
will be used to control the human user's subordinates in the demonstration scenario. Soar
will be installed on all the desktop and notebook PCs and will run in both the Windows
2000 and Linux operating systems. ICT has also obtained the Soar General Input Output
(SGIO) interface between Soar and Unreal Tournament:Infiltration which will run in the
Windows 2000 operating system. The Soar architecture software is available for
download free of charge.

AL.Implant is a HBM component from the commercial game development industry that
focuses on navigation and path planning in a complex, dynamic environment. AL.Implant
is a middleware system developed by BioGraphic Technologies, Inc. AL.Implant will

4

control the opponent militia in the demonstration scenario. BioGraphic Tech. has
provided ICT with a free license for the AI.Implant SDK for Windows 2000 for the
duration of this project. AI.Implant has been installed on desktop and notebook PCs and
runs in Windows 2000.

Performance Moderator Functions (PMFs) are software packages that moderate the
behavior of an HBM based on physiological factors (such as fatigue, pain) and emotional
factors (such as fear, anger, panic) among others. PMFServ is a central architecture for
these PMFs that includes a simple behavior generation component. PMFServ will
control civilians, crowds and some opponent forces in the demonstration scenario. The
laboratory supports PMFServ in the Windows 2000 operating system.

Schedule for Laboratory Construction
Approval to begin purchasing equipment for the laboratory was obtained in February,
2003. Construction proceeded as follows:

February 2003
Orders placed for desktops and first notebook PCs.
Furniture moved into laboratory and office space.

March 2003
Desktops and first notebook arrive and are installed.
Begin installing operating systems and software.
Final notebook ordered.

April 2003
All software installed and laboratory fully functional

3.0 Prototype HBM Interface Standard

The Prototype Interchange Standard that was developed as part of this initiative is an
interface that allows disparate Human Behavior Models (HBMs), in this case Soar,
AI.Implant and PMFServ, to control entities in a single simulation environment, in this
case Unreal Tournament. The unique advance demonstrated by this project is the use of a
single interface to support three HBMs running concurrently within a simulation'. In
essence, the HBMs are three uniquely developed external software modules that operate
asynchronously through an interface with the environment. The Interchange Standard is
a control methodology and set of data specifications that was developed to allow for the
integration of a wide variety of HBMs into multiple simulation environments. A general
overview of each HBM is provided below with an in-depth description of interface to
follow.

1 To describe this as it relates to Unreal Tournament, there are a variety of non-player characters (NPCs)
within the game that are controlled by each of these HBMs interacting with the game engine.

5

* Soar: Initially developed at Carnegie Mellon University by Allen Newell, John
Laird, and Paul Rosenbloom, this is the HBM that will control the Non-Player
Character (NPC) movement, formation, and attack behaviors for the U.S. Army
Rangers working as subordinates of the human user.

" AI.lmplant (All): Developed by Biographic Technologies, this Al middleware
tool focuses on path-planning and navigation to control NPC movement of
opponent militia in the demonstration scenario.

" Performance Moderator Functions (PMFs): Developed by Barry Silverman and
team at the University of Pennsylvania, PMFs are individual components that
model emotional and physiological effects such as stress, perception, and
emotional utility. PMFs are integrated in the PMFServ architecture. In the
demonstration scenario PMFs are designed to control civilians and crowd
members.

As reflected above, each of the HBMs demonstrate a different aspect of human behavior.
As discussed in Section 6.0, an interesting direction for future work is to integrate these
HBMs with each other to create a combined human behavior model. For example, the
Interchange Standard could support an NPC that has his high-level behavior determined
by Soar, low-level path planning and navigation controlled by AI.lmplant, and emotional
and physiological states managed by the PMFs.

The most important aspect of the prototype HBM Interface Standard is that the standard
is independent of any specific HBM or simulation environment. Even though some of
the interface code developed for this project is designed for Unreal Tournament, the
methodology used is quite broad. Simulation data are polled each iteration through the
simulation's tick cycle, distributed to the appropriate HBM, processed, and a request is
returned to the simulation for execution (move, attack, orient). The actual software
written for this project may change depending upon the simulation environment used, but
the structure and concepts employed would not.

3.1 Design Approach

The Prototype HBM Interface Standard (HBM IS) is the codification of a great deal of
previous experience with HBM design on the part of a number of members of the
development team. As a starting point the HBM IS builds off the Soar General
Input/Output (SGIO) interface to Unreal Tournament developed at the University of
Michigan. This interface is the fifth HBM interface developed by the University of
Michigan Soar group. Previous interfaces include the TacAir Soar interface to ModSAF,
as well as interfaces to the SGI Flight Simulator, Quake 11, Descent 11I, and
FreeCivilization. Dr. van Lent participated in the development of three of these previous
interfaces as well as the interface used by the virtual humans in the Mission Rehearsal
Exercise at ICT.

While these previous interfaces have covered a range of simulation environments
they have all been designed for the Soar HBM. To ensure coverage of other HBMs the
interface design team included the experience of the Performance Moderator Function
team at the University of Pennsylvania and the AI.Implant developers from BioGraphics

6

Technologies. The starting HBM IS was extended and modified to ensure compatibility
with these two additional HBMs.

The focus of the current prototype HBM IS is control of dismounted soldiers in
urban environments. Future extensions to the HBM IS should seek to expand the scope
to include control of a broader range of platforms (main battle tanks, infantry fighting
vehicles, fixed and rotary wing aircraft, ships...) as well as control of higher level
command entities (squads, platoons, companies...).

3.2 Control

The quantity of simulation-related data coming into each of the HBMs through the HBM
IS is extremely large. Flow of data from the simulation occurs multiple times per second
(generally about 10 times/second), requiring the input mechanism for the HBM to
constantly be monitoring for the most recent simulation updates. Below are a set of
illustrations that depict the way data is routed through the UT/HBM Architecture. A
brief description follows each diagram.

1. Initialize Unreal Tournament
(Start of Game)- First Ticko is
called

2. Initialize HBM Component (Soar. All) by
instantiating the DLL through Unreal
Tournament

Data .Terrain

3. HBM requests the retrieval of environment
information from Unreal Tournament

7

Mov

Execute
behavio23

4. Process behavior/movement request within
HBM modules (All, Soar)

ove HBM
Component

5. Return command to Unreal
Tournament for execution

~ MoveHBM
(-haractCompon~ent

6. Execute command/behavior and
iterate through TickO once again

These diagrams describe the flow of data between the simulation environment and HBM
components. Note that the "HMB Component" box represents Soar, AI.hmplant or
PMFServ. The communication mechanism for the exchange of data integrated into a
Dynamically Linked Library (DLL) that is loaded into the game engine process during
execution. There is no socket connection or shared memory processes. As a result, the
interfaces between the simulation and HBM components are tightly coupled, which
improves efficiency but decreases flexibility when looking to deploy in other
environments (such as a Java-based simulation) because DLLs are a Microsoft Windows
specific mechanism. The SGIO interface supports both a DLL interface and socket-based
interface. The differences between the two interface styles are completely contained in
the SGIO system and neither the HBM or simulation environment changes when
switching between the DLL and socket versions.

One interesting aspect in the development of the interface was the threading techniques
used. The Unreal Engine is, by design, intended to run within a single thread for game
efficiency. The HBM interface, however, uses a multithreaded approach to allow the
simulation environment and HBM component to run asynchronously. This allows both
Unreal Tournament and the HBM to run without impacting each other's execution loops.
Since the UT engine runs as a single thread each step in the internal game loop must be
carefully controlled to execute and return quickly. If any step takes too long the frame
rate of the game can drop below the acceptable 30 frames a second or "hiccup" by
freezing on a single frame for too long while the engine waits for a step in the loop to

8

finish. In all game engines a great deal of effort is required to ensure that each step in the
game loop returns quickly and consistently. HBMs, especially those from the academic
research community, are not engineered to fit into these strict time limits. Soar, for
example, generally takes less than 50 msec per cycle but in degenerate cases may take
seconds per cycle. Encapsulating the HBM in a separate processing thread allows the
game engine and HBM component to operate independently.

Multithreaded Control Interface

Environment Thread Interface HBR Thread
Thread

Itisiporantote thapthaIterfc an SBheasre ineednto&oe

type; they all use the same methodology for receiving/outputting information from/to
Unreal Tournament. Essentially, what is occurring each iteration through the game loop
is as follows:

" Unreal Tournament maintains information on the state of the "world," which
includes entity locations, health, etc.

" Each HBM, operating within its own thread, polls for this information and uses it
as input in its decision cycle

* Once a decision (command) has been issued by the HBM, it is sent back over the
interface thread to Unreal Tournament for execution. If the information is not
sent quick enough (i.e. before the game loop ends), it is discarded and the process
repeats itself

I The command (move-to, attack, etc.) is loaded into the Engine and executed

3.3 Data
In order for the HBMs to accurately model any level of intelligent behavior, path-
planning, or emotional effects, sensor data must be pulled from the simulation to serve as

9

input to the particular behavior model. This sensor data comprises a wide variety of
information about the environmental. Such data includes:

* Player and Character information (name, position, team, equipment, health status)
* Static and dynamic objects and terrain in the game (obstacles, doors, projectiles)
* General mission information (map name, game type)
* Spatial representations (path node locations)
* Player/Character communications (formation, engage requests)

There are a variety of mechanisms for exchanging this information between the
simulation and HBM including sockets, shared memory, shared file access, remote
procedure calls, and dynamically loadable libraries (DLLs). Each of these alternatives
has advantages and disadvantages some of which are summarized below:

* Socket:
o Advantages: Fairly platform independent, Allows communication between

machines.
o Disadvantages: Low bandwidth, significant latency

* Shared Memory:
o Advantages: High bandwidth
o Disadvantages: Platform specific, no communication between machines,

some latency
* Shared File Access:

o Advantages: Very platform independent, Allows communication between
machines

o Disadvantages: Very slow, Lots of latency
* Remote Procedure Calls:

o Advantages: Allows communication between machines, Fair bandwidth
o Disadvantages: Platform specific, significant latency

* DLLs:
o Advantages: High bandwidth, very low latency, builds on existing game

industry interfaces
o Disadvantages: No communication between machines, Platform specific

The Human Behavior Model Interchange Standard currently uses the DLL mechanism
for exchanging information with the simulation environment. A DLL-based interface
was chosen for the advantages listed and because it is the main interface mechanism used
by the commercial game industry. Another approach, taken by the Soar General Input
Output (SGIO), is to support one mechanism (Sockets) for development and debugging
and a second mechanism (DLLs) for the final system.

Through the DLL interface the HBM IS supports a wide variety of different input sensors
and action outputs. These sensors and actions are described in more detail later in this
section. Each of the specific HBMs used in this project takes advantage of a subset of the
full sensor and action suite. In two cases (AI.lmplant and PMFServ) the sensors and
actions are filtered on the simulation side to reduce the amount of data transmitted. Soar
processes all sensor inputs and has all actions available although not all of this data is
used in the current demonstration. The primary data structures polled from the
environment and used by each of the HBMs are as follows:

10

* Soar:
o Game Items/decorations
o Projectiles
o Entities
o NPC Attributes: physiology, items, weapon, feelers
o Game Attributes
o Map Information
o Sound
o Feedback
o Player Messages

* AI.Implant:
o Player attributes
o Entities
o NPC Attributes

* PMFs

The HBM IS data interface is organized as a multi-level hierarchy. The top level of the
hierarchy groups the sensors into general classes; agent, feedback, objects, game, map,
sound, message. The agent sensors poll information about the specific character
controlled by the HBM. The feedback sensors give the HBM propreoceptive feedback
about the status of the various actions available. The objects sensors report on any other
objects in the environment including other characters, items (such as weapons), and
projectiles. The game sensors give details about the specific parameters of the current
game. Map sensors give information about the static terrain including any invisible
waypoint nodes and distances to barriers in eight directions. Sound sensors report on any
audio elements of the environment including footsteps and weapon firing from other
characters. Finally, message sensors are used to communicate between characters and
with the user. The full set of prototype Human Behavior Model Interchange Standard
sensors is listed here with a brief description of each sensor.

Prototype Data Interface
Sensor Input
Agent
angle: direction/angle the character's body is facing

pitch(float) : vertical angle (O=straight down)
yaw(float): horiztonal angle (O=north)
roll (float): body rotation (O=upright)

armor-amount(int) : amount of UT armor the character has
cycle(int): HBM cycle count
fatigue(float): character's fatigue level
health(int): amount of UT health the character has (0-100)
hunger(float): character's hunger level
light-level(int): amount of light in immediate environment
name(string) : character's name
pain(float) : character's pain level
fear-factor(int): character's fear level
position: current position of character's body

II

x(float)
y(float)
z (float)

random(float) : random number updated each cycle
strength(float) : character's strength level
team(string) : name of character's team
area-temp(float) : temperature of immediate surroundings
body-temp(float): character's body temperature
thirst (float): character's thirst level
time(float): current wall clock time
velocity: velocity of character's body

x(float)
y(float)
z (float)

posture: (kneel/kneeling/prone/going-prone/stand/standing)
item: record of each item character is carrying

name(string) : name of item
class(string) : type of item
quantity(int) : how many are being carried
selected(yes/no): currently held or in "pack"
in-use(yes/no): currently being used

weapon: record of each item character is carrying
name(string): name of weapon
ammo-type(string) : type of ammo weapon uses
ammo-amount(int): amount of ammo currently in weapon
selected(yes/no): currently held or in "pack"

Feedback
move-target (off/on): is move to target currently enabled
lead-target (off/on): is lead target currently enabled
face-target(off/on) : is face target currently enabled
attack (normal/alt/charge/charge - alt/none) : currently
attacking?
thrust (back/front/none) : moving forward or backward?
side-step(left/right/none) : moving sideways?
turn (back/front/left/right/none) : turning?

Objects
Item: a dynamic item in the environment

name(string) : name of item
range(float): distance to item from current position
angle-off: angle item is off from character facing

h(float) : horizontal angle-off
v(float) : vertical angle-off

position: global position of item
x(float)
y(float)
z (float)

node: a visible pathing node in the environment
range (float) : distance to node
position: global position of node

x(float)
y(float)

12

z (float)
angle-off: angle node is off from current facing

h(float)
v(float)

name(string): name of node
connect-heading(float): heading to move to next node
is-door(yes/no): is this a special door node?
is-window(yes/no): is this a special window node?

projectile: a projectile (bullet) in the environment
name(string): name of projectile type
range(float): distance to projectile
angle-off angle proj. is off from character facing

h(float)
v(float)

position: global position of projectile
x (float)
y(float)
z (float)

velocity: velocity of projectile in 3 dimensions
x(float)
y(float)
z (float)

entity: another character in the environment
name(string): name of character
health(int) : character's health level (0-100)
weapon(string): weapon character is holding
visible(true/false): am I visible to the character?
team(string) : character's team
angle-off: angle char. is off from my facing

h(float)
v(float)

aspect : angle I am off from character's facing
h(float)
v(float)

position: character's global position
x(float)
y(float)
z (float)

range(float): range to character from my position
velocity: character's global velocity

x(float)
y(float)
z (float)

Game
mapname(string) : name of terrain map
gamename(string) : name of this game instance
gametype(string): name of the type of game
fraglimit(int) : race to how many kills?
timelimit(int): time limit before game ends
maxclients(int) : max number of characters

Map

13

node: list of all the pathing nodes in the environment
position: global position of each node

x(float)
y(float)
z (float)

name(string): name of node
connect-heading(float): direction to next node

left: readings for "feeler" sensor to the left
range(float): distance until feeler hits something
object-name(string): name of what it hits
object-state(static/open/closed/moving) : state of

what was hit (door open or close; static item; moving item)
right: readings for "feeler" sensor to the right

range (float)
object-name (string)
object-state (static/open/closed/moving)

left-front: readings for "feeler" sensor to the left-front
(45 degrees to the left)

range (float)
object-name (string)
object-state (static/open/closed/moving)

right-front: readings for "feeler" sensor to the right-front
range (float)
object-name (string)
object-state (static/open/closed/moving)

front: readings for "feeler" sensor straight ahead
range (float)
object-name (string)
object-state (static/open/closed/moving)

back: readings for "feeler" sensor straight behind
range (float)
object-name (string)
object-state (static/open/closed/moving)

up: readings for "feeler" sensor straight up
range (float)
object-name (string)
object-state (static/open/closed/moving)

down: readings for "feeler" sensor straight down
range (float)
object-name (string)
object-state (static/open/closed/moving)

Sound
name(string): name of the sound
position: global position where the sound occured

x(float)
y(float)
z (float)

volume(float) : perceived sound volume
time-started(float): when was the sound first heard

Message
sender(string): who sent this message?

14

type(string): type of message
time-started(float): when was the message sent
phrase: content of the message

word(string): first word of message
next: link to next work
word(string): next word of message
next: link to next word...

In addition to the sensor values the HBM IS also specifies a set of actions outputs that the
HBM uses to control a character in the environment. Each of these actions includes a
number of parameters that inform the simulation as to the details of how to execute that
action. For example, the move-to command includes an x,y,z location to be moved to
and a speed with which to move. The action outputs and parameters are listed here with a
brief description of each:

Action Outputs
move-to: move to the global x,y,z position at the speed
specified

x(float)
y(float)
z(float)
speed(float)

turn-to: turn the amount specified in the direction given
direction(right/left/up/down)
amount(float) //degrees

centerview: bring the character's head and body in line
face: face towards the global x,y,z position

x(float)
y(float)
z(float)

face-abs: face the global angle specified (O=north)
angle(float) //degrees

attack: start attacking with the specified tactics
value(normal/alt/charge/charge-alt/off)

normal - start shooting
alt - start shooting with the alternate weapon

function
charge - start shooting and run towards the

target
charge-alt - start shooting with the alternate

function and run towards the
target

off - stop shooting
throw: throw the currently selected object with the strength
specified

strength(float)
play-animation: play the specified animation

animation(string)
play-sound: play the specified sound

sound(string)

15

kneel: change posture to a kneeling position
lie-prone: lie in a prone position
stand: stand up from prone or crouching position
jump: jump once
brake: quit moving
side-step: move sideways

direction(left/right/none)
thrust: move backward or forward

direction(front/back/none)
move-target: continually move toward a specific enemy

switch(on/off): start/stop moving towards the target
target-name(string)

choose-weapon: select the specified weapon
value(string): name of weapon

face-target: face the specified target
switch(on/off): start stop facing the target
target-name(string)

lead-target: face the point ahead of the target in the
direction the target is moving

switch(on/off) : start/stop facing target
target-name(on/off): name of target

speak-to: send a message to a specific character
phrase(string): message to send
target(string): who is the target
volume(float): how loud should I say the message

speak: send a message to anyone in the local environment
phrase(string): message to send
volume(float): how loud

toss-weapon: throw the currently selected weapon
reload: reload the current weapon
unjam: unjam the current weapon
surrender: play the surrender animation and stop fighting

16

4.0 Simulation Environment and Human Behavior Models

This section describes the Human Behavior Models and the Simulation
Environment used in this effort. As the entertainment industry lab the effort described
here was tasked with exploring HBM and simulation interfaces standards currently being
used by the commercial game industry. To fulfill this task a commercial off-the-shelf
(COTS) game system was chosen as the simulation environment. Unreal Tournament, a
product of Epic Software, is a popular "first-person shooter" (FPS) game that includes
one of the most widely used El interfaces to allow hobbyists to extend and adapt (or
"mod") the game. While Unreal Tournament, as purchased, is not a realistic simulation
of urban combat, one such mod, Infiltration, changes the game to include more realistic
weapon models, behaviors, and tactics. Section 4.1 describes Unreal Tournament in
more detail and Appendix A describes the Infiltration mod.

In addition to the simulation environment, three human behavior models were
selected. Representing the academic research community, the Soar system and
Performance Moderator Functions were selected. Section 4.2 describes the Soar
architecture and Section 4.3 describes Performance Moderator Functions. Representing
the commercial game industry is AI.Implant, a game-industry middleware tool developed
by BioGraphic Technologies. AI.Implant is described in more detail in Section 4.4.

4.1 Simulation Environment: Unreal Tournament

Unreal Tournament (UT) is the simulation environment targeted for the integration of
all three HBM components. UT, released in 1999, was several industry publications'
picks for Game of the Year. A first person shooter (FPS) game, UT includes a wide array
of levels, weapons, and modes of play, and characters that are all modifiable.

From a user's perspective, UT is extremely simple to operate. It can be as simple as
clicking an icon to launch the game, selecting the map location, number of bots and their
skill set, and clicking play. UT is capable of running on the PC, Linux, Macintosh,
PlayStation2, and DreamCast. Other features that made it a viable choice for this
particular project include:

" Enhanced character Al - UT includes a built-in Al capability to control "bots"
that play as opponents to the human user. Although the UT bots weren't used in
the final demonstration they can be thought of as a fourth HBM operating in the
simulation environment. These bots use a system of waypoints to navigate a level
and control the character's Al. These waypoints are sub-classed to support a
variety of tactical decisions and maneuvers (i.e. Defense, Ambush)

" Spectator Cams - these cams allow a user to enter a live game and navigate
around to view the action on the level. This is an ideal way for soldiers to view
how particular sequences within a scenario should be executed as well as replay
the mission once it has ended.

* Publicly available "mod" interface - UT comes with a built-in software interface
designed to support extensions and modifications of the game by the user

17

community. This "mod" interface represents one of the most successful game
industry interface standard and serves as a starting point for the HBM IS.

The commercial Unreal Tournament release is being used for the HBM integration
process. Using the standard release with the publicly available "mod" interface allows us
to avoid purchasing a game engine license (approximate cost $350,000) from Epic
software. As long as the software developed is not released as a commercial product no
license fee needs to be paid to Epic. The commercial release includes the default weapon
models, character meshes, and levels (terrain). However, because the release consists
primarily of unrealistic weapons (laser guns, rail guns...), character models, and
movements, a free "mod" to the game has been used to increase the realism of the game.
This mod, Infiltration, replaces the futuristic weapons in UT with current U.S. Service-
issued weapon types and ammunition. Moreover, the character models have been
modified such that they display human skins rather than futuristic "bots." The "mod"
feature of UT is described in more detail in the next section. Below are a set of
screenshots from n/Otration that illustrate various aspects of game play. For more
infonnation on lniltration and its capabilities, please refer to Appendix A.

18

11

19

Unreal Tournament Game Engine (UTGE)

The Unreal Tournament Game Engine is the driver behind the UT simulation. Many
of the UTGE components have been opened to the "mod" interface to give users a
consistent programming interface, which allows access to many levels of the Engine
(rendering, physics, Al, networking). UT was selected as the simulation environment due
to this extensible and flexible interface allowing for fairly ease integration with external
software modules. To interface an external software module (such as an HBM), an
interface to allow the exchange of data is developed in UnrealScript (UScript). UScript is
the high level language used to program game "mods", either from within the confines of
the Engine or through an interface to an external program. UScript is an object-oriented
scripting language that is very similar in syntax to Java. Many First-Person Shooter
games have "mod" interfaces with custom programming languages (for example Quake
has QuakeC). Unreal Tournament is unique in that it allows developers to extend
UScript with native C++ code. This allows the research community to interface their
existing system with the game engine rather than having to re-implement their HBMs in
UScript.

A central aspect of the Unreal Tournament Game Engine and its execution is the
notion of the game cycle. This term refers to each iteration through the game's
simulation and rendering loop. To manage time, the UTGE divides each second of game
play into "ticks." A tick is the smallest unit of time in which all actors/objects in a level
are updated. Each tick usually takes between I/100 " and 1/j 0 " of a second to execute
and is limited only by CPU power (the faster the machine, the lower the tick duration is).
It does no! necessarily reflect frame rate, as rendering may sometimes be decoupled from

20

the game processor. The UTGE cycles itself each iteration through the Tick() function,
which is present in every Unreal class, either explicitly or inherited. Every part of the
simulation that needs to be included in the update cycle is included through a call to the
Tick() function for that aspect of the simulation. It is important to note that Ticko is
called on every actor in the game each frame. This concept is central to the following
sections of this report, as it manages how data flows and is exchanged between different
aspects of the Engine, including HBM components.

Additionally, each time the game begins, there are a series of sequential steps that
are followed by the game engine to initialize a variety of information about the
simulation. Because this project involves a significant amount of character creation,
Actor scripts were created for each HBM character-type, which are standalone object
modules that determine all aspects of a character's appearance, weapon type, Al,
movement, tactics, and relationship to other users. Below is a sequential list that
describes user initialization, from the time a character is spawned through each Ticko of
the game cycle:

I. The actor object is created (character is placed in the level) and its variables are
initialized to their default values (if spawning an actor), or loaded from a file (if
loading a pre-existing actor)-these variables include weapon type, initial
position, ammunition, maximum speed, health, etc.

2. If the actor is being spawned, its Spawno event is called-this creates an
instantiation of a particular class that may be manipulated the same way an object
is; allows multiple classes to be created and called within a single class

3. The actor's PreBeginPlayo event is called-this function, inherited from the
Actor class, is called by the engine on every Actor immediately before the game
begins. One action usually taken within this function includes setting up and
initializing class variables

4. The actor's PostBeginPlayo event is called - also inherited from the Actor class,
this function is called after PreBeginPlayo and immediately after game play
begins. It too is called by the engine and used to set up variables, especially those
that require instantiation after the game has already been initialized

5. The actor's SetlnitialStateo event is called-called immediately following
PostBeginPlayo, this directs the engine to set the initial state of the character,
such as walking, running, attacking, or waiting

6. Tick() is called each iteration through the game cycle--developer-defined
functions may be called here to manage the character's behaviour, movement, or
Al.

This information is important to keep in mind when reading through the remainder of this
document as it is used to describe how the various HBMs operate in the context of the
game engine. Though very few of the functions are explicitly cited, it helps to
understand the iterative process that the UT executable follows from initialization
throughout the play of the game.

21

Pros/Cons of the Unreal Tournament Game Engine

There were several advantages with utilizing the Unreal Tournament Game Engine,
such as its existing interface to Soar. Below is a list of additional advantages for using
Unreal Tournament as opposed to other game-based environments (i.e. Quake, Operation
Flashpoint, and Battlefield 1942). A comparison of Service-based simulations and
architectures and their applicability to this project is also presented below. The criteria
for evaluation are primarily technical and centered on the scalability and flexibility of
incorporating disparate HBM applications and their data into a commercial simulation
environment.

* A well-developed, industry-tested C++/UnrealScript interface, enabling
development of complete projects in either language

• Highly modularized and replaceable, with all Unreal Tournament game code
cleanly segregated from all general Engine code-this allows developers to create
modules that are clearly separate and distinct from the Engine itself

* A C++ interface based on an object model that is similar in style to Microsoft
Foundation Classes (MFC), which is the application framework used by nearly all
Windows-based applications-provides many developers with a rapid
development environment to create UT plug-ins

* Supports dynamic loading of Dynamic Link Libraries (DLLs) and scripts on
demand, for modularity and efficient memory storage

* Robust debugging environment, with Visual C++ debugger support; flexible
assertion system; a try-catch call stack display for tracking down errors in the
field-all of these benefits decrease testing time during the development phase

* An UnrealScript interface based on an object model that is similar to Java
(inheritance, polymorphism, garbage collection)-a well-known industry standard
that is familiar to many developers

In addition to these advantages, there are a couple of disadvantages with the Unreal
Tournament Game Engine. For example, when using native function extensions to
UScript, any external applications that you integrate into the engine will be tightly
coupled to the game cycle. This makes incorporation into any other simulation
environment much more difficult as two competing simulation cycles will need to be
integrated and deconflicted.

4.1.1 Modding and Native Functions

To integrate the various HBMs with the Unreal Tournament environment changes
had to be made to the game executable (not the Engine) which allows these pieces to
interact with the game environment. These changes are made by making modifications
(or mods) to the game through UScript, described above. One example of an advanced
mod is "Infiltration," which was the game-type selected for this project because of its
added realism and closer resemblance to actual military combat.

Infiltration is a squad-based, mission-oriented add-on that utilizes modern-day
weapons (M 16-A2), equipment (Kevlar Helmets) and tactics (strafing around comers).

22

There is no crosshair floating in front of the character that is typically seen with First
Person Shooter (FPS) games; instead, the weapon must be drawn to the user's eye and
aimed through the iron sights or scope. Finally, movement has been changed to restrict
users from advancing any faster than typical humans would on the battlefield. Users
have the ability to crouch, get in a prone position, and lean around corners. One of the
biggest complaints typically heard from using games such as this within a military
domain is the lack of realism. Though this modification is still an entertainment-oriented
environment, it contains a good deal of realism and has the potential to support a wide
variety of research efforts. As these research efforts mature they can then be transitioned
to military simulation systems and undergo VV&A.

Using the software development principles of inheritance, polymorphism and
"garbage collection," developers have the option of modifying existing UScript classes,
adding their own classes, or interfacing to external software modules. The latter occurs
through the definition of native functions within UScript, which are calls to external C++
classes defined by the developer. In order to call these native C++ functions from
UScript, you must compile them into a DLL file. It is important to note that the process
of implementing native functions is not supported by Epic Software and Epic has not
documented the process. However, Epic has encouraged the user community to provide
a wide range of documentation and tutorials that are available on the web. The header
files that are generated by the UT compiler (ucc) are strictly in C++, eliminating the
possibility of using another language-unless wrappers are explicitly created for that
purpose. The PMFServ interface is an example of using software wrappers to integrate
another language, in this case Python.

4.1.2 Unreal Tournament vs. DoD Simulations

Based on our experiences integrating three HBM components (Soar, All,
PMFServ) into the Unreal Tournament Game Engine, coupled with previous experience
with military simulations, it is possible to make some general, qualitatively comparisons
between the two simulation environment.

OneSAF Testbed Baseline (OTB)

The OTB Semi-Automated Forces (SAF) System is the successor of ModSAF. It
supports a full range of operations, systems, and control processes from the individual
combatant and platform up through brigade-level operations. The various components
that make up OTB SAF communicate physical battlefield state and events among
themselves through the simulation Distributed Interactive Simulation (DIS) protocol.
Written primarily in C (with separate Java plug-ins), this platform level simulation
environment has some similarities and many differences to UT.
Similarities

" Both simulations support entities that are capable of acting totally autonomously
" Both can execute a realistic set of basic actions inherit to the type of entity

simulated. For example, in OTB SAF, a tank can follow a path along a road; in
UT, a character can navigate through a series of rooms

23

" Both [can] exhibit realistic weapon rates of fire and trajectories, and resource
depletion is accurately simulated for ammunition

* Both contain target detection, target identification, target selection, and collision
avoidance and detection capabilities

* Both can receive a set of orders/commands and generate the appropriate
entity/character behavior and tactics without further user action

Diferences
" Whereas UT runs on a variety of platforms, including Windows, Macintosh and

Linux, OTB SAF is limited to certain Unix distributions, Linux (Debian > v2.1 or
RedHat > v6.0), and Windows NT/2000 (only with the appropriate UNIX
emulation software). This is probably the most important difference between the
two as the HBM IS was developed in a Visual C++ environment using Win32-
based APIs. Moreover, the actual software is a DLL that runs only on Windows
machines

* UT does not make use of verified, validated, and accredited (VV&A) models for
damage assessment, delivery accuracy, and target acquisition. OTB SAF models
are compatible with existing validated Army combat models

* OTB SAF: User has control over every entity playing in the simulation; UT: User
only has control over himself (and possibly subordinate units if included)

* OTB SAF: A "plan view display" of the simulation-the ability to navigate
around the entire area and manipulate entities; UT: Restricted to a first-person
perspective.

* OTB SAF: User can override any commands issued to an entity/unit by the SAF
Al; UT: User only has direct control of his character.

* OTB SAF: Realistic terrain, weapons, and physics models; UT: Most models
were designed for entertainment and not for realistic training scenarios, so many
of them are limited in realism.

Although the differences cited above are significant Unreal Tournament, and
other game engines, should not be dismissed as useless other than for entertainment.
Games are very useful as virtual environments for early research efforts that are not yet
ready to undertake the significant effort required to be integrated with something like
OTB. In addition to the significant software challenge inherent in this integration there is
also a great deal of knowledge acquisition required to encode the necessary behaviors
and, finally, an extensive VV&A process. Games offer a cheap, fairly complex, flexible
and attractive environment in which to explore initial ideas while still staying in the
general realm of military applications.

Dismounted Infantry SAF (DISAF) is a variant of ModSAF that focuses on
simulation at the individual soldier level. Because DISAF is the DoD simulation
architecture that most resembles Unreal Tournament we've undertaken an operational
comparison of the two systems. DISAF was developed to add dismounted infantry to the
virtual battlefield and be compatible with other Human-In-The-Loop simulators. Below
is a table that illustrates the areas that DISAF currently addresses in comparison to UT.

24

DISAF UT

Forces: Friendly, Enemy, Neutral All All
UnitEchelons: IC, Fireteam, Squad, Platoon All None

Postures: Prone, Sitting, Kneeling, All Prone, Kneeling,
Standing Standing

Weapon Stowed, Deployed, Raised All All
States:

Sensors: Visual (eyes) and Aural All All (though simplified)
___________ (ears) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

AT8 Missile, SAW, M203 All but the AT8 Missile
Weapons: Grenade Launcher, M16A2, All (which could easily be

Hand Grenades, AK47 added)
Multi-story Buildings with
Interiors Apertures

Terrain: (Windows, Doors, and All All
Blown Holes in Wall),
Dynamic Terrain

I (Building/Aperture hits)

High Level Architecture (HLA)

Though this particular effort is highly research-centric, it is important to address
the issue of HLA and its relationship to the HBM IS. HLA is a general purpose
architecture developed to support the reuse and interoperability across large numbers of
different types of simulations developed and maintained by the DoD. OTB version 1.0 is
one example of an HLA-compliant DoD simulation. One important aspect of HLA is the
notion of a federation; a federation is a set of simulations intended to "play together" to
form a larger model or simulation. Each simulation, support utility, or interface is a
federate that is a subset of the federation. It could represent one platform, such as a
cockpit simulator, or represent an aggregate of forms, such as an entire OTB exercise
executing on numerous individual platforms.

HLA consists of three primary components: HLA Rules, Interface Specification,
and Object Model Template. The Rules must be followed to achieve proper interaction
of simulations within a federation. They describe the responsibilities of simulations and
of the runtime infrastructure in HLA federations. The Interface Specification is the
definition of the interface functions between the Run Time Infrastructure (RTI) and the
simulations subject to the HLA. Finally, the Object Model Template is the common
method for recording the information contained in the required HLA Object Model for
each federation and simulation. There are a series of documents that describe each of
these definitions in more detail.

As reflected in this brief description, HLA provides a methodology for designing
and developing DoD simulations. With regards to UT, which was designed far outside

25

the realm of a DoD mandate, there is little in common with HLA. However, with the
availability of the Unreal Tournament Game Engine source code (in C++), reworking
various aspects of the engine to make it HLA-compliant would not be impossible (but
certainly not trivial). Moreover, the HBM components would probably act more as
Support Utilities existing as separate software modules rather than being incorporated
directly into the simulation, as is currently the case. This would support the inclusion of
the HBMs into other HLA-compliant simulations, though significant work would be
required to determine the correct domain and scope (i.e. platform vs. unit level
simulation).

4.2 HBM: Soar

As described in the Soar tutorial, Soar is "a unified architecture for developing
intelligent systems. That is, Soar provides the fixed computational structures in which
knowledge can be encoded and used to produce action in pursuit of goals. In many ways,
it is like a programming language, albeit a specialized one. It differs from other
programming languages in that it has embedded in it a specific theory of the appropriate
primitives underlying symbolic reasoning, learning, planning, and other capabilities that
we hypothesize are necessary for intelligent behavior. Soar is not an attempt to create a
general purpose programming language. You will undoubtedly discover that some
computations are more appropriately encoded in a programming language such as C,
C++, or Java. Our hypothesis is that Soar is appropriate for building autonomous entities
that use large bodies of knowledge to generate action in pursuit of goals."

The integration of Soar into UT for this project was modeled after an existing
Soar-UT integration (MOUTBot). This section will describe the relationship between the
two components and how they exchange information. There are several classes of
information that are retrieved from the environment as sensor input to the Soar
architecture, namely:

* Information about the Soar-controlled character (agent)
* Feedback on the actions sent to the environment (feedback)
* Information about dynamic objects in the environment (objects)
* Information about the game parameters (game)
* Spatial representation of the static terrain (map)
* Information on any sounds in the environment (sound)
* Communication between the characters (HBM or human controlled) (message)

Upon initialization of a Soar-controlled character, this infonnation is retrieved and stored
in Soar's local memory on the "input-link". This input link is built based on what the
SoarBot can "sense" through a realistic set of sensors. The SoarBot can't see through
walls or sense aspects of other characters that aren't available to a human user.

Each tick through the game cycle, the Unreal Tournament Game Engine (UTGE)
passes to Soar any updates from the environment. If any elements of the environment are
different than those stored in local memory, they are updated on the input-link and the
cycle repeats itself. The actual implementation of this process occurs through the C++
library developed by Brad Jones (University of Michigan) called Soar General
Input/Output (SGIO). SGIO allows various environments (including UT) to
communicate with Soar through a common DLL or socket interface. The design of SGIO

26

is centered on three main classes: Soar, Agent, and WorkingMemory. The Soar class
represents a connection to Soar. The Agent class represents a particular agent being
controlled by an instance of Soar. Finally, the WorkingMemory class is a utility class
designed to aid users in managing some of the "bookkeeping" associated with an Agent's
WorkingMemory.
Below is a sample run-through of a SoarBot Game Cycle. The process is procedural and
may be followed by the descriptions at the bottom of each illustration.

Tick-> Update Ennty Prope rty 0

Tournament C++ Code GOSa

The Ticko function is called each iteration through the Game Cycle. If any entities
within the environment have changed, a call is made to the native C++ function,
UpdateEntityPropertyo.

UpdateWME0

Umrcal Wittivw Unreal SGOSa
Tournament C++ CodeSGOor

The updated entity information is now in the native function and must update Soar's
input link. The native DLL sends this updated information to SGIO through the
UpdateWME0 function.

Corm ito Comm it0 commit(

Unreal Native Unrcal SI o
Tournmnt C++ code aOO or

Once all the sensor updates have been collected from the environment and the Working
Memory Elements (WMEs) have all been updated, the WME changes may be committed
to Soar. This is the first point in the game cycle where environment information has
explicitly been loaded into the Soar Architecture.

27

Run ThC ut)O

Unreal Nativc UnrealSGOoa
Tournamnt C++ Codc

Soar processes the information and determines which command(s) to issue.

Unrcal Native Unreal H KL HI1
Tournamcnt C++ Code

GetComm andE0
After this determination has been made, the appropriate command(s) are retrieved by
SGIO through GetCommandso.

Unrcal Nafi-vc Unrca,l .
Toumna©t C++ Codc SGIO Soar

GetComm and()
The command at the top of the queue is passed back to the native Unreal code each
Tick().

Unrcal Native Unrcal SGIO SoarToumamct C++ Codc GOSa

Repo-,Command()

The native DLL reports the current command to Unreal.

Unreal Native Unreal 0 SI ' SaTournmnnt C++ Code SGIO Soar

Process Comm ando

The UTGE processes the commands (i.e. move, fire) resulting in the Soar-controlled
character performing actions in the environment. The cycle then repeats itself each
iteration through the game cycle.

28

The development of the SoarBot interface and behaviors was undertaken both by ICT and
the University of Michigan. The pre-existing MOUTBot was used as a baseline, though
significant changes were made that allowed the Bot to operate as a subordinate NPC to
the human user. A list of all the changes made to the MOUTBot can be found in
Appendix B.

4.3 HBM: AI.Implant (Proof)

AI.Implant (www.aiimplant.corn) is a 3rd party commercial toolset that allows
developers to build and control in-game characters, specifically group behaviors and
basic navigation and path planning. It simplifies the need for the programmer to
manually define particular behaviors and movements at the lowest level, allowing for
enhanced game play and more intelligent characters. All allows for the creation of
complex action sequences for At agents, which interact with the game engine in the
following manner:

AlImplant

Game Logic layer
Octernmes the state Ot

the worle

Oot flow

AI layer
deteritnes how

ac;Lnts act

Physics layer
enforces tre wortd's

physics laws

Rendering layer
produces *Me onscreen

N,

Unreal Tournament GE

This data flow diagram illustrates how the AL layer (represented as All objects) interacts
with the various layers of the game engine (GE). The Game Logic Layer receives
information on the state of the game and passes this to the Al Layer, both of which are
represented within the All environment. After receiving information on the "state of the
world" (essentially the location of objects, both static and dynamic), the AI layer is
capable of determining how the agents are going to behave and move. This occurs
through the Software Development Kit's (SDK) Solve() function, which is called each
iteration through the game cycle (every time Tick() is called). After movement and
behavior information have been computed, the information is passed to the Physics layer

29

(part of the Game Engine), which determines exactly how the Al will be executed within
the Engine. From here, the information is rendered and the cycle repeats itself.

The All distribution comes with the SDK and associated documentation. The SDK
consists of a suite of C++ Application Programmer's Interfaces (APIs) that developers
integrate with to create game Al within their software. These APIs create complex action
sequences for Al agents (characters) within the simulation environment. This occurs by
establishing basic characteristics (general constraints) of the agent, adding defined
behaviors (steering forces), and enabling the agent to make decisions via sensors and
decision trees. The best way to look at All is as middleware tool that is linked with a
game engine to improve Al performance within a game. Because it is a relatively new
product, the documentation that is released with the SDK is not too descriptive, making
integration into any Game Engine rather difficult. However, many of the functions are
self-explanatory and provide developers with a rich suite of tools to control Al within a
simulation.

All uses a fairly novel way of representing the world terrain. Where classic game
industry methods involve creating a path node or waypoint network for an agent to
follow, All adopts a higher level approach. Barriers, walls that an agent can see and react
to, are used to create an approximation of the actual walls and objects in the UT level.
So, instead of an agent being forced to follow specific paths between nodes they can now
use the walls as indicators of where they can and cannot go. These barriers can also be
used to automatically generate a path node network if one is needed.

The All framework provides many of the base behaviors and functionality needed to
achieve the functionality needed in most games. Using the SDK also gives you the
opportunity to define new behaviors or extend existing behaviors. Given enough time the
functionality could be extended to nearly anything that was required. Using the SDK
directly also gives you the option of overriding core components (such as wall detection),
essentially tightening the link between All and the existing game engine. However it is
unknown as to how much extra load this would place on the game engine and it may
prove inefficient.

There are several drawbacks to working directly within the All SDK. The largest
drawback is that backwards compatibility is not guaranteed for SDK code when the
AI.lmplant system is updated. Thus, when BioGraphics releases a new version extensive
effort may be required to get previously working systems back in working order. This
had a significant impact on the development schedule for the HBM IS project. Secondly,
there is actually little to no documentation beyond header files. However, the developers
at BioGraphics provide fairly good support through email and by phone. Lastly, working
within the SDK requires advanced knowledge of All's data structures and their
interaction. This extra knowledge is required just to get things functioning inside All and
holds no bearing on the overall design of the interface, characters, behaviors, and
decision trees. Essentially the SDK is provided as a means to extend the functionality of
the system, it is not meant to be used to code the actual world.

Due to the nature of the All SDK it would be a wise to consider using the
Maya/3Ds Max plugins to generate an ACX file. The ACX file is an AI.lmplant specific
file format that encodes All behaviors. This ACX file can be imported into the SDK and
then the relevant pieces can be stitched together. This approach should support
backwards compatibility with future versions of Al.lmplant. The only drawback to this

30

approach is the requirement of Maya or 3Ds Max software which can be expensive
(approximately $800/user for 3Ds Max). Biographic Technologies is currently working
on a standalone editor application to fill this gap which, upon release, would make
working directly with the SDK more viable.

The following is a list of the AI.Implant behaviors that are available "out of the box."
Additional behaviors can be developed either by combining and building off these canned
behaviors or starting from scratch.

Basic navigation:
" ACE_BehaviourAvoidBarriers-prevents the character from colliding into

barriers (walls, buildings)
" ACE_BehaviourAvoidObstacles-prevents the character from colliding with

game obstacles (vehicles, doors, trees)
" ACE BehaviourAccelerateAt
" ACE_BehaviourMaintainSpeedAt
" ACE BehaviourWanderAround-a random wander behavior that allows a

character to aimlessly meander around a level
* ACE_BehaviourOrientTo

Group behaviours:
" ACE_BehaviourAlignWith
* ACE BehaviourJoinWith
" ACE_BehaviourSeparateFrom
" ACE BehaviourFlockWith

Targeted behaviours:
* ACE BehaviourSeekTo
" ACE BehaviourFleeFrom
* ACE BehaviourLookAt
* ACE BehaviourFollowPath
" ACE_BehaviourSeekToViaNetwork

State change behaviours:
" ACE_BehaviourStateChangeOnProximity
" ACE_BehaviourTargetStateChangeOnProximity

5.0 Final Demonstration
Software: The demonstration is provided in both AVI and Quicktime Movie formats.
Quicktime works reliably on both Windows and MacOS machines but is a less compact
format. The AVI format works well on Windows and is a more compact format but is
less reliable on MacOS. A copy of the free Quicktime Player for Windows is included
with the demo. MacOS machines should come pre-configured with the Quicktime

31

Player. To install Quicktime on a Windows computer simply unzip the files contained in
Quicktimelnstaller.zip and double click on the executable "Quicktimelnstaller.exe."

Demonstration Description: The DMSO Human Behavior Model Interchange Standard
project demonstration starts with a series of video captures highlighting each aspect of
the HBM IS project including the demonstration environment, the Al.lmplant, Soar, and
PMFServ human behavior models. The demonstration ends with a video capture of the
tactical encounter that forms the heart of the HBM IS demonstration. The full
demonstration runs approximately 6 minutes.

The HBM IS demonstration uses the Unreal Tournament game engine created by Epic
Software. A freely available modification (or "mod") to the Unreal Tournament game,
called Infiltration, is used to increase the realism of many aspects of the game. These
include weapon models, character models and behaviors, game dynamics (such as injury
models and realistic sight picture for aiming). The Human Behavior Model Interchange
Standard works through Unreal Tournament's publicly available "mod" interface and
didn't require a game engine license to be purchased from Epic.

Mogadishu Level Fly-by: The first sequence presents a fly-by overview of the
Mogadishu-themed urban terrain that was custom built by Quicksilver software for the
DMSO HBM IS project. This is approximately 16 city blocks that have the "look and
feel" of Mogadishu and contain specific terrain features from the movie BlackHawk
Down including a downed BlackHawk helicopter. As the level currently stands users and
HBM agents are not able to enter building interiors.

AI.lmplant: The next sequence of the demo presents the behavior of the Al.lmplant
control opponents. AI.Implant is a game industry middleware tool that focuses on
navigation and path planning in 3D environments. Whereas most games use an invisible
waypoint graph spatial representation, AI.Implant uses a barrier-based spatial
representation. By extracting barriers directly from the 3D environment, Al.lmplant can
fine tune its movement within that environment and doesn't require a level designer to
reconfigure a waypoint graph each time the level layout changes. In the demonstration
sequence the user (in invisible, free-fly mode) follows the Al.lmplant-controlled militia
leader. The leader travels in a circular patrol path in the Mogadishu level. As the
AI.Implant-controlled militia members spot the leader they move towards him and follow
him through the level using AI.Implant's built in flocking behavior.

Soar (University of Michigan): The next sequence presents the first set of Soar-based
behaviors used to control the four soldiers of the fire team that team with the human user.
The University of Michigan Soar behaviors, shown in this sequence, are encoded entirely
in Soar productions. The ICT Soar behaviors, shown in the next sequence, are encoded
in a combination of high-level Soar productions and mission-specific extensions to the
HBM IS. In the demonstration the human user controls the center character while the
four characters in the surround box formation are Soar controlled. As the user moves the
Soar-controlled agents follow and seek to re-establish the box formation. The human
user then orders the Soar-controlled agents into a line formation and demonstrates how

32

the Soar agents follow and re-establish the line formation. The human user then orders
one pair of Soar agents to hold position while the second pair of Soar agents continues to
move with the user. The human user then orders all of the Soar agents to hold position
and moves with the Soar-controlled soldiers following. Finally, the Soar agents are again
ordered into the box formation and move with the human user.

Soar (ICT): The next sequence demonstrates a second set of Soar-based behaviors
developed at ICT. These behaviors demonstrate how the base HBM IS (used in the
University of Michigan behaviors) can be extended to include higher-level, mission-
specific behaviors. While productions are still used to control the high-level behavior of
the Soar agents, lower level behaviors, such as maintaining a formation, are now
implemented through mission-specific extensions to the Human Behavior Model
Interchange Standard. While these extensions are specific to the formations used in this
demonstration, they are not Soar-specific and could be used by other Human Behavior
Models. Again the center character is controlled by the human while the four
surrounding characters (in white camo in this case) are controlled by the ICT Soar
behaviors. The demonstration starts with the Soar agents moving with the character in a
box formation. Because the low-level formation holding behaviors are encoded in the
HBM IS they are able to react to the user's movements much more quickly. This results
in much tighter, but less natural (almost robotic), movement of the formation. The Soar
agents are ordered into a line formation which displays similar characteristics. As before,
individual pairs of Soar agents and all four Soar agents are ordered to hold position.

3 Simultaneous HBMs: Soar, AI.Implant, PMFs: The next sequence demonstrates all
three Human Behavior Representation Models acting in the same environment, at the
same time, through slight variations of the base HBM IS. To our knowledge, this is the
first time three different HBMs have operated in a single environment at the same time.
At the start of the sequence the human user is surrounded by his fire team of four Soar-
controlled characters. The AI.Implant-controlled opponents are visible in the distance
(and through the sniper scope). The PMF-controlled "gasping bot" is the character in
white camo with no hat near the human's team. The user switches to the PMF control
screen and lowers the energy reservoir to cause the PMF agent to start gasping. The user
then lowers the energy again causing the PMF agent to collapse. The rest of the sequence
continues to demonstrate all three HBMs operating at the same time. In addition to the
"gasping bot", a full set of PMF behaviors were demonstrated separately by the
University of Pennsylvania team.

Final Demonstration: The final sequence demonstrates a tactical encounter between the
user's Soar-controlled fire team and the Al.Implant-controlled opponent militia. In this
instance the ICT Soar behaviors are used. The user starts by waiting until the Al.lmplant
agents have turned the comer and then moves up behind them and tells one pair of Soar
agents to hold position as a base of fire. The user then moves with the other pair of Soar
agents into position to flank the AI.Implant militia. The user then waits for the
AI.Implant agents to move through their next patrol loop (not that we've reduced
AI.Implant's line-of-sight distance for demonstration purposes). The user and two Soar

33

agents then move forward to catch the AL.Implant militia in a crossfire with the other two
Soar agents.

6.0 Future Work

The work done in the context of the HBM Interchange Standards Project suggests a
number of research areas that show potential and are likely to be fruitful topics for future
work.

6.1 Games as Research Environments
For a number of years now commercial games have been used as research environments
for a variety of research areas. Commercial games provide cheap, easily accessible
virtual environments that are almost as complex as large scale simulation systems such as
OneSAF and JointSAF. Many of the problems faced in these simulation systems can also
be explored in the context of one or more commercial games. Games are also an
attractive domain for graduate students and undergraduates and make for compelling
demonstrations. More than 20 major research universities and institutions use games as
environments for ongoing research efforts. These include the University of Michigan,
Carnegie Mellon University, University of Southern California, Northwestern University,
SAIC, BBN, and MAK. Many of these organizations are using the Unreal Tournament
game engine due to the native function support mentioned above.

In most games realism is less important than entertainment. However, some
realism mods, such as Infiltration, and simulation-based games, such as flight simulators
and Sonalysts' naval simulations, rival even the most realistic simulation systems. For
many research projects the realism of the environment might be less important than the
easy of integration with that environment. For the early stages of research an
inexpensive, easy to use, complex, compelling virtual environment, based on a
commercial game, might be the most effective environment. ICT researchers will
continue to use commercial game engines as research environments. We hope to build
on our experiences with First-Person Shooter game engines to expand into other game
genres such as Real-Time Strategy (RTS) games and Massively Multiplayer Online Role-
Playing Games (MMORPG). Unfortunately these game genres currently lack the
publicly available "mod" interfaces that are common in FPS games. ICT has discussed
building HBM interfaces into existing games with a number of game companies, most
notably Quicksilver, developers of Masters of Orion Ill, and UbiSoft, developer of the
upcoming Matrix MMORPG. One key step in shifting to new game genres is identifying
research areas that can be effectively explored in the context of that genre of game and
then transitioned to other systems and used for training, analysis, mission rehearsal, or
any of a number of other DoD purposes. ICT has been involved in a recent DMSO
funded effort to identify analysis applications of MMORPGs headed by Dr. David
Johnson at IDA. This effort has suggested that the involvement of large DoD
organizations, such as DMSO, can be helpful in getting and keeping the attention of
commercial game developers.

34

6.2 HBM Interchange Standard

The most significant result of the HBM Interchange Standards project is the
demonstration that three very different HBM models, coming from two different
communities, can operate in the same environment through a single interface. The
prototype HBM Interchange Standard developed in this project has shown some potential
and further development of this interface seems a valuable area of future research. ICT
and UPenn will likely continue this work in an informal manner as a part of future HBM
related projects. Of particular interest is extending the interface to cover different types
of spatial reasoning (see next subsection), command echelons, game genres, and HBM
models (such as ACT-R).

6.3 Spatial Representation

One interesting outcome of the comparison of AI.lmplant, Soar and the NPC Al
internal to Unreal Tournament was the discovery that these systems use three very
different approaches to spatial representation. The Unreal Tournament NPCs use the
common game industry approach of embedding invisible "pathing waypoints" in the map
and connecting the waypoints with edges to create a waypoint graph. This waypoint
graph is constructed such that an NPC can move throughout the map by moving from
waypoint to waypoint along the edges. Two waypoints are connected by an edge if there
is no blockage between the waypoints. Thus, by following edges the NPC will never run
into an obstacle and doesn't even need to know that the obstacles exist. The waypoints
and edges are generally added by hand usually by the designer of the map.

AI.Implant takes the very different approach of explicitly representing the
obstacles in the world by surrounding them with barriers. Ideally, these barriers can be
extracted directly from the polygons that make up the world through AI.lmplant's
interface with the Maya 3D modeling program. However, if the environment isn't
modeled in Maya extracting barrier information can be very difficult. For the Unreal
Tournament level a set of barriers had to be input by hand to surround all the obstacles in
the world. Internally AI.Implant uses an automatic algorithm to generate a waypoint
graph that avoids the barriers and fills the space. Thus the waypoint graph representation
is again used but not created by hand.

The Soar architecture uses "corner nodes" and "door nodes" to represent the
terrain. Each room has two corner nodes, in opposing corners, and a door node on either
side of each door into the room. As with Unreal Tournament these nodes are placed by
hand. This representation gives Soar exact information about the dimensions of each
room and the location of each doorway allowing the Soarbot to move throughout the
environment without being limited to a pre-defined waypoint graph. The Soarbot can
also use this spatial representation to perform more sophisticated spatial behaviors such
as dodging behind corners, popping out of doorways to shoot and then ducking back in,
and circling around to attack from behind. A static, pre-defined waypoint network would
make many of these behaviors difficult as the dynamics of the behavior are very
dependent on the specific position of the bot and opponent.

Further exploration of the benefits of these different spatial representation
approaches, as well as approaches used by other HBRs, is a good candidate for future

35

work. It may also be valuable to consider creating a standard for spatial representations
that, like the HBM Interchange Standard, could be shared between commercial game
developers and DoD systems.

6.4 Combined Human Behavior Model
The development of a CHBM is useful in that it often identifies conflicts, gaps, or

inconsistencies in the individual component models that comprise it. The CHBM
developed for this effort focuses on goal-directed tactical behavior, physiological and
emotional effects on behavior, and navigation.

The CHBM consists of components taken from both the academic research
community and the computer game industry. The Soar architecture (University of
Michigan) acts as the central behavior generation component. Performance Moderator
Functions (PMFs), developed under the guidance of Dr. Barry Silverman at the
University of Pennsylvania, will interact with the existing simulation's Artificial
Intelligence (Al) to reflect physiological and emotional states. AI.lmplant (All)
(BioGraphic Technologies) acts as the primary path-planning and navigation layer for
characters within the environment. Each of these components are the most sophisticated
in their specific domain but have been developed somewhat in isolation. The primary
focus of the ICT team is the design and development of a number of interchange
standards and specifications that will allow the three components to work together as a
single architecture and to interact with the simulation environment. For this phase of the
project, the primary simulation environment is a version of Unreal Tournament (UT) that
has been modified to support more realistic military environments, equipment, and tactics
(Infiltration), which is described below.

7.0 Deliverables
This section details the deliverables of the DMSO funded Human Behavior

Representation Interchange Standards Laboratory and when each was completed. These
deliverables are taken from section 1.6.3.4 of the "Vision Proect 2002, Innovation
Workshop, and Laboratory for Human Behavior Representation Interchange Standards"
proposal.

7.1 Start of Work Conference
The start of work conference was held in Alexandria, VA at the IDA offices ol

8/12/2002. ICT's conference notes were delivered by email to John Tyler and Joe Toth
as well as the other participants on 8/13/2002. A copy of ICT's presentation from the
start of work conference can be found on the CD included with this final report.

36

7.2 Laboratory Design Document

The laboratory design document was delivered by email to Joe Toth on
10/15/2002. An updated version of this laboratory design document is included in this
report as Section 3.0.

7.3 Demonstration

The demonstration scenario was demonstrated at the Final Project Review
meeting at the IDA offices in Alexandria, VA on 7/16/2003. A slightly updated version
of this demonstration scenario can be found on the CD included with this final report or
on the FTP site. The demonstration shows three HBM models (Soar, AI.Implant,
PMFServ) operating in the same environment through very similar interfaces in a
scenario motivated by Black Hawk Down.

7.4 Final Report

This final report will be delivered in draft form by email on 9/26/2003 with
electronic copies to be mailed to the program manager at the same time.

37

Appendix A: Infiltration Mod
Infiltration is a squad-based, mission-oriented add-on that utilizes modern-day

weapons (M I 6-A2), equipment (Kevlar Helmets) and tactics (strafing around corners).
Below are the suite of weapon models currently instantiated in Infiltration. These are the
types that may be used within the demonstration.

PISTOLS
* Beretta M9

F EN Five-seven
* H&K MK 23 SOCOM
* Desert Eagle Mark XIX
* Walther P99

SUBMACHINE GUNS
* Arsenal AKMSU
• FN P90
• H&K MP5/40A3
* H&K MP5K PDW
* H&K MP5N "Navy"
* IMI Mini Uzi

ASSAULT RIFLES
* Colt M4AI Carbine
* Colt M I6-A2
* Giat Famas G2
* H&K G1I
* H&K G36C
* SIG SG 551-SWAT

SNIPERRIFLES
* H&K PSG-I
• Robar RC50

SHOTGUNS
* Benelli MI S90
* Remington 870

MACHINE GUNS
* FN M249 SAW

EXPLOSIVES
* H&K HK69-AI
* M67 Frag Grenade
• M18AI Claymore

38

* Smoke Flare
* Signal Flare

39

Appendix B: Additions/Modifications to Soar's MOUTbot
UnrealScript

MOUTlnterface.uc
* Added ProcessStrafeTo function (and made required changes to ReportCommand

event)
* Made a minor change to ProcessMoveTo, but this change actually has no impact

on the system since a) the BHBots always move with strafing and b) it is in a
section of code which should never get executed. For these reasons, this change
can be ignored.

SoarMOUTBot.uc
* Modified TeamMessage event to send all messages to all bots (so, anything the

user sends with the Say command will be received by the bots). This is a bit of a
hack, and really, broadcast or something should have been used. If we continue
working on this in the future we should revise this, but for now it works.

" Modified "Walking" and "Thrusting" state code to change "Groundspeed". For
walking, speed is controlled via a speed parameter in the MoveTo native function
(this is a UT native function, not something we wrote). The StrafeTo native
function (called from the Thrusting state) does not have a speed parameter, so the
speed needs to be changed by changing the Groundspeed directly. We change the
Groundspeed to the desired speed in the Strafing state code and change it back to
the default in the Walking state code. As a side note, it turns out that the speed
parameter of the MoveTo function was misunderstood (it's not what you think)
and we will probably change the walking code to look like the strafing code at
some point.

* The "TweenToWalking" and "FinishAnim" function calls in the "Walking" and
"Thrusting" states were commented out. For reasons that are not well understood,
these were preventing bots from moving to a new location until after the user had
stopped moving (so they could not maintain formation while the user was in
motion).

Spawn BHScenario.uc, BHScenariol.uc
These classes were added to make testing easier. Spawning an instance of BHScenariol
simply created some MOUTBots at specified locations in our test level (not the BHD
level) so we could consistently and easily test some situations. These classes are not
necessary for the Blackhawk scenario.

SoarBHBotO-3.uc, SoarAPIBHBotO-3.uc
These are the SIO and API versions of the BHBots, respectively. These classes merely
specify the UnrealTournament team that the bots are on (red, in this case), their names
(BHBotO-3) and the Soar files to load them from (BHBotO-3.soar). For the SIO versions,
they also specify the IP addresses (all local machine) and the port numbers to connect to
(7605-7608).

40

SoarMOUTBotl-4.uc, SoarAPIMOUTBotI-4.uc
These are the SIO and API versions of the MOUTBots, respectively. We used these for
testing only - they are not required for the Blackhawk scenario. The only significant
difference is that we put them on the blue team so that the game didn't end when we
killed one (every time someone is killed the game checks to see if there is only one team
left; if so, the level ends).

SoarGame Changes
Soarinterface.uc

* Added bDebugDestination variable and associated code in the Tick function to
mark where bots were trying to move to. This was very valuable during
debugging. It can be turned on or off by setting the variable value in the
defaultproperties section. This change is not absolutely necessary for the
Blackhawk scenario, but we highly recommend it for debugging purposes. In the
future it would be nice to be able to turn this on and off at runtime.

41

Appendix C: Monthly Reports

March 2003

March Progress Report
DMSO Human Behavior Representation Interchange Standards Laboratory

4/17/2003

Throughout March, we focused primarily on laying out a roadmap leading up to the final
demonstration at the end of July. Based on conversations with Dr. Michael Young and
Dr. John Tyler we adjusted our task ordering to put more emphasis on developing a
candidate HBM interface standard and less emphasis on the integration of the three HBM
components with each other. The Interim Progress Report (to follow shortly) describes
our progress in interfacing HBM modules with Unreal Tournament in more detail.

HBM component interfacing: The AI.Implant interface to Unreal Tournament was
improved in a number of ways.

* Work began on upgrading AI.Implant to the newly released version (version 1.6),
which has significant path-planning improvements from earlier distributions

" Continued AI.Implant integration into Unreal Tournament-this includes
representing UT static objects within the AI.lmplant Object Framework

In addition the interfacing of Performance Moderator Functions in collaboration with the
UPenn group got underway. Meetings with UPenn yielded a specification tbr what
weapon sets/models, character meshes/animation, and PMFs will actually be used for the
scenario. In addition the AI.lmplant interface with resources for writing native functions
within UT specific to the HBM was delivered to UPenn to act as a model for their PMF
interfacing efforts. Basing the PMF interface off the AI.lmplant interface will ensure that
all three HBM interfaces can be combined into a single candidate HBM interface in the
next few months. Finally, the AI.lmplant integration with Unreal Tournament was
delivered to Joe Toth to prepare for the evaluation study.

Work on the candidate common HBM interface commenced in March. An initial
design for the data types and process flow was developed and work began on bringing the
Soar and AI.lmplant interfaces with Unreal Tournament into line with this design.

Documentation: Work on fully documenting the Soar interface, AI.lmplant interface,
and Unreal Tournament interface continued. Fully understanding and documenting these
various interfaces will form the basis for the design of the candidate common HBM
interface. In addition an Interim Progress Report will be finalized and delivered in the
next few days. Also, work commenced on the specification of the art assets needed for
the final demonstration scenario.

Laboratory Setup: Final hardware orders were placed and the two machines ordered last
month were set up.

42

Game Developer's Conference: Dr. van Lent attended the 2003 Game Developer's
Conference in San Jose, CA. While at the conference Dr. van Lent met with Dr. Paul
Kruszewski, lead developers of AI.Implant, and representatives of Epic Software,
developers of Unreal Tournament. In addition Dr. van Lent participated in the
International Game Developer's Association Academic Summit which is the primary
venue for the discussion of how game developers and academic researchers can improve
collaboration. Dr. van Lent presented a summary of ICT research projects involving the
game development community.

Scenario Development: Based on the input of the PMF team and the game development
company Quicksilver Software, the Black Hawk Down scenario continued to be revised
and improved.

Meetings:
* Weekly meeting - 3/3
* Weekly meeting-3/12
* UPenn teleconference -3/17
" Budget projection meeting - 3/18
* Weekly meeting-3/20
* Soar teleconference -3/26
* UPenn teleconference - 3/31

April 2003
April Progress Report

DMSO Human Behavior Representation Interchange Standards Laboratory
5/16/2003

Throughout April, we enhanced the AI.Implant (All) interface and worked with
Quicksilver Software to define the Unreal Tournament (UT) artwork that is to be
developed for the new MOUT scenario (Mogadishu). This scenario will be used by ICT
and UPenn to demonstrate the various HBM components in a variety of roles (friendly
soldier, enemy asymmetric, neutral crowd, hostile crowd). The AI.Implant interface was
enhanced to support instantiating a waypoint network within the AI.Implant Object
Model (instead of the single vertex positions that had previously guided bot movement
and navigation). This would not only make movement throughout the level more precise
and controllable, but proved to be a much more efficient approach from the AI.Implant
Object Model perspective.

During the month of April ICT and Quicksilver Software planned the development of the
art assets necessary to support the demonstration scenario. During this planning a study
was conducted of the strengths and weaknesses of both the original Unreal Tournament
engine and the newer Unreal Tournament 2003 engine. Although the Unreal Tournament
2003 engine has much better graphics support and is more manageable it does not include
"native function" support which allows the mod community to integrate external software

43

applications (such as HBM architectures). This "native function" support is the main
reason the original Unreal Tournament engine is so widely used by the research
community. Since this discovery Dr. van Lent has contact the President of Epic Games
(developer of Unreal Tournament) to discuss this weakness of the new engine. Epic
Games seems open to the possibility of a "research-only" license for the game engine
which would allow the HBM research community to obtain the necessary object code to
integrate external software at little or no cost. Discussions with Epic Games are on-
going. For the scope of the current project we will use the original Unreal Tournament
engine.

HBM component interfacing: The AI.Implant interface to Unreal Tournament was
improved in a number of ways.

* Completed and tested upgrade to AI.lmplant vl.6
* Began laying out the waypoint network within UT and All-a shift from standard

position coordinates to a waypoint network was determined to be more efficient
and practical

In addition the full HBM/Unreal Tournament package was checked into ICT's new
SourceForge project management system which includes a Concurrent Version
management System (CVS). The HBM/Unreal Tournament package including the Soar
and AI.Implant interfaces was made available to the UPenn team to help them integrate
PMFServe through our standard HBM interface. Using the example software and
documentation we've developed they were able to integrate an initial PMFServe bot in
approximately two weeks.

Documentation: All the documentation developed to assist future efforts to interface
HBM components to industry game engines was posted on the internal SourceForge
server and made available to the UPenn team. In addition, the scenario description
document was updated to reflect the art asset development. Finally, the previously
developed project schedule was updated.

Laboratory Setup: Final hardware is in place and all software has been installed. This
includes the introduction of a new SourceForge project management system including a
Concurrent Version management System (CVS) server.

Scenario Development: Based on the input of the PMF team and the game development
company Quicksilver Software, the Black Hawk Down scenario was finalized and the
final art asset production statement of work was completed. The production of the art
assets is set to commence May 2' .

Meetings:
* 4/2 - Project Status meeting with Randy Hill, Ryan McAlinden and Michael van

Lent
• 4/3 - Meeting with Quicksilver to discuss art asset creation
* 4/4 - Weekly project meeting
* 4/7 - Telecon with QSI
* 4/11 - Weekly project meeting including Telecon with UPenn

44

* 4/14-4/15 - DMSO workshop at ICT
* 4/15 - Telecon with UMichigan
o 4/17 - Weekly project meeting
e 4/18 - Meeting with QSI
o 4/25 - Weekly project meeting including Telecon with UPenn

May 2003
May Progress Report

DMSO Human Behavior Representation Interchange Standards Laboratory
6/20/2003

During May the Human Behavior Model (HBM) interface to Unreal Tournament was
mostly completed and the ICT team's efforts started to shift towards developing
behaviors and models for the demonstration scenario. With AI.Implant working robustly
through the HBM interface work began on developing the AI.Implant waypoints in the
demonstration environment. Work started on additional Soar behaviors necessary for the
demonstration, starting with a follow behavior. Also the UPenn team showed an early
demonstration of the Performance Moderator Function server (PMFserv) working
through the HBM interface.

Art asset production for the demonstration scenario was also under way with Quicksilver
producing 2 software drops that included:

* Textured terrain data (perimeter walls, blocky building geometry)
* Static Obstacles
* Basic set of animations for scenario characters

This new MOUT environment replaced the existing AlI/Soarbot MOUT Environment
and will serve as the backdrop for the final HBM demonstration.

The All interface was enhanced to support a waypoint network within this new level,
which consisted of defining path nodes within Unreal Tournament and replicating them
within the All Object Model. Once in the Object Model, network creation began that
would eventually navigate the character through the streets of the level.

The team also began development of the "follow operator" within Soar that will allow 3
subordinate Rangers to flock around the user as he advances through the streets.
Conversations with the University of Michigan took place to better understand what
needed to be done for such an operator implementation.

Discussions also took place with the University of Pennsylvania's PMF group to
determine a precise role for their emotion-based software in the BHD scenario. It was
concluded that they would produce a group of civilian characters and a single enemy
combatant that is controlled by PMFServ.

45

HBM component interfacing:
A1.1mplant:

* Completed final path node and waypoint network declaration in the existing
MOUT environment

* Began implementing new path nodes within the Object Model based on the
Mogadishu level

* Researched potential automation of UT map data into All through parsing of t3d
file

o Created a lightweight java parsing program
o T3d's file format found to be too raw to be useful

• Began logging vertex information for future import into All

Soar:
* Began design and development of the follow operator that would control

movement of 3 subordinate Rangers in UT

General:
• Prepared an All demonstration for the BRIMS conference: set up a scenario that

included an autonomously All-controlled bot competing against the User,
Soarbots, and UT Bots in a DeathMatch mode

* Moved all HBM software over to a clean UT (Infiltration) release; included
recompilation of the Soar and All Interfaces and UnrealScript classes

Documentation:
* Updated Project schedule was produced, along with modified versions of the

scenario script and asset documents

Laboratory Setup: Setup of the DMSO laboratory was completed in April.

Scenario Development:
" Coordinated the art asset production with Quicksilver software including the

delivery of first two delivery milestones.
* Updated UT Black Hawk Down map with temporary Path Nodes.

Travel & Conferences:
* While on the East Coast for other purposes Ryan McAlinden spent a few hours at

IDA delivering software and documentation to JozsefToth in preparation for Dr.
Toth's talk at the BRIMS conference.

" Dr. van Lent traveled to the BRIMS conference in Mesa, AZ to participate in a
panel discussion and attend research presentations.

Meetings:
* 5/2-Weekly Meeting; teleconference with UPenn
* 5/9-Trip to IDA to deliver software and documentation to JozsefToth for the

BRIMS Conference

46

* 5/16-Weekly Meeting
* 5/19 - Teleconference with BioGraphics Technologies (AI.Implant)
a 5/27-Weekly Meeting; teleconference with Michigan (Soar Group)
0 5/30-Teleconference with UPenn

June 2003
June Progress Report

DMSO Human Behavior Representation Interchange Standards Laboratory
7/21/2003

During June the Human Behavior Interchange Standards project worked primarily
on the demonstration scenario and final tasks. Dr. van Lent and Ryan McAlinden also
traveled to Ann Arbor, MI to attend the Soar Workshop and present a talk and initial
demonstration. This demonstration showed, for the first time, three Human Behavior
Models (HBMs) working in a single environment through a single interface. The talk
and demo were well received and multiple groups (U of Michigan, CMU, ISLE)
expressed an interest in future collaboration.

Work on the AI.Implant HBM included placing barriers in the AI.Implant spatial
representation model corresponding to the buildings in the Unreal Tournament
environment. In addition, a flocking model built into AI.Implant was tested as a means
for controlling Unreal characters. Work on the Soar HBM included developing new Soar
operators to model the behaviors required for the demonstration scenario and extending
the Soar/Unreal Tournament interface to support these behaviors. Work on the PMF
HBM consisted mainly of supporting the development efforts of the UPenn team as they
integrated PMFServ with Unreal Tournament.

In addition, the team oversaw art asset production for the demonstration scenario
underdevelopment at Quicksilver producing I software drop that included:

" Updated textured terrain data
* New character models

HBM component interfacing:
AI.Implant:

* Created a rough Barrier approximation of the UT level for AI.I
o Updated as necessary with new level drops

* Implemented a new waypoint network inside AI.I
o Auto edge generation for the waypoint network, based off of existing

barriers
* Tested a prototype SeekToViaNetwork behavior for Leader movement

o Tweaked animation
" Tested a prototype FlockWith behavior for SquadMember movement

o Tweaked motion/starting locations
* Extended Maneuver.dlls logging

47

" Extended Maneuvers UScript logging capabilities
o Ability to log to a specified file instead of default

* Extended AI.I/UT interface
o SetAgentPosition function
o SeekTo function (deprecated already)
o FlockWith function (deprecated already)

" Changes and recompilation of the native functions as a result of ID conflicts that
existed between AI.Implant and PMFserv

" Upgraded to AI.Implant release vl.6.1
Soar:

* Wrote Soar operators and productions to support follow and orient behaviors that
allow a user in Unreal Tournament to spawn four subordinate Soarbots that
oriented around him in a box formation.

* Modify the Soar Interface (on the UnrealScript side) to allow the Soarbots to
move and orient themselves correctly as related to the User

General:
* Integrated Soar HBM, AI.Implant HBM, and PMFServ HBM so all three bots

could interact in the same environment.
* Extended Maneuver.dlls logging
* Extended Maneuvers UScript logging capabilities

o Ability to log to a specified file instead of default
* Researched ways around Summoning the bots at game time

o Able to have pre created bots, problems with spawning their inventory
o Work around - bots Spawned inside AIlSetup which must be summoned

(I Summon instead of 4)
* Developed UScript method of bot self initialization
• Developed C++ method of bot self initialization
* Implemented UT's forcing of bot locations every tick

Documentation:
* Commenced work on the final report.

Laboratory Setup: Setup of the DMSO laboratory was completed in April.

Scenario Development:
* Coordinated the art asset production with Quicksilver software including the

delivery of third delivery milestones.
* Modification of the Mogadishu level to include a preliminary set of path nodes

used by a variety of the bots for their internal terrain representation

Travel & Conferences:
* Attended the 2003 Soar Workshop in Ann Arbor, MI. Presented a talk titled

"Human Behavior Models and Unreal Tournament" and a demonstration.

48

Meetings:
0 6/4 - Teleconference with Quicksilver
* 6/5 - Weekly meeting
* 6/6-Telecon with UPenn
• 6/1 I-Telecon with UPenn
0 6/20 - Weekly meeting
* 6/23-Telecon with UPenn
* 6/23 - Status report meeting with Ryan McAlinden
* 6/24-6/27-Soar Workshop

49

