Deep Natural Language Understanding of News Text (bibtex)
by Jaya Shree, Emily Liu, Andrew Gordon, Jerry Hobbs
Abstract:
Early proposals for the deep understanding of natural language text advocated an approach of “interpretation as abduction,” where the meaning of a text was derived as an explanation that logically entailed the input words, given a knowledge base of lexical and commonsense axioms. While most subsequent NLP research has instead pursued statistical and data-driven methods, the approach of interpretation as abduction has seen steady advancements in both theory and software implementations. In this paper, we summarize advances in deriving the logical form of the text, encoding commonsense knowledge, and technologies for scalable abductive reasoning. We then explore the application of these advancements to the deep understanding of a paragraph of news text, where the subtle meaning of words and phrases are resolved by backward chaining on a knowledge base of 80 hand-authored axioms.
Reference:
Deep Natural Language Understanding of News Text (Jaya Shree, Emily Liu, Andrew Gordon, Jerry Hobbs), In Proceedings of the First Workshop on Narrative Understanding, Association for Computational Linguistics, 2019.
Bibtex Entry:
@inproceedings{shree_deep_2019,
	address = {Minneapolis, Minnesota},
	title = {Deep {Natural} {Language} {Understanding} of {News} {Text}},
	url = {https://www.aclweb.org/anthology/papers/W/W19/W19-2403/},
	doi = {10.18653/v1/W19-2403},
	abstract = {Early proposals for the deep understanding of natural language text advocated an approach of “interpretation as abduction,” where the meaning of a text was derived as an explanation that logically entailed the input words, given a knowledge base of lexical and commonsense axioms. While most subsequent NLP research has instead pursued statistical and data-driven methods, the approach of interpretation as abduction has seen steady advancements in both theory and software implementations. In this paper, we summarize advances in deriving the logical form of the text, encoding commonsense knowledge, and technologies for scalable abductive reasoning. We then explore the application of these advancements to the deep understanding of a paragraph of news text, where the subtle meaning of words and phrases are resolved by backward chaining on a knowledge base of 80 hand-authored axioms.},
	booktitle = {Proceedings of the {First} {Workshop} on {Narrative} {Understanding}},
	publisher = {Association for Computational Linguistics},
	author = {Shree, Jaya and Liu, Emily and Gordon, Andrew and Hobbs, Jerry},
	month = jun,
	year = {2019},
	keywords = {Narrative},
	pages = {19--27}
}
Powered by bibtexbrowser