Recognizing Coherent Narrative Blog Content (bibtex)
by James Ryan, Reid Swanson
Abstract:
Interactive storytelling applications have at their disposal massive numbers of human-authored stories, in the form of narrative weblog posts, from which story content could be harvested and repurposed. Such repurposing is currently inhibited, however, in that many blog narratives are not sufficiently coherent for use in these applications. In a narrative that is not coherent, the order of the events in the narrative is not clear given the text of the story. We present the results of a study exploring automatic methods for estimating the coherence of narrative blog posts. In the end, our simplest model—one that only considers the degree to which story text is capitalized and punctuated—vastly outperformed a baseline model and, curiously, a series of more sophisticated models. Future work may use this simple model as a baseline, or may use it along with the classifier that it extends to automatically extract large numbers of narrative blog posts from the web for purposes such as interactive storytelling.
Reference:
Recognizing Coherent Narrative Blog Content (James Ryan, Reid Swanson), In Proceeedings of the International Conference on Interactive Digital Storytelling, Springer International Publishing, 2016.
Bibtex Entry:
@inproceedings{ryan_recognizing_2016,
	address = {Cham, Switzerland},
	title = {Recognizing {Coherent} {Narrative} {Blog} {Content}},
	isbn = {978-3-319-48278-1 978-3-319-48279-8},
	url = {http://link.springer.com/10.1007/978-3-319-48279-8_21},
	doi = {10.1007/978-3-319-48279-8_21},
	abstract = {Interactive storytelling applications have at their disposal massive numbers of human-authored stories, in the form of narrative weblog posts, from which story content could be harvested and repurposed. Such repurposing is currently inhibited, however, in that many blog narratives are not sufficiently coherent for use in these applications. In a narrative that is not coherent, the order of the events in the narrative is not clear given the text of the story. We present the results of a study exploring automatic methods for estimating the coherence of narrative blog posts. In the end, our simplest model—one that only considers the degree to which story text is capitalized and punctuated—vastly outperformed a baseline model and, curiously, a series of more sophisticated models. Future work may use this simple model as a baseline, or may use it along with the classifier that it extends to automatically extract large numbers of narrative blog posts from the web for purposes such as interactive storytelling.},
	booktitle = {Proceeedings of the {International} {Conference} on {Interactive} {Digital} {Storytelling}},
	publisher = {Springer International Publishing},
	author = {Ryan, James and Swanson, Reid},
	month = oct,
	year = {2016},
	keywords = {Narrative},
	pages = {234--246}
}
Powered by bibtexbrowser